static int ssl3_generate_key_block(SSL *s, unsigned char *km, int num) { EVP_MD_CTX *m5; EVP_MD_CTX *s1; unsigned char buf[16], smd[SHA_DIGEST_LENGTH]; unsigned char c = 'A'; unsigned int i, j, k; int ret = 0; #ifdef CHARSET_EBCDIC c = os_toascii[c]; /* 'A' in ASCII */ #endif k = 0; m5 = EVP_MD_CTX_new(); s1 = EVP_MD_CTX_new(); if (m5 == NULL || s1 == NULL) { SSLerr(SSL_F_SSL3_GENERATE_KEY_BLOCK, ERR_R_MALLOC_FAILURE); goto err; } EVP_MD_CTX_set_flags(m5, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW); for (i = 0; (int)i < num; i += MD5_DIGEST_LENGTH) { k++; if (k > sizeof buf) { /* bug: 'buf' is too small for this ciphersuite */ SSLerr(SSL_F_SSL3_GENERATE_KEY_BLOCK, ERR_R_INTERNAL_ERROR); return 0; } for (j = 0; j < k; j++) buf[j] = c; c++; EVP_DigestInit_ex(s1, EVP_sha1(), NULL); EVP_DigestUpdate(s1, buf, k); EVP_DigestUpdate(s1, s->session->master_key, s->session->master_key_length); EVP_DigestUpdate(s1, s->s3->server_random, SSL3_RANDOM_SIZE); EVP_DigestUpdate(s1, s->s3->client_random, SSL3_RANDOM_SIZE); EVP_DigestFinal_ex(s1, smd, NULL); EVP_DigestInit_ex(m5, EVP_md5(), NULL); EVP_DigestUpdate(m5, s->session->master_key, s->session->master_key_length); EVP_DigestUpdate(m5, smd, SHA_DIGEST_LENGTH); if ((int)(i + MD5_DIGEST_LENGTH) > num) { EVP_DigestFinal_ex(m5, smd, NULL); memcpy(km, smd, (num - i)); } else EVP_DigestFinal_ex(m5, km, NULL); km += MD5_DIGEST_LENGTH; } OPENSSL_cleanse(smd, sizeof(smd)); ret = 1; err: EVP_MD_CTX_free(m5); EVP_MD_CTX_free(s1); return ret; }
static int test_EVP_DigestSignInit(void) { int ret = 0; EVP_PKEY *pkey = NULL; unsigned char *sig = NULL; size_t sig_len = 0; EVP_MD_CTX *md_ctx, *md_ctx_verify; md_ctx = EVP_MD_CTX_new(); md_ctx_verify = EVP_MD_CTX_new(); if (md_ctx == NULL || md_ctx_verify == NULL) goto out; pkey = load_example_rsa_key(); if (pkey == NULL || !EVP_DigestSignInit(md_ctx, NULL, EVP_sha256(), NULL, pkey) || !EVP_DigestSignUpdate(md_ctx, kMsg, sizeof(kMsg))) { goto out; } /* Determine the size of the signature. */ if (!EVP_DigestSignFinal(md_ctx, NULL, &sig_len)) { goto out; } /* Sanity check for testing. */ if (sig_len != (size_t)EVP_PKEY_size(pkey)) { fprintf(stderr, "sig_len mismatch\n"); goto out; } sig = OPENSSL_malloc(sig_len); if (sig == NULL || !EVP_DigestSignFinal(md_ctx, sig, &sig_len)) { goto out; } /* Ensure that the signature round-trips. */ if (!EVP_DigestVerifyInit(md_ctx_verify, NULL, EVP_sha256(), NULL, pkey) || !EVP_DigestVerifyUpdate(md_ctx_verify, kMsg, sizeof(kMsg)) || !EVP_DigestVerifyFinal(md_ctx_verify, sig, sig_len)) { goto out; } ret = 1; out: if (!ret) { ERR_print_errors_fp(stderr); } EVP_MD_CTX_free(md_ctx); EVP_MD_CTX_free(md_ctx_verify); EVP_PKEY_free(pkey); OPENSSL_free(sig); return ret; }
static PyObject * EVP_digest(EVPobject *self, PyObject *unused) { unsigned char digest[EVP_MAX_MD_SIZE]; EVP_MD_CTX *temp_ctx; PyObject *retval; unsigned int digest_size; temp_ctx = EVP_MD_CTX_new(); if (temp_ctx == NULL) { PyErr_NoMemory(); return NULL; } if (!locked_EVP_MD_CTX_copy(temp_ctx, self)) { return _setException(PyExc_ValueError); } digest_size = EVP_MD_CTX_size(temp_ctx); if (!EVP_DigestFinal(temp_ctx, digest, NULL)) { _setException(PyExc_ValueError); return NULL; } retval = PyBytes_FromStringAndSize((const char *)digest, digest_size); EVP_MD_CTX_free(temp_ctx); return retval; }
static int hmac_ctx_alloc_mds(HMAC_CTX *ctx) { if (ctx->i_ctx == NULL) ctx->i_ctx = EVP_MD_CTX_new(); if (ctx->i_ctx == NULL) return 0; if (ctx->o_ctx == NULL) ctx->o_ctx = EVP_MD_CTX_new(); if (ctx->o_ctx == NULL) return 0; if (ctx->md_ctx == NULL) ctx->md_ctx = EVP_MD_CTX_new(); if (ctx->md_ctx == NULL) return 0; return 1; }
int EVP_DigestVerifyFinal(EVP_MD_CTX *ctx, const unsigned char *sig, size_t siglen) { unsigned char md[EVP_MAX_MD_SIZE]; int r = 0; unsigned int mdlen = 0; int vctx = 0; if (ctx->pctx->pmeth->verifyctx) vctx = 1; else vctx = 0; if (ctx->flags & EVP_MD_CTX_FLAG_FINALISE) { if (vctx) { r = ctx->pctx->pmeth->verifyctx(ctx->pctx, sig, siglen, ctx); } else r = EVP_DigestFinal_ex(ctx, md, &mdlen); } else { EVP_MD_CTX *tmp_ctx = EVP_MD_CTX_new(); if (tmp_ctx == NULL || !EVP_MD_CTX_copy_ex(tmp_ctx, ctx)) return -1; if (vctx) { r = tmp_ctx->pctx->pmeth->verifyctx(tmp_ctx->pctx, sig, siglen, tmp_ctx); } else r = EVP_DigestFinal_ex(tmp_ctx, md, &mdlen); EVP_MD_CTX_free(tmp_ctx); } if (vctx || !r) return r; return EVP_PKEY_verify(ctx->pctx, sig, siglen, md, mdlen); }
static int test_EVP_DigestVerifyInit(void) { int ret = 0; EVP_PKEY *pkey = NULL; EVP_MD_CTX *md_ctx; md_ctx = EVP_MD_CTX_new(); pkey = load_example_rsa_key(); if (pkey == NULL || !EVP_DigestVerifyInit(md_ctx, NULL, EVP_sha256(), NULL, pkey) || !EVP_DigestVerifyUpdate(md_ctx, kMsg, sizeof(kMsg)) || !EVP_DigestVerifyFinal(md_ctx, kSignature, sizeof(kSignature))) { goto out; } ret = 1; out: if (!ret) { ERR_print_errors_fp(stderr); } EVP_MD_CTX_free(md_ctx); EVP_PKEY_free(pkey); return ret; }
static int _md_ctx_create (md_ctx *x) { assert (x != NULL); #if HAVE_EVP_MD_CTX_NEW /* OpenSSL >= 1.1.0 */ x->ctx = EVP_MD_CTX_new (); /* alloc & init */ #elif HAVE_EVP_MD_CTX_CREATE /* OpenSSL >= 0.9.7, < 1.1.0 */ x->ctx = EVP_MD_CTX_create (); /* alloc & init */ #else /* !HAVE_EVP_MD_CTX_CREATE */ x->ctx = OPENSSL_malloc (sizeof (EVP_MD_CTX)); /* allocate */ #if HAVE_EVP_MD_CTX_INIT /* OpenSSL >= 0.9.7, < 1.1.0 */ if (x->ctx != NULL ) { EVP_MD_CTX_init (x->ctx); /* initialize */ } #endif /* HAVE_EVP_MD_CTX_INIT */ #endif /* !HAVE_EVP_MD_CTX_CREATE */ if (x->ctx == NULL) { return (-1); } return (0); }
/* * Generates the mac for the Finished message. Returns the length of the MAC or * 0 on error. */ size_t tls13_final_finish_mac(SSL *s, const char *str, size_t slen, unsigned char *out) { const EVP_MD *md = ssl_handshake_md(s); unsigned char hash[EVP_MAX_MD_SIZE]; size_t hashlen, ret = 0; EVP_PKEY *key = NULL; EVP_MD_CTX *ctx = EVP_MD_CTX_new(); if (!ssl_handshake_hash(s, hash, sizeof(hash), &hashlen)) goto err; if (str == s->method->ssl3_enc->server_finished_label) key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, s->server_finished_secret, hashlen); else key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, s->client_finished_secret, hashlen); if (key == NULL || ctx == NULL || EVP_DigestSignInit(ctx, NULL, md, NULL, key) <= 0 || EVP_DigestSignUpdate(ctx, hash, hashlen) <= 0 || EVP_DigestSignFinal(ctx, out, &hashlen) <= 0) goto err; ret = hashlen; err: EVP_PKEY_free(key); EVP_MD_CTX_free(ctx); return ret; }
static int test_mdc2(void) { int testresult = 0; unsigned char md[MDC2_DIGEST_LENGTH]; EVP_MD_CTX *c; static char text[] = "Now is the time for all "; size_t tlen = strlen(text); # ifdef CHARSET_EBCDIC ebcdic2ascii(text, text, tlen); # endif c = EVP_MD_CTX_new(); if (!TEST_ptr(c) || !TEST_true(EVP_DigestInit_ex(c, EVP_mdc2(), NULL)) || !TEST_true(EVP_DigestUpdate(c, (unsigned char *)text, tlen)) || !TEST_true(EVP_DigestFinal_ex(c, &(md[0]), NULL)) || !TEST_mem_eq(md, MDC2_DIGEST_LENGTH, pad1, MDC2_DIGEST_LENGTH) || !TEST_true(EVP_DigestInit_ex(c, EVP_mdc2(), NULL))) goto end; /* FIXME: use a ctl function? */ ((MDC2_CTX *)EVP_MD_CTX_md_data(c))->pad_type = 2; if (!TEST_true(EVP_DigestUpdate(c, (unsigned char *)text, tlen)) || !TEST_true(EVP_DigestFinal_ex(c, &(md[0]), NULL)) || !TEST_mem_eq(md, MDC2_DIGEST_LENGTH, pad2, MDC2_DIGEST_LENGTH)) goto end; testresult = 1; end: EVP_MD_CTX_free(c); return testresult; }
unsigned long X509_issuer_and_serial_hash(X509 *a) { unsigned long ret = 0; EVP_MD_CTX *ctx = EVP_MD_CTX_new(); unsigned char md[16]; char *f; if (ctx == NULL) goto err; f = X509_NAME_oneline(a->cert_info.issuer, NULL, 0); if (!EVP_DigestInit_ex(ctx, EVP_md5(), NULL)) goto err; if (!EVP_DigestUpdate(ctx, (unsigned char *)f, strlen(f))) goto err; OPENSSL_free(f); if (!EVP_DigestUpdate (ctx, (unsigned char *)a->cert_info.serialNumber.data, (unsigned long)a->cert_info.serialNumber.length)) goto err; if (!EVP_DigestFinal_ex(ctx, &(md[0]), NULL)) goto err; ret = (((unsigned long)md[0]) | ((unsigned long)md[1] << 8L) | ((unsigned long)md[2] << 16L) | ((unsigned long)md[3] << 24L) ) & 0xffffffffL; err: EVP_MD_CTX_free(ctx); return (ret); }
BIGNUM *SRP_Calc_x(BIGNUM *s, const char *user, const char *pass) { unsigned char dig[SHA_DIGEST_LENGTH]; EVP_MD_CTX *ctxt; unsigned char *cs; BIGNUM *res = NULL; if ((s == NULL) || (user == NULL) || (pass == NULL)) return NULL; ctxt = EVP_MD_CTX_new(); if (ctxt == NULL) return NULL; if ((cs = OPENSSL_malloc(BN_num_bytes(s))) == NULL) goto err; EVP_DigestInit_ex(ctxt, EVP_sha1(), NULL); EVP_DigestUpdate(ctxt, user, strlen(user)); EVP_DigestUpdate(ctxt, ":", 1); EVP_DigestUpdate(ctxt, pass, strlen(pass)); EVP_DigestFinal_ex(ctxt, dig, NULL); EVP_DigestInit_ex(ctxt, EVP_sha1(), NULL); BN_bn2bin(s, cs); EVP_DigestUpdate(ctxt, cs, BN_num_bytes(s)); OPENSSL_free(cs); EVP_DigestUpdate(ctxt, dig, sizeof(dig)); EVP_DigestFinal_ex(ctxt, dig, NULL); res = BN_bin2bn(dig, sizeof(dig), NULL); err: EVP_MD_CTX_free(ctxt); return res; }
// Hashing functions bool OSSLEVPHashAlgorithm::hashInit() { if (!HashAlgorithm::hashInit()) { return false; } // Initialize the context curCTX = EVP_MD_CTX_new(); if (curCTX == NULL) { ERROR_MSG("Failed to allocate space for EVP_MD_CTX"); return false; } // Initialize EVP digesting if (!EVP_DigestInit_ex(curCTX, getEVPHash(), NULL)) { ERROR_MSG("EVP_DigestInit failed"); EVP_MD_CTX_free(curCTX); curCTX = NULL; ByteString dummy; HashAlgorithm::hashFinal(dummy); return false; } return true; }
int _libssh2_sha1(const unsigned char *message, unsigned long len, unsigned char *out) { #ifdef HAVE_OPAQUE_STRUCTS EVP_MD_CTX * ctx = EVP_MD_CTX_new(); if(ctx == NULL) return 1; /* error */ if(EVP_DigestInit(ctx, EVP_get_digestbyname("sha1"))) { EVP_DigestUpdate(ctx, message, len); EVP_DigestFinal(ctx, out, NULL); EVP_MD_CTX_free(ctx); return 0; /* success */ } EVP_MD_CTX_free(ctx); #else EVP_MD_CTX ctx; EVP_MD_CTX_init(&ctx); if(EVP_DigestInit(&ctx, EVP_get_digestbyname("sha1"))) { EVP_DigestUpdate(&ctx, message, len); EVP_DigestFinal(&ctx, out, NULL); return 0; /* success */ } #endif return 1; /* error */ }
void module_sha256_create(struct image *image) { image->md = EVP_sha256(); image->mdctx = EVP_MD_CTX_new(); EVP_DigestInit_ex(image->mdctx, image->md, NULL); }
static jose_io_t * hsh(const jose_hook_alg_t *alg, jose_cfg_t *cfg, jose_io_t *next) { jose_io_auto_t *io = NULL; const EVP_MD *md = NULL; io_t *i = NULL; switch (str2enum(alg->name, "S512", "S384", "S256", "S224", "S1", NULL)) { case 0: md = EVP_sha512(); break; case 1: md = EVP_sha384(); break; case 2: md = EVP_sha256(); break; case 3: md = EVP_sha224(); break; case 4: md = EVP_sha1(); break; } i = calloc(1, sizeof(*i)); if (!i) return NULL; io = jose_io_incref(&i->io); io->feed = hsh_feed; io->done = hsh_done; io->free = hsh_free; i->next = jose_io_incref(next); i->emc = EVP_MD_CTX_new(); if (!i->next || !i->emc) return NULL; if (EVP_DigestInit(i->emc, md) <= 0) return NULL; return jose_io_incref(io); }
/* NOTE: Caller must xfree the signature returned by sig_pp */ extern int crypto_sign(void * key, char *buffer, int buf_size, char **sig_pp, unsigned int *sig_size_p) { EVP_MD_CTX *ectx; int rc = SLURM_SUCCESS; int ksize = EVP_PKEY_size((EVP_PKEY *) key); /* * Allocate memory for signature: at most EVP_PKEY_size() bytes */ *sig_pp = xmalloc(ksize * sizeof(unsigned char)); ectx = EVP_MD_CTX_new(); EVP_SignInit(ectx, EVP_sha1()); EVP_SignUpdate(ectx, buffer, buf_size); if (!(EVP_SignFinal(ectx, (unsigned char *)*sig_pp, sig_size_p, (EVP_PKEY *) key))) { rc = SLURM_ERROR; } EVP_MD_CTX_free(ectx); return rc; }
static PyObject * EVP_hexdigest(EVPobject *self, PyObject *unused) { unsigned char digest[EVP_MAX_MD_SIZE]; EVP_MD_CTX *temp_ctx; unsigned int digest_size; temp_ctx = EVP_MD_CTX_new(); if (temp_ctx == NULL) { PyErr_NoMemory(); return NULL; } /* Get the raw (binary) digest value */ if (!locked_EVP_MD_CTX_copy(temp_ctx, self)) { return _setException(PyExc_ValueError); } digest_size = EVP_MD_CTX_size(temp_ctx); if (!EVP_DigestFinal(temp_ctx, digest, NULL)) { _setException(PyExc_ValueError); return NULL; } EVP_MD_CTX_free(temp_ctx); return _Py_strhex((const char *)digest, digest_size); }
int ssl3_digest_cached_records(SSL *s, int keep) { const EVP_MD *md; long hdatalen; void *hdata; if (s->s3->handshake_dgst == NULL) { hdatalen = BIO_get_mem_data(s->s3->handshake_buffer, &hdata); if (hdatalen <= 0) { SSLerr(SSL_F_SSL3_DIGEST_CACHED_RECORDS, SSL_R_BAD_HANDSHAKE_LENGTH); return 0; } s->s3->handshake_dgst = EVP_MD_CTX_new(); if (s->s3->handshake_dgst == NULL) { SSLerr(SSL_F_SSL3_DIGEST_CACHED_RECORDS, ERR_R_MALLOC_FAILURE); return 0; } md = ssl_handshake_md(s); if ( md == NULL || !EVP_DigestInit_ex(s->s3->handshake_dgst, md, NULL) || !EVP_DigestUpdate(s->s3->handshake_dgst, hdata, hdatalen)) { SSLerr(SSL_F_SSL3_DIGEST_CACHED_RECORDS, ERR_R_INTERNAL_ERROR); return 0; } } if (keep == 0) { BIO_free(s->s3->handshake_buffer); s->s3->handshake_buffer = NULL; } return 1; }
EVP_MD_CTX * md_ctx_new(void) { EVP_MD_CTX *ctx = EVP_MD_CTX_new(); check_malloc_return(ctx); return ctx; }
/** Low-level signature verification. * \param key_count Number of keys in the \a keys array * and number fo signatures in the \a sigs array. * \param keys Array of keys. The keys must include public key data. * \param sigs Array of signatures, as returned from gale_crypto_sign_raw(). * \param data Data to verify against signatures. * \return Nonzero iff the all signatures are valid. */ int gale_crypto_verify_raw(int key_count, const struct gale_group *keys, const struct gale_data *sigs, struct gale_data data) { int i,is_valid = 1; EVP_MD_CTX *context = EVP_MD_CTX_new(); RSA *rsa; EVP_VerifyInit(context,EVP_md5()); EVP_VerifyUpdate(context,data.p,data.l); for (i = 0; is_valid && i < key_count; ++i) { EVP_PKEY *key = EVP_PKEY_new(); EVP_PKEY_assign_RSA(key,RSA_new()); rsa = EVP_PKEY_get0_RSA(key); crypto_i_rsa(keys[i],rsa); if (!crypto_i_public_valid(rsa)) { gale_alert(GALE_WARNING,G_("invalid public key"),0); is_valid = 0; goto cleanup; } if (!EVP_VerifyFinal(context,sigs[i].p,sigs[i].l,key)) { crypto_i_error(); is_valid = 0; goto cleanup; } cleanup: EVP_PKEY_free(key); } return is_valid; }
DIGEST_CTX rpmDigestInit(int hashalgo, rpmDigestFlags flags) { DIGEST_CTX ctx = xcalloc(1, sizeof(*ctx)); ctx->md_ctx = EVP_MD_CTX_new(); if (!ctx->md_ctx) { free(ctx); return NULL; } const EVP_MD *md = getEVPMD(hashalgo); if (md == EVP_md_null()) { free(ctx->md_ctx); free(ctx); return NULL; } ctx->algo = hashalgo; ctx->flags = flags; if (!EVP_DigestInit_ex(ctx->md_ctx, md, NULL)) { free(ctx->md_ctx); free(ctx); return NULL; } return ctx; }
int ASN1_verify(i2d_of_void *i2d, X509_ALGOR *a, ASN1_BIT_STRING *signature, char *data, EVP_PKEY *pkey) { EVP_MD_CTX *ctx = EVP_MD_CTX_new(); const EVP_MD *type; unsigned char *p, *buf_in = NULL; int ret = -1, i, inl; if (ctx == NULL) { ASN1err(ASN1_F_ASN1_VERIFY, ERR_R_MALLOC_FAILURE); goto err; } i = OBJ_obj2nid(a->algorithm); type = EVP_get_digestbyname(OBJ_nid2sn(i)); if (type == NULL) { ASN1err(ASN1_F_ASN1_VERIFY, ASN1_R_UNKNOWN_MESSAGE_DIGEST_ALGORITHM); goto err; } if (signature->type == V_ASN1_BIT_STRING && signature->flags & 0x7) { ASN1err(ASN1_F_ASN1_VERIFY, ASN1_R_INVALID_BIT_STRING_BITS_LEFT); goto err; } inl = i2d(data, NULL); if (inl <= 0) { ASN1err(ASN1_F_ASN1_VERIFY, ERR_R_INTERNAL_ERROR); goto err; } buf_in = OPENSSL_malloc((unsigned int)inl); if (buf_in == NULL) { ASN1err(ASN1_F_ASN1_VERIFY, ERR_R_MALLOC_FAILURE); goto err; } p = buf_in; i2d(data, &p); ret = EVP_VerifyInit_ex(ctx, type, NULL) && EVP_VerifyUpdate(ctx, (unsigned char *)buf_in, inl); OPENSSL_clear_free(buf_in, (unsigned int)inl); if (!ret) { ASN1err(ASN1_F_ASN1_VERIFY, ERR_R_EVP_LIB); goto err; } ret = -1; if (EVP_VerifyFinal(ctx, (unsigned char *)signature->data, (unsigned int)signature->length, pkey) <= 0) { ASN1err(ASN1_F_ASN1_VERIFY, ERR_R_EVP_LIB); ret = 0; goto err; } ret = 1; err: EVP_MD_CTX_free(ctx); return ret; }
int EVP_DigestSignFinal(EVP_MD_CTX *ctx, unsigned char *sigret, size_t *siglen) { int sctx = 0, r = 0; EVP_PKEY_CTX *pctx = ctx->pctx; if (pctx->pmeth->flags & EVP_PKEY_FLAG_SIGCTX_CUSTOM) { if (!sigret) return pctx->pmeth->signctx(pctx, sigret, siglen, ctx); if (ctx->flags & EVP_MD_CTX_FLAG_FINALISE) r = pctx->pmeth->signctx(pctx, sigret, siglen, ctx); else { EVP_PKEY_CTX *dctx = EVP_PKEY_CTX_dup(ctx->pctx); if (!dctx) return 0; r = dctx->pmeth->signctx(dctx, sigret, siglen, ctx); EVP_PKEY_CTX_free(dctx); } return r; } if (pctx->pmeth->signctx) sctx = 1; else sctx = 0; if (sigret) { unsigned char md[EVP_MAX_MD_SIZE]; unsigned int mdlen = 0; if (ctx->flags & EVP_MD_CTX_FLAG_FINALISE) { if (sctx) r = ctx->pctx->pmeth->signctx(ctx->pctx, sigret, siglen, ctx); else r = EVP_DigestFinal_ex(ctx, md, &mdlen); } else { EVP_MD_CTX *tmp_ctx = EVP_MD_CTX_new(); if (tmp_ctx == NULL || !EVP_MD_CTX_copy_ex(tmp_ctx, ctx)) return 0; if (sctx) r = tmp_ctx->pctx->pmeth->signctx(tmp_ctx->pctx, sigret, siglen, tmp_ctx); else r = EVP_DigestFinal_ex(tmp_ctx, md, &mdlen); EVP_MD_CTX_free(tmp_ctx); } if (sctx || !r) return r; if (EVP_PKEY_sign(ctx->pctx, sigret, siglen, md, mdlen) <= 0) return 0; } else { if (sctx) { if (pctx->pmeth->signctx(pctx, sigret, siglen, ctx) <= 0) return 0; } else { int s = EVP_MD_size(ctx->digest); if (s < 0 || EVP_PKEY_sign(pctx, sigret, siglen, NULL, s) <= 0) return 0; } } return 1; }
PKI_MEM * HSM_OPENSSL_sign(PKI_MEM *der, PKI_DIGEST_ALG *digest, PKI_X509_KEYPAIR *key) { EVP_MD_CTX *ctx = NULL; size_t out_size = 0; size_t ossl_ret = 0; PKI_MEM *out_mem = NULL; EVP_PKEY *pkey = NULL; if (!der || !der->data || !key || !key->value) { PKI_ERROR( PKI_ERR_PARAM_NULL, NULL); return NULL; } // Private Key pkey = key->value; // Get the Maximum size of a signature ossl_ret = out_size = (size_t) EVP_PKEY_size(pkey); // Initialize the return structure out_mem = PKI_MEM_new ((size_t)out_size); ctx = EVP_MD_CTX_new(); if (!out_mem || !ctx) { if (ctx) EVP_MD_CTX_free(ctx); if (out_mem) PKI_MEM_free(out_mem); PKI_ERROR( PKI_ERR_MEMORY_ALLOC, NULL); return NULL; } EVP_MD_CTX_init(ctx); EVP_SignInit_ex(ctx, digest, NULL); EVP_SignUpdate (ctx, der->data, der->size); // Finalize the signature if (!EVP_SignFinal(ctx, out_mem->data, (unsigned int *) &ossl_ret, pkey)) { PKI_log_err("ERROR while finalizing signature (%s)", HSM_OPENSSL_get_errdesc(HSM_OPENSSL_get_errno(), NULL, 0)); PKI_MEM_free(out_mem); out_mem = NULL; } else out_mem->size = (size_t) ossl_ret; // Cleanup the context #if OPENSSL_VERSION_NUMBER <= 0x1010000f EVP_MD_CTX_cleanup(ctx); #else EVP_MD_CTX_reset(ctx); #endif EVP_MD_CTX_free(ctx); return out_mem; }
int tls13_export_keying_material_early(SSL *s, unsigned char *out, size_t olen, const char *label, size_t llen, const unsigned char *context, size_t contextlen) { static const unsigned char exporterlabel[] = "exporter"; unsigned char exportsecret[EVP_MAX_MD_SIZE]; unsigned char hash[EVP_MAX_MD_SIZE], data[EVP_MAX_MD_SIZE]; const EVP_MD *md; EVP_MD_CTX *ctx = EVP_MD_CTX_new(); unsigned int hashsize, datalen; int ret = 0; const SSL_CIPHER *sslcipher; if (ctx == NULL || !ossl_statem_export_early_allowed(s)) goto err; if (!s->server && s->max_early_data > 0 && s->session->ext.max_early_data == 0) sslcipher = SSL_SESSION_get0_cipher(s->psksession); else sslcipher = SSL_SESSION_get0_cipher(s->session); md = ssl_md(sslcipher->algorithm2); /* * Calculate the hash value and store it in |data|. The reason why * the empty string is used is that the definition of TLS-Exporter * is like so: * * TLS-Exporter(label, context_value, key_length) = * HKDF-Expand-Label(Derive-Secret(Secret, label, ""), * "exporter", Hash(context_value), key_length) * * Derive-Secret(Secret, Label, Messages) = * HKDF-Expand-Label(Secret, Label, * Transcript-Hash(Messages), Hash.length) * * Here Transcript-Hash is the cipher suite hash algorithm. */ if (EVP_DigestInit_ex(ctx, md, NULL) <= 0 || EVP_DigestUpdate(ctx, context, contextlen) <= 0 || EVP_DigestFinal_ex(ctx, hash, &hashsize) <= 0 || EVP_DigestInit_ex(ctx, md, NULL) <= 0 || EVP_DigestFinal_ex(ctx, data, &datalen) <= 0 || !tls13_hkdf_expand(s, md, s->early_exporter_master_secret, (const unsigned char *)label, llen, data, datalen, exportsecret, hashsize, 0) || !tls13_hkdf_expand(s, md, exportsecret, exporterlabel, sizeof(exporterlabel) - 1, hash, hashsize, out, olen, 0)) goto err; ret = 1; err: EVP_MD_CTX_free(ctx); return ret; }
int main(int argc, char *argv[]) { int i, err = 0; char **P, **R; static unsigned char buf[1000]; char *p, *r; EVP_MD_CTX *c; unsigned char md[SHA_DIGEST_LENGTH]; #ifdef CHARSET_EBCDIC ebcdic2ascii(test[0], test[0], strlen(test[0])); ebcdic2ascii(test[1], test[1], strlen(test[1])); #endif c = EVP_MD_CTX_new(); P = test; R = ret; i = 1; while (*P != NULL) { EVP_Digest(*P, strlen((char *)*P), md, NULL, EVP_sha1(), NULL); p = pt(md); if (strcmp(p, (char *)*R) != 0) { printf("error calculating SHA1 on '%s'\n", *P); printf("got %s instead of %s\n", p, *R); err++; } else printf("test %d ok\n", i); i++; R++; P++; } memset(buf, 'a', 1000); #ifdef CHARSET_EBCDIC ebcdic2ascii(buf, buf, 1000); #endif /* CHARSET_EBCDIC */ EVP_DigestInit_ex(c, EVP_sha1(), NULL); for (i = 0; i < 1000; i++) EVP_DigestUpdate(c, buf, 1000); EVP_DigestFinal_ex(c, md, NULL); p = pt(md); r = bigret; if (strcmp(p, r) != 0) { printf("error calculating SHA1 on 'a' * 1000\n"); printf("got %s instead of %s\n", p, r); err++; } else printf("test 3 ok\n"); #ifdef OPENSSL_SYS_NETWARE if (err) printf("ERROR: %d\n", err); #endif EVP_MD_CTX_free(c); EXIT(err); return (0); }
static int test_EVP_DigestSignInit(void) { int ret = 0; EVP_PKEY *pkey = NULL; unsigned char *sig = NULL; size_t sig_len = 0; EVP_MD_CTX *md_ctx, *md_ctx_verify = NULL; if (!TEST_ptr(md_ctx = EVP_MD_CTX_new()) || !TEST_ptr(md_ctx_verify = EVP_MD_CTX_new()) || !TEST_ptr(pkey = load_example_rsa_key())) goto out; if (!TEST_true(EVP_DigestSignInit(md_ctx, NULL, EVP_sha256(), NULL, pkey)) || !TEST_true(EVP_DigestSignUpdate(md_ctx, kMsg, sizeof(kMsg)))) goto out; /* Determine the size of the signature. */ if (!TEST_true(EVP_DigestSignFinal(md_ctx, NULL, &sig_len)) || !TEST_size_t_eq(sig_len, (size_t)EVP_PKEY_size(pkey))) goto out; if (!TEST_ptr(sig = OPENSSL_malloc(sig_len)) || !TEST_true(EVP_DigestSignFinal(md_ctx, sig, &sig_len))) goto out; /* Ensure that the signature round-trips. */ if (!TEST_true(EVP_DigestVerifyInit(md_ctx_verify, NULL, EVP_sha256(), NULL, pkey)) || !TEST_true(EVP_DigestVerifyUpdate(md_ctx_verify, kMsg, sizeof(kMsg))) || !TEST_true(EVP_DigestVerifyFinal(md_ctx_verify, sig, sig_len))) goto out; ret = 1; out: EVP_MD_CTX_free(md_ctx); EVP_MD_CTX_free(md_ctx_verify); EVP_PKEY_free(pkey); OPENSSL_free(sig); return ret; }
void evp(int nid, unsigned char *digest, int len, unsigned char *hash, unsigned int *hlen) { const EVP_MD *evp_md = nid_to_evpmd(nid); EVP_MD_CTX *md = EVP_MD_CTX_new(); EVP_DigestInit(md, evp_md); EVP_DigestUpdate(md, digest, len); EVP_DigestFinal(md, hash, hlen); EVP_MD_CTX_free(md); }
void CC_EVP(const EVP_MD *evp, uint32_t mlen, const void *data, uint32_t len, unsigned char *md) { unsigned int mdlen = mlen; EVP_MD_CTX* c = EVP_MD_CTX_new(); EVP_MD_CTX_reset(c); EVP_DigestInit(c, evp); EVP_DigestUpdate(c, data, len); EVP_DigestFinal(c, md, &mdlen); EVP_MD_CTX_free(c); }
int ssl3_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p, size_t len, size_t *secret_size) { static const unsigned char *salt[3] = { #ifndef CHARSET_EBCDIC (const unsigned char *)"A", (const unsigned char *)"BB", (const unsigned char *)"CCC", #else (const unsigned char *)"\x41", (const unsigned char *)"\x42\x42", (const unsigned char *)"\x43\x43\x43", #endif }; unsigned char buf[EVP_MAX_MD_SIZE]; EVP_MD_CTX *ctx = EVP_MD_CTX_new(); int i, ret = 1; unsigned int n; size_t ret_secret_size = 0; if (ctx == NULL) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_GENERATE_MASTER_SECRET, ERR_R_MALLOC_FAILURE); return 0; } for (i = 0; i < 3; i++) { if (EVP_DigestInit_ex(ctx, s->ctx->sha1, NULL) <= 0 || EVP_DigestUpdate(ctx, salt[i], strlen((const char *)salt[i])) <= 0 || EVP_DigestUpdate(ctx, p, len) <= 0 || EVP_DigestUpdate(ctx, &(s->s3->client_random[0]), SSL3_RANDOM_SIZE) <= 0 || EVP_DigestUpdate(ctx, &(s->s3->server_random[0]), SSL3_RANDOM_SIZE) <= 0 /* TODO(size_t) : convert me */ || EVP_DigestFinal_ex(ctx, buf, &n) <= 0 || EVP_DigestInit_ex(ctx, s->ctx->md5, NULL) <= 0 || EVP_DigestUpdate(ctx, p, len) <= 0 || EVP_DigestUpdate(ctx, buf, n) <= 0 || EVP_DigestFinal_ex(ctx, out, &n) <= 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_GENERATE_MASTER_SECRET, ERR_R_INTERNAL_ERROR); ret = 0; break; } out += n; ret_secret_size += n; } EVP_MD_CTX_free(ctx); OPENSSL_cleanse(buf, sizeof(buf)); if (ret) *secret_size = ret_secret_size; return ret; }