static int aead_tls_open(const EVP_AEAD_CTX *ctx, uint8_t *out, size_t *out_len, size_t max_out_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *ad, size_t ad_len) { AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)ctx->aead_state; if (tls_ctx->cipher_ctx.encrypt) { /* Unlike a normal AEAD, a TLS AEAD may only be used in one direction. */ OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_INVALID_OPERATION); return 0; } if (in_len < HMAC_size(&tls_ctx->hmac_ctx)) { OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_BAD_DECRYPT); return 0; } if (max_out_len < in_len) { /* This requires that the caller provide space for the MAC, even though it * will always be removed on return. */ OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_BUFFER_TOO_SMALL); return 0; } if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) { OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_INVALID_NONCE_SIZE); return 0; } if (ad_len != 13 - 2 /* length bytes */) { OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_INVALID_AD_SIZE); return 0; } if (in_len > INT_MAX) { /* EVP_CIPHER takes int as input. */ OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_TOO_LARGE); return 0; } /* Configure the explicit IV. */ if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE && !tls_ctx->implicit_iv && !EVP_DecryptInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, NULL, nonce)) { return 0; } /* Decrypt to get the plaintext + MAC + padding. */ size_t total = 0; int len; if (!EVP_DecryptUpdate(&tls_ctx->cipher_ctx, out, &len, in, (int)in_len)) { return 0; } total += len; if (!EVP_DecryptFinal_ex(&tls_ctx->cipher_ctx, out + total, &len)) { return 0; } total += len; assert(total == in_len); /* Remove CBC padding. Code from here on is timing-sensitive with respect to * |padding_ok| and |data_plus_mac_len| for CBC ciphers. */ int padding_ok; unsigned data_plus_mac_len, data_len; if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE) { padding_ok = EVP_tls_cbc_remove_padding( &data_plus_mac_len, out, total, EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx), (unsigned)HMAC_size(&tls_ctx->hmac_ctx)); /* Publicly invalid. This can be rejected in non-constant time. */ if (padding_ok == 0) { OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_BAD_DECRYPT); return 0; } } else { padding_ok = 1; data_plus_mac_len = total; /* |data_plus_mac_len| = |total| = |in_len| at this point. |in_len| has * already been checked against the MAC size at the top of the function. */ assert(data_plus_mac_len >= HMAC_size(&tls_ctx->hmac_ctx)); } data_len = data_plus_mac_len - HMAC_size(&tls_ctx->hmac_ctx); /* At this point, |padding_ok| is 1 or -1. If 1, the padding is valid and the * first |data_plus_mac_size| bytes after |out| are the plaintext and * MAC. Either way, |data_plus_mac_size| is large enough to extract a MAC. */ /* To allow for CBC mode which changes cipher length, |ad| doesn't include the * length for legacy ciphers. */ uint8_t ad_fixed[13]; memcpy(ad_fixed, ad, 11); ad_fixed[11] = (uint8_t)(data_len >> 8); ad_fixed[12] = (uint8_t)(data_len & 0xff); ad_len += 2; /* Compute the MAC and extract the one in the record. */ uint8_t mac[EVP_MAX_MD_SIZE]; size_t mac_len; uint8_t record_mac_tmp[EVP_MAX_MD_SIZE]; uint8_t *record_mac; if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE && EVP_tls_cbc_record_digest_supported(tls_ctx->hmac_ctx.md)) { if (!EVP_tls_cbc_digest_record(tls_ctx->hmac_ctx.md, mac, &mac_len, ad_fixed, out, data_plus_mac_len, total, tls_ctx->mac_key, tls_ctx->mac_key_len)) { OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_BAD_DECRYPT); return 0; } assert(mac_len == HMAC_size(&tls_ctx->hmac_ctx)); record_mac = record_mac_tmp; EVP_tls_cbc_copy_mac(record_mac, mac_len, out, data_plus_mac_len, total); } else { /* We should support the constant-time path for all CBC-mode ciphers * implemented. */ assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) != EVP_CIPH_CBC_MODE); HMAC_CTX hmac_ctx; HMAC_CTX_init(&hmac_ctx); unsigned mac_len_u; if (!HMAC_CTX_copy_ex(&hmac_ctx, &tls_ctx->hmac_ctx) || !HMAC_Update(&hmac_ctx, ad_fixed, ad_len) || !HMAC_Update(&hmac_ctx, out, data_len) || !HMAC_Final(&hmac_ctx, mac, &mac_len_u)) { HMAC_CTX_cleanup(&hmac_ctx); return 0; } mac_len = mac_len_u; HMAC_CTX_cleanup(&hmac_ctx); assert(mac_len == HMAC_size(&tls_ctx->hmac_ctx)); record_mac = &out[data_len]; } /* Perform the MAC check and the padding check in constant-time. It should be * safe to simply perform the padding check first, but it would not be under a * different choice of MAC location on padding failure. See * EVP_tls_cbc_remove_padding. */ unsigned good = constant_time_eq_int(CRYPTO_memcmp(record_mac, mac, mac_len), 0); good &= constant_time_eq_int(padding_ok, 1); if (!good) { OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_BAD_DECRYPT); return 0; } /* End of timing-sensitive code. */ *out_len = data_len; return 1; }
static int aead_tls_open(const EVP_AEAD_CTX *ctx, uint8_t *out, size_t *out_len, size_t max_out_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *ad, size_t ad_len) { AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)ctx->aead_state; if (tls_ctx->cipher_ctx.encrypt) { // Unlike a normal AEAD, a TLS AEAD may only be used in one direction. OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_OPERATION); return 0; } if (in_len < HMAC_size(&tls_ctx->hmac_ctx)) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); return 0; } if (max_out_len < in_len) { // This requires that the caller provide space for the MAC, even though it // will always be removed on return. OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); return 0; } if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); return 0; } if (ad_len != 13 - 2 /* length bytes */) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_AD_SIZE); return 0; } if (in_len > INT_MAX) { // EVP_CIPHER takes int as input. OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); return 0; } // Configure the explicit IV. if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE && !tls_ctx->implicit_iv && !EVP_DecryptInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, NULL, nonce)) { return 0; } // Decrypt to get the plaintext + MAC + padding. size_t total = 0; int len; if (!EVP_DecryptUpdate(&tls_ctx->cipher_ctx, out, &len, in, (int)in_len)) { return 0; } total += len; if (!EVP_DecryptFinal_ex(&tls_ctx->cipher_ctx, out + total, &len)) { return 0; } total += len; assert(total == in_len); // Remove CBC padding. Code from here on is timing-sensitive with respect to // |padding_ok| and |data_plus_mac_len| for CBC ciphers. size_t data_plus_mac_len; crypto_word_t padding_ok; if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE) { if (!EVP_tls_cbc_remove_padding( &padding_ok, &data_plus_mac_len, out, total, EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx), HMAC_size(&tls_ctx->hmac_ctx))) { // Publicly invalid. This can be rejected in non-constant time. OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); return 0; } } else { padding_ok = CONSTTIME_TRUE_W; data_plus_mac_len = total; // |data_plus_mac_len| = |total| = |in_len| at this point. |in_len| has // already been checked against the MAC size at the top of the function. assert(data_plus_mac_len >= HMAC_size(&tls_ctx->hmac_ctx)); } size_t data_len = data_plus_mac_len - HMAC_size(&tls_ctx->hmac_ctx); // At this point, if the padding is valid, the first |data_plus_mac_len| bytes // after |out| are the plaintext and MAC. Otherwise, |data_plus_mac_len| is // still large enough to extract a MAC, but it will be irrelevant. // To allow for CBC mode which changes cipher length, |ad| doesn't include the // length for legacy ciphers. uint8_t ad_fixed[13]; OPENSSL_memcpy(ad_fixed, ad, 11); ad_fixed[11] = (uint8_t)(data_len >> 8); ad_fixed[12] = (uint8_t)(data_len & 0xff); ad_len += 2; // Compute the MAC and extract the one in the record. uint8_t mac[EVP_MAX_MD_SIZE]; size_t mac_len; uint8_t record_mac_tmp[EVP_MAX_MD_SIZE]; uint8_t *record_mac; if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE && EVP_tls_cbc_record_digest_supported(tls_ctx->hmac_ctx.md)) { if (!EVP_tls_cbc_digest_record(tls_ctx->hmac_ctx.md, mac, &mac_len, ad_fixed, out, data_plus_mac_len, total, tls_ctx->mac_key, tls_ctx->mac_key_len)) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); return 0; } assert(mac_len == HMAC_size(&tls_ctx->hmac_ctx)); record_mac = record_mac_tmp; EVP_tls_cbc_copy_mac(record_mac, mac_len, out, data_plus_mac_len, total); } else { // We should support the constant-time path for all CBC-mode ciphers // implemented. assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) != EVP_CIPH_CBC_MODE); unsigned mac_len_u; if (!HMAC_Init_ex(&tls_ctx->hmac_ctx, NULL, 0, NULL, NULL) || !HMAC_Update(&tls_ctx->hmac_ctx, ad_fixed, ad_len) || !HMAC_Update(&tls_ctx->hmac_ctx, out, data_len) || !HMAC_Final(&tls_ctx->hmac_ctx, mac, &mac_len_u)) { return 0; } mac_len = mac_len_u; assert(mac_len == HMAC_size(&tls_ctx->hmac_ctx)); record_mac = &out[data_len]; } // Perform the MAC check and the padding check in constant-time. It should be // safe to simply perform the padding check first, but it would not be under a // different choice of MAC location on padding failure. See // EVP_tls_cbc_remove_padding. crypto_word_t good = constant_time_eq_int(CRYPTO_memcmp(record_mac, mac, mac_len), 0); good &= padding_ok; if (!good) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); return 0; } // End of timing-sensitive code. *out_len = data_len; return 1; }