示例#1
0
/// Generates a small-world graph using the Watts-Strogatz model.
/// We assume a circle where each node creates links to NodeOutDeg other nodes. 
/// This way at the end each node is connected to 2*NodeOutDeg other nodes.
/// See: Collective dynamics of 'small-world' networks. Watts and Strogatz.
/// URL: http://research.yahoo.com/files/w_s_NATURE_0.pdf
PUNGraph GenSmallWorld(const int& Nodes, const int& NodeOutDeg, const double& RewireProb, TRnd& Rnd) {
  THashSet<TIntPr> EdgeSet(Nodes*NodeOutDeg);
  
  IAssertR(Nodes > NodeOutDeg, TStr::Fmt("Insufficient nodes for out degree, %d!", NodeOutDeg));
  for (int node = 0; node < Nodes; node++) {
    const int src = node;
    for (int edge = 1; edge <= NodeOutDeg; edge++) {
      int dst = (node+edge) % Nodes;      // edge to next neighbor
      if (Rnd.GetUniDev() < RewireProb) { // random edge
        dst = Rnd.GetUniDevInt(Nodes);
        while (dst == src || EdgeSet.IsKey(TIntPr(src, dst))) {
          dst = Rnd.GetUniDevInt(Nodes); }
      }
      EdgeSet.AddKey(TIntPr(src, dst));
    }
  }
  PUNGraph GraphPt = TUNGraph::New();
  TUNGraph& Graph = *GraphPt;
  Graph.Reserve(Nodes, EdgeSet.Len());
  int node;
  for (node = 0; node < Nodes; node++) {
    IAssert(Graph.AddNode(node) == node);
  }
  for (int edge = 0; edge < EdgeSet.Len(); edge++) {
    Graph.AddEdge(EdgeSet[edge].Val1, EdgeSet[edge].Val2);
  }
  Graph.Defrag();
  return GraphPt;
}
示例#2
0
// 1次元配列を受け取って2次元配列的に分解する
// データをCreateObjectに渡してオブジェクトを生成する
void StageBase::MapSet(int map_array[])
{
	left = MAP_HEIGHT * 1;
	right = MAP_HEIGHT * (map_array[1]-1);
	int* map = new int[map_array[0] * map_array[1]];
	for (int i = 0; i < map_array[0] * map_array[1]; i++)
	{
		map[i] = map_array[i + 4];
	}

	for (int y = 0; y < map_array[0]; y++)
	{
		for (int x = 0; x < map_array[1]; x++)
		{
			int index = x + y * map_array[1];
			CreateObject(map[index], x, y, map_array[2], map_array[3]);
		}
	}

	EdgeSet((float)(0.f), (float)((map_array[1] - 1) * MAP_WIDTH));

	// カメラ初期化
	p_camera = PlayCamera(right_edge, left_edge, Vector3(80.f, 50.f));

	delete[] map;
}
示例#3
0
文件: cfg.cpp 项目: BruceZu/hhvm
EdgeSet findRetreatingEdges(const IRUnit& unit) {
  auto v = jit::vector<Edge*>{};
  visit_retreating_edges(unit, [&] (Edge* edge) {
    v.push_back(edge);
    return true;
  });
  return EdgeSet(begin(v), end(v));
}
示例#4
0
/*

High Level Interface based on arrays of vertices and colours.

*/
void GPolygon2(Vec4 *x, int n, Vec4 col) {  //draw a 2D polygon with constant colour.
    int i;
    int colour = vcolour(col);
    EAClear();
    for (i=0; i < n; i++) {
        int j= (i+1) % n;
        EdgeSet((int) x[j][0], (int) x[j][1], (int) x[i][0], (int) x[i][1]);
    }
    EdgeScan(colour);
}
示例#5
0
/// Rewire the network. Keeps node degrees as is but randomly rewires the edges.
/// Use this function to generate a random graph with the same degree sequence 
/// as the OrigGraph. 
/// See:  On the uniform generation of random graphs with prescribed degree
/// sequences by R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, U. Alon
/// URL: http://arxiv.org/abs/cond-mat/0312028
PUNGraph GenRewire(const PUNGraph& OrigGraph, const int& NSwitch, TRnd& Rnd) {
  const int Nodes = OrigGraph->GetNodes();
  const int Edges = OrigGraph->GetEdges();
  PUNGraph GraphPt = TUNGraph::New();
  TUNGraph& Graph = *GraphPt;
  Graph.Reserve(Nodes, -1);
  TExeTm ExeTm;
  // generate a graph that satisfies the constraints
  printf("Randomizing edges (%d, %d)...\n", Nodes, Edges);
  TIntPrSet EdgeSet(Edges);
  for (TUNGraph::TNodeI NI = OrigGraph->BegNI(); NI < OrigGraph->EndNI(); NI++) {
    const int NId = NI.GetId();
    for (int e = 0; e < NI.GetOutDeg(); e++) {
      if (NId <= NI.GetOutNId(e)) { continue; }
      EdgeSet.AddKey(TIntPr(NId, NI.GetOutNId(e)));
    }
    Graph.AddNode(NI.GetId());
  }
  // edge switching
  uint skip=0;
  for (uint swps = 0; swps < 2*uint(Edges)*uint(NSwitch); swps++) {
    const int keyId1 = EdgeSet.GetRndKeyId(Rnd);
    const int keyId2 = EdgeSet.GetRndKeyId(Rnd);
    if (keyId1 == keyId2) { skip++; continue; }
    const TIntPr& E1 = EdgeSet[keyId1];
    const TIntPr& E2 = EdgeSet[keyId2];
    TIntPr NewE1(E1.Val1, E2.Val1), NewE2(E1.Val2, E2.Val2);
    if (NewE1.Val1 > NewE1.Val2) { Swap(NewE1.Val1, NewE1.Val2); }
    if (NewE2.Val1 > NewE2.Val2) { Swap(NewE2.Val1, NewE2.Val2); }
    if (NewE1!=NewE2 && NewE1.Val1!=NewE1.Val2 && NewE2.Val1!=NewE2.Val2 && ! EdgeSet.IsKey(NewE1) && ! EdgeSet.IsKey(NewE2)) {
      EdgeSet.DelKeyId(keyId1);  EdgeSet.DelKeyId(keyId2);
      EdgeSet.AddKey(TIntPr(NewE1));
      EdgeSet.AddKey(TIntPr(NewE2));
    } else { skip++; }
    if (swps % Edges == 0) {
      printf("\r  %uk/%uk: %uk skip [%s]", swps/1000u, 2*uint(Edges)*uint(NSwitch)/1000u, skip/1000u, ExeTm.GetStr());
      if (ExeTm.GetSecs() > 2*3600) { printf(" *** Time limit!\n"); break; } // time limit 2 hours
    }
  }
  printf("\r  total %uk switchings attempted, %uk skiped  [%s]\n", 2*uint(Edges)*uint(NSwitch)/1000u, skip/1000u, ExeTm.GetStr());
  for (int e = 0; e < EdgeSet.Len(); e++) {
    Graph.AddEdge(EdgeSet[e].Val1, EdgeSet[e].Val2); }
  return GraphPt;
}