示例#1
0
int phonopy_pinv_libflame(double *matrix,
			  double *eigvals,
			  const int size,
			  const double cutoff)
{
  FLA_Obj A, B, l;
  /* FLA_Obj C; */
  double *inv_eigvals;
  int i;

  inv_eigvals = (double*)malloc(sizeof(double) * size);
  
  FLA_Init();
  FLA_Obj_create_without_buffer(FLA_DOUBLE, size, size, &A);
  FLA_Obj_attach_buffer(matrix, 0, 0, &A);
  
  FLA_Obj_create_without_buffer(FLA_DOUBLE, size, 1, &l);
  FLA_Obj_attach_buffer(eigvals, 0, 0, &l);

  /* Eigensolver */
  FLA_Obj_create_copy_of(FLA_NO_TRANSPOSE, A, &B);
  FLA_Hevd(FLA_EVD_WITH_VECTORS, FLA_LOWER_TRIANGULAR, B, l);

  /* SVD */
  /* FLA_Obj_create(FLA_DOUBLE, size, size, 0, 0, &B); */
  /* use U */
  /* FLA_Svd(FLA_SVD_VECTORS_ALL, FLA_SVD_VECTORS_NONE, A, l, B, C); */
  /* use V */
  /* FLA_Svd(FLA_SVD_VECTORS_NONE, FLA_SVD_VECTORS_ALL, A, l, C, B); */
  
  FLA_Obj_free_without_buffer(&l);
  
  for (i = 0; i < size; i++) {
    if (eigvals[i] < cutoff) {
      inv_eigvals[i] = 0;
    } else {
      inv_eigvals[i] = 1.0 / sqrt(eigvals[i]);
    }
  }
  
  FLA_Obj_create_without_buffer(FLA_DOUBLE, size, 1, &l);
  FLA_Obj_attach_buffer(inv_eigvals, 0, 0, &l);
  
  FLA_Apply_diag_matrix(FLA_RIGHT, FLA_NO_CONJUGATE, l, B);
  FLA_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_ONE, B, FLA_ZERO, A);
  FLA_Symmetrize(FLA_LOWER_TRIANGULAR, A);
  
  FLA_Obj_free_without_buffer(&A);
  FLA_Obj_free_without_buffer(&l);
  FLA_Obj_free(&B);

  FLA_Finalize();

  free(inv_eigvals);
  
  return 0;
}
FLA_Error FLA_Hevd_lv_var4_components( dim_t n_iter_max, FLA_Obj A, FLA_Obj l, dim_t k_accum, dim_t b_alg,
                                       double* dtime_tred, double* dtime_tevd, double* dtime_appq )
{
	FLA_Error    r_val = FLA_SUCCESS;
	FLA_Uplo     uplo = FLA_LOWER_TRIANGULAR;
	FLA_Datatype dt;
	FLA_Datatype dt_real;
	FLA_Datatype dt_comp;
	FLA_Obj      T, r, d, e, G, R, W;
	FLA_Obj      d0, e0, ls, pu;
	dim_t        mn_A;
	dim_t        n_G = k_accum;
	double       dtime_temp;

	mn_A    = FLA_Obj_length( A );
	dt      = FLA_Obj_datatype( A );
	dt_real = FLA_Obj_datatype_proj_to_real( A );
	dt_comp = FLA_Obj_datatype_proj_to_complex( A );

	*dtime_tred = 1;
	*dtime_tevd = 1;
	*dtime_appq = 1;

	// If the matrix is a scalar, then the EVD is easy.
	if ( mn_A == 1 )
	{
		FLA_Copy( A, l );
		FLA_Set( FLA_ONE, A );

		return FLA_SUCCESS;
	}

	// Create a matrix to hold block Householder transformations.
	FLA_Tridiag_UT_create_T( A, &T );

	// Create a vector to hold the realifying scalars.
	FLA_Obj_create( dt,      mn_A,     1, 0, 0, &r );

	// Create vectors to hold the diagonal and sub-diagonal.
	FLA_Obj_create( dt_real, mn_A,     1, 0, 0, &d );
	FLA_Obj_create( dt_real, mn_A-1,   1, 0, 0, &e );
	FLA_Obj_create( dt_real, mn_A,     1, 0, 0, &d0 );
	FLA_Obj_create( dt_real, mn_A-1,   1, 0, 0, &e0 );
	FLA_Obj_create( dt_real, mn_A,     1, 0, 0, &pu );
	FLA_Obj_create( FLA_INT, mn_A,     1, 0, 0, &ls );
	FLA_Obj_create( dt_comp, mn_A-1, n_G, 0, 0, &G );
	FLA_Obj_create( dt_real, mn_A,  mn_A, 0, 0, &R );
	FLA_Obj_create( dt,      mn_A,  mn_A, 0, 0, &W );

  dtime_temp = FLA_Clock();
  {
	// Reduce the matrix to tridiagonal form.
	FLA_Tridiag_UT( uplo, A, T );
  }
  *dtime_tred = FLA_Clock() - dtime_temp;

	// Apply scalars to rotate elements on the sub-diagonal to the real domain.
	FLA_Tridiag_UT_realify( uplo, A, r );

	// Extract the diagonal and sub-diagonal from A.
	FLA_Tridiag_UT_extract_diagonals( uplo, A, d, e );

  dtime_temp = FLA_Clock();
  {
	// Form Q, overwriting A.
	FLA_Tridiag_UT_form_Q( uplo, A, T );
  }
  *dtime_appq = FLA_Clock() - dtime_temp;

	// Apply the scalars in r to Q.
	FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE, r, A );

	// Find the eigenvalues only.
	FLA_Copy( d, d0 ); FLA_Copy( e, e0 );
	//r_val = FLA_Tevd_n_opt_var1( n_iter_max, d0, e0, G, A );
{
	int info;
	double* buff_d = FLA_DOUBLE_PTR( d0 );
	double* buff_e = FLA_DOUBLE_PTR( e0 );
	dsterf_( &mn_A, buff_d, buff_e, &info );
}
	FLA_Sort( FLA_FORWARD, d0 );
	FLA_Set( FLA_ZERO, ls );
	FLA_Set( FLA_ZERO, pu );

  dtime_temp = FLA_Clock();
  {
	// Perform an eigenvalue decomposition on the tridiagonal matrix.
	r_val = FLA_Tevd_v_opt_var4( n_iter_max, d, e, d0, ls, pu, G, R, W, A, b_alg );
  }
  *dtime_tevd = FLA_Clock() - dtime_temp;

	// Copy the converged eigenvalues to the output vector.
	FLA_Copy( d, l );

	// Sort the eigenvalues and eigenvectors in ascending order.
	FLA_Sort_evd( FLA_FORWARD, l, A );

	FLA_Obj_free( &T );
	FLA_Obj_free( &r );
	FLA_Obj_free( &d );
	FLA_Obj_free( &e );
	FLA_Obj_free( &d0 );
	FLA_Obj_free( &pu );
	FLA_Obj_free( &e0 );
	FLA_Obj_free( &ls );
	FLA_Obj_free( &G );
	FLA_Obj_free( &R );
	FLA_Obj_free( &W );

	return r_val;
}
示例#3
0
int main(int argc, char *argv[])
{
  int 
    m_input,
    m,
    p_first, p_last, p_inc,
    p,
    k_accum,
    b_alg,
    n_iter_max,
    variant,
    n_repeats,
    i,
    n_variants = 2;

  char *colors = "brkgmcbrkg";
  char *ticks  = "o+*xso+*xs";
  char m_dim_desc[14];
  char m_dim_tag[10];

  double max_gflops=6.0;

  double
    dtime,
    gflops,
    diff1, diff2;

  FLA_Datatype datatype, dt_real;

  FLA_Obj
    A, l, Q, Ql, TT, r, d, e, A_orig, G, R, W2, de, alpha;

  FLA_Init();


  fprintf( stdout, "%c number of repeats:", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c enter n_iter_max (per eigenvalue): ", '%' );
  scanf( "%d", &n_iter_max );
  fprintf( stdout, "%c %d\n", '%', n_iter_max );

  fprintf( stdout, "%c enter number of sets of Givens rotations to accumulate:", '%' );
  scanf( "%d", &k_accum );
  fprintf( stdout, "%c %d\n", '%', k_accum );

  fprintf( stdout, "%c enter blocking size for application of G:", '%' );
  scanf( "%d", &b_alg );
  fprintf( stdout, "%c %d\n", '%', b_alg );

  fprintf( stdout, "%c enter problem size first, last, inc:", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter m (-1 means bind to problem size): ", '%' );
  scanf( "%d", &m_input );
  fprintf( stdout, "%c %d\n", '%', m_input );


  fprintf( stdout, "\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }


  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {

    m = m_input;

    if( m < 0 ) m = p / abs(m_input);

    //datatype = FLA_FLOAT;
    //datatype = FLA_DOUBLE;
    //datatype = FLA_COMPLEX;
    datatype = FLA_DOUBLE_COMPLEX;

    FLA_Obj_create( datatype,  m,         m, 0, 0, &A );
    FLA_Obj_create( datatype,  m,         m, 0, 0, &A_orig );
    FLA_Obj_create( datatype,  m,         m, 0, 0, &Q );
    FLA_Obj_create( datatype,  m,         m, 0, 0, &Ql );
    FLA_Obj_create( datatype,  m,         1, 0, 0, &r );
    FLA_Obj_create( datatype,  m,         m, 0, 0, &W2 );
    FLA_Obj_create( datatype,  m-1, k_accum, 0, 0, &G );

	dt_real = FLA_Obj_datatype_proj_to_real( A );

    FLA_Obj_create( dt_real, m,      1, 0, 0, &l );
    FLA_Obj_create( dt_real, m,      1, 0, 0, &d );
    FLA_Obj_create( dt_real, m-1,    1, 0, 0, &e );
    FLA_Obj_create( dt_real, m,      m, 0, 0, &R );

	FLA_Obj_create( dt_real, 1,      1, 0, 0, &alpha );

	*FLA_DOUBLE_PTR( alpha ) = 1.0 / ( sqrt( sqrt( (double) m ) ) );

	FLA_Random_unitary_matrix( Q );

	//FLA_Fill_with_uniform_dist( FLA_ONE,   l );
	//FLA_Fill_with_inverse_dist( FLA_ONE,   l );
	FLA_Fill_with_geometric_dist( alpha,   l );


    {
      FLA_Copy( Q, Ql );
      FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, l, Ql );
      FLA_Gemm( FLA_NO_TRANSPOSE, FLA_CONJ_TRANSPOSE,
                FLA_ONE, Ql, Q, FLA_ZERO, A );
      FLA_Triangularize( FLA_LOWER_TRIANGULAR, FLA_NONUNIT_DIAG, A );
      FLA_Copy( A, A_orig );
    }

    FLA_Set( FLA_ZERO, l );
    FLA_Set( FLA_ZERO, Q );

	FLA_Tridiag_UT_create_T( A, &TT );
	FLA_Tridiag_UT( FLA_LOWER_TRIANGULAR, A, TT );
	FLA_Tridiag_UT_realify( FLA_LOWER_TRIANGULAR, A, r );
	FLA_Tridiag_UT_extract_diagonals( FLA_LOWER_TRIANGULAR, A, d, e );
	FLA_Tridiag_UT_form_Q( FLA_LOWER_TRIANGULAR, A, TT );
	FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE, r, A );
    FLA_Obj_free( &TT );

    time_Tevd_v( 0, FLA_ALG_REFERENCE, n_repeats, m, k_accum, b_alg, n_iter_max,
                 A_orig, d, e, G, R, W2, A, l, &dtime, &diff1, &diff2, &gflops );

    fprintf( stdout, "data_REFq( %d, 1:3 ) = [ %d %6.3lf %9.2e %6.2le %6.2le ]; \n", i, p, gflops, dtime, diff1, diff2 );
    fflush( stdout );

    for ( variant = 1; variant <= n_variants; variant++ ){
      
      fprintf( stdout, "data_var%d( %d, 1:3 ) = [ %d ", variant, i, p );
      fflush( stdout );

      time_Tevd_v( variant, FLA_ALG_UNB_OPT, n_repeats, m, k_accum, b_alg, n_iter_max,
                   A_orig, d, e, G, R, W2, A, l, &dtime, &diff1, &diff2, &gflops );

      fprintf( stdout, "%6.3lf %9.2e %6.2le %6.2le ", gflops, dtime, diff1, diff2 );
      fflush( stdout );

      fprintf( stdout, "];\n" );
      fflush( stdout );
    }

    fprintf( stdout, "\n" );

    FLA_Obj_free( &A );
    FLA_Obj_free( &A_orig );
    FLA_Obj_free( &Q );
    FLA_Obj_free( &Ql );
    FLA_Obj_free( &G );
    FLA_Obj_free( &W2 );
    FLA_Obj_free( &r );
    FLA_Obj_free( &l );
    FLA_Obj_free( &d );
    FLA_Obj_free( &e );
    FLA_Obj_free( &R );
    FLA_Obj_free( &alpha );
  }

/*
  fprintf( stdout, "figure;\n" );

  fprintf( stdout, "plot( data_REF( :,1 ), data_REF( :, 2 ), '-' ); \n" );

  fprintf( stdout, "hold on;\n" );

  for ( i = 1; i <= n_variants; i++ ) {
    fprintf( stdout, "plot( data_var%d( :,1 ), data_var%d( :, 2 ), '%c:%c' ); \n",
            i, i, colors[ i-1 ], ticks[ i-1 ] );
    fprintf( stdout, "plot( data_var%d( :,1 ), data_var%d( :, 4 ), '%c-.%c' ); \n",
            i, i, colors[ i-1 ], ticks[ i-1 ] );
  }

  fprintf( stdout, "legend( ... \n" );
  fprintf( stdout, "'Reference', ... \n" );

  for ( i = 1; i < n_variants; i++ )
    fprintf( stdout, "'unb\\_var%d', 'blk\\_var%d', ... \n", i, i );
  fprintf( stdout, "'unb\\_var%d', 'blk\\_var%d' ); \n", i, i );

  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME Hevd_lv performance (%s, %s)' );\n", 
           m_dim_desc, n_dim_desc );
  fprintf( stdout, "print -depsc tridiag_%s_%s.eps\n", m_dim_tag, n_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );
*/

  FLA_Finalize( );

  return 0;
}
示例#4
0
FLA_Error FLA_Svd_uv_unb_var1( dim_t n_iter_max, FLA_Obj A, FLA_Obj s, FLA_Obj U, FLA_Obj V, dim_t k_accum, dim_t b_alg )
{
    FLA_Error    r_val = FLA_SUCCESS;
    FLA_Datatype dt;
    FLA_Datatype dt_real;
    FLA_Datatype dt_comp;
    FLA_Obj      scale, T, S, rL, rR, d, e, G, H;
    dim_t        m_A, n_A;
    dim_t        min_m_n;
    dim_t        n_GH;
    double       crossover_ratio = 17.0 / 9.0;

    n_GH    = k_accum;

    m_A     = FLA_Obj_length( A );
    n_A     = FLA_Obj_width( A );
    min_m_n = FLA_Obj_min_dim( A );
    dt      = FLA_Obj_datatype( A );
    dt_real = FLA_Obj_datatype_proj_to_real( A );
    dt_comp = FLA_Obj_datatype_proj_to_complex( A );

    // Create matrices to hold block Householder transformations.
    FLA_Bidiag_UT_create_T( A, &T, &S );

    // Create vectors to hold the realifying scalars.
    FLA_Obj_create( dt,      min_m_n,      1, 0, 0, &rL );
    FLA_Obj_create( dt,      min_m_n,      1, 0, 0, &rR );

    // Create vectors to hold the diagonal and sub-diagonal.
    FLA_Obj_create( dt_real, min_m_n,      1, 0, 0, &d );
    FLA_Obj_create( dt_real, min_m_n-1,    1, 0, 0, &e );

    // Create matrices to hold the left and right Givens scalars.
    FLA_Obj_create( dt_comp, min_m_n-1, n_GH, 0, 0, &G );
    FLA_Obj_create( dt_comp, min_m_n-1, n_GH, 0, 0, &H );

    // Create a real scaling factor.
    FLA_Obj_create( dt_real, 1, 1, 0, 0, &scale );

    // Compute a scaling factor; If none is needed, sigma will be set to one.
    FLA_Svd_compute_scaling( A, scale );

    // Scale the matrix if scale is non-unit.
    if ( !FLA_Obj_equals( scale, FLA_ONE ) )
        FLA_Scal( scale, A );

    if ( m_A < crossover_ratio * n_A )
    {
        // Reduce the matrix to bidiagonal form.
        // Apply scalars to rotate elements on the superdiagonal to the real domain.
        // Extract the diagonal and superdiagonal from A.
        FLA_Bidiag_UT( A, T, S );
        FLA_Bidiag_UT_realify( A, rL, rR );
        FLA_Bidiag_UT_extract_real_diagonals( A, d, e );

        // Form U and V.
        FLA_Bidiag_UT_form_U( A, T, U );
        FLA_Bidiag_UT_form_V( A, S, V );

        // Apply the realifying scalars in rL and rR to U and V, respectively.
        {
            FLA_Obj UL, UR;
            FLA_Obj VL, VR;

            FLA_Part_1x2( U,   &UL, &UR,   min_m_n, FLA_LEFT );
            FLA_Part_1x2( V,   &VL, &VR,   min_m_n, FLA_LEFT );

            FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE,    rL, UL );
            FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, rR, VL );
        }

        // Perform a singular value decomposition on the bidiagonal matrix.
        r_val = FLA_Bsvd_v_opt_var1( n_iter_max, d, e, G, H, U, V, b_alg );
    }
    else // if ( crossover_ratio * n_A <= m_A )
    {
        FLA_Obj TQ, R;
        FLA_Obj AT,
                AB;
        FLA_Obj UL, UR;

        // Perform a QR factorization on A and form Q in U.
        FLA_QR_UT_create_T( A, &TQ );
        FLA_QR_UT( A, TQ );
        FLA_QR_UT_form_Q( A, TQ, U );
        FLA_Obj_free( &TQ );

        // Set the lower triangle of R to zero and then copy the upper
        // triangle of A to R.
        FLA_Part_2x1( A,   &AT,
                           &AB,   n_A, FLA_TOP );
        FLA_Obj_create( dt, n_A, n_A, 0, 0, &R );
        FLA_Setr( FLA_LOWER_TRIANGULAR, FLA_ZERO, R );
        FLA_Copyr( FLA_UPPER_TRIANGULAR, AT, R );

        // Reduce the matrix to bidiagonal form.
        // Apply scalars to rotate elements on the superdiagonal to the real domain.
        // Extract the diagonal and superdiagonal from A.
        FLA_Bidiag_UT( R, T, S );
        FLA_Bidiag_UT_realify( R, rL, rR );
        FLA_Bidiag_UT_extract_real_diagonals( R, d, e );

        // Form V from right Householder vectors in upper triangle of R.
        FLA_Bidiag_UT_form_V( R, S, V );

        // Form U in R.
        FLA_Bidiag_UT_form_U( R, T, R );

        // Apply the realifying scalars in rL and rR to U and V, respectively.
        FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE,    rL, R );
        FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, rR, V );

        // Perform a singular value decomposition on the bidiagonal matrix.
        r_val = FLA_Bsvd_v_opt_var1( n_iter_max, d, e, G, H, R, V, b_alg );

        // Multiply R into U, storing the result in A and then copying back
        // to U.
        FLA_Part_1x2( U,   &UL, &UR,   n_A, FLA_LEFT );
        FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
                  FLA_ONE, UL, R, FLA_ZERO, A );
        FLA_Copy( A, UL );

        FLA_Obj_free( &R );
    }

    // Copy the converged eigenvalues to the output vector.
    FLA_Copy( d, s );

    // Sort the singular values and singular vectors in descending order.
    FLA_Sort_svd( FLA_BACKWARD, s, U, V );

    // If the matrix was scaled, rescale the singular values.
    if ( !FLA_Obj_equals( scale, FLA_ONE ) )
        FLA_Inv_scal( scale, s );

    FLA_Obj_free( &scale );
    FLA_Obj_free( &T );
    FLA_Obj_free( &S );
    FLA_Obj_free( &rL );
    FLA_Obj_free( &rR );
    FLA_Obj_free( &d );
    FLA_Obj_free( &e );
    FLA_Obj_free( &G );
    FLA_Obj_free( &H );

    return r_val;
}
FLA_Error FLA_Svd_uv_var2_components( dim_t n_iter_max, dim_t k_accum, dim_t b_alg,
                                      FLA_Obj A, FLA_Obj s, FLA_Obj U, FLA_Obj V,
                                      double* dtime_bred, double* dtime_bsvd, double* dtime_appq,
                                      double* dtime_qrfa, double* dtime_gemm )
{
	FLA_Error    r_val = FLA_SUCCESS;
	FLA_Datatype dt;
	FLA_Datatype dt_real;
	FLA_Datatype dt_comp;
	FLA_Obj      T, S, rL, rR, d, e, G, H, RG, RH, W;
	dim_t        m_A, n_A;
	dim_t        min_m_n;
	dim_t        n_GH;
	double       crossover_ratio = 17.0 / 9.0;
	double       dtime_temp;

	n_GH    = k_accum;

	m_A     = FLA_Obj_length( A );
	n_A     = FLA_Obj_width( A );
	min_m_n = FLA_Obj_min_dim( A );
	dt      = FLA_Obj_datatype( A );
	dt_real = FLA_Obj_datatype_proj_to_real( A );
	dt_comp = FLA_Obj_datatype_proj_to_complex( A );

	// If the matrix is a scalar, then the SVD is easy.
	if ( min_m_n == 1 )
	{
		FLA_Copy( A, s );
		FLA_Set_to_identity( U );
		FLA_Set_to_identity( V );

		return FLA_SUCCESS;
	}

	// Create matrices to hold block Householder transformations.
	FLA_Bidiag_UT_create_T( A, &T, &S );

	// Create vectors to hold the realifying scalars.
	FLA_Obj_create( dt,      min_m_n,      1, 0, 0, &rL );
	FLA_Obj_create( dt,      min_m_n,      1, 0, 0, &rR );

	// Create vectors to hold the diagonal and sub-diagonal.
	FLA_Obj_create( dt_real, min_m_n,      1, 0, 0, &d );
	FLA_Obj_create( dt_real, min_m_n-1,    1, 0, 0, &e );

	// Create matrices to hold the left and right Givens scalars.
	FLA_Obj_create( dt_comp, min_m_n-1, n_GH, 0, 0, &G );
	FLA_Obj_create( dt_comp, min_m_n-1, n_GH, 0, 0, &H );

	// Create matrices to hold the left and right Givens matrices.
	FLA_Obj_create( dt_real, min_m_n, min_m_n, 0, 0, &RG );
	FLA_Obj_create( dt_real, min_m_n, min_m_n, 0, 0, &RH );
	FLA_Obj_create( dt,      m_A,     n_A,     0, 0, &W );

	if ( m_A >= n_A )
	{
		if ( m_A < crossover_ratio * n_A )
		{
			dtime_temp = FLA_Clock();
			{
			// Reduce the matrix to bidiagonal form.
			// Apply scalars to rotate elements on the sub-diagonal to the real domain.
			// Extract the diagonal and sub-diagonal from A.
			FLA_Bidiag_UT( A, T, S );
			FLA_Bidiag_UT_realify( A, rL, rR );
			FLA_Bidiag_UT_extract_diagonals( A, d, e );
			}
			*dtime_bred = FLA_Clock() - dtime_temp;

			dtime_temp = FLA_Clock();
			{
			// Form U and V.
			FLA_Bidiag_UT_form_U( A, T, U );
			FLA_Bidiag_UT_form_V( A, S, V );
			}
			*dtime_appq = FLA_Clock() - dtime_temp;

			// Apply the realifying scalars in rL and rR to U and V, respectively.
			{
				FLA_Obj UL, UR;
				FLA_Obj VL, VR;

				FLA_Part_1x2( U,   &UL, &UR,   min_m_n, FLA_LEFT );
				FLA_Part_1x2( V,   &VL, &VR,   min_m_n, FLA_LEFT );

				FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE,    rL, UL );
				FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, rR, VL );
			}

			dtime_temp = FLA_Clock();
			{
			// Perform a singular value decomposition on the bidiagonal matrix.
			r_val = FLA_Bsvd_v_opt_var2( n_iter_max, d, e, G, H, RG, RH, W, U, V, b_alg );
			}
			*dtime_bsvd = FLA_Clock() - dtime_temp;
		}
		else // if ( crossover_ratio * n_A <= m_A )
		{
			FLA_Obj TQ, R;
			FLA_Obj AT,
			        AB;
			FLA_Obj UL, UR;

			//FLA_QR_UT_create_T( A, &TQ );
			FLA_Obj_create( dt, 32, n_A, 0, 0, &TQ );

			dtime_temp = FLA_Clock();
			{
			// Perform a QR factorization on A and form Q in U.
			FLA_QR_UT( A, TQ );
			}
			*dtime_qrfa = FLA_Clock() - dtime_temp;

			dtime_temp = FLA_Clock();
			{
			FLA_QR_UT_form_Q( A, TQ, U );
			}
			*dtime_appq = FLA_Clock() - dtime_temp;

			FLA_Obj_free( &TQ );

			// Set the lower triangle of R to zero and then copy the upper
			// triangle of A to R.
			FLA_Part_2x1( A,   &AT,
			                   &AB,   n_A, FLA_TOP );
			FLA_Obj_create( dt, n_A, n_A, 0, 0, &R );
			FLA_Setr( FLA_LOWER_TRIANGULAR, FLA_ZERO, R );
			FLA_Copyr( FLA_UPPER_TRIANGULAR, AT, R );

			dtime_temp = FLA_Clock();
			{
			// Reduce the matrix to bidiagonal form.
			// Apply scalars to rotate elements on the superdiagonal to the real domain.
			// Extract the diagonal and superdiagonal from A.
			FLA_Bidiag_UT( R, T, S );
			FLA_Bidiag_UT_realify( R, rL, rR );
			FLA_Bidiag_UT_extract_diagonals( R, d, e );
			}
			*dtime_bred = FLA_Clock() - dtime_temp;

			dtime_temp = FLA_Clock();
			{
			// Form V from right Householder vectors in upper triangle of R.
			FLA_Bidiag_UT_form_V( R, S, V );

			// Form U in R.
			FLA_Bidiag_UT_form_U( R, T, R );
			}
			*dtime_appq += FLA_Clock() - dtime_temp;

			// Apply the realifying scalars in rL and rR to U and V, respectively.
			FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE,    rL, R );
			FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, rR, V );

			dtime_temp = FLA_Clock();
			{
			// Perform a singular value decomposition on the bidiagonal matrix.
			r_val = FLA_Bsvd_v_opt_var2( n_iter_max, d, e, G, H, RG, RH, W, R, V, b_alg );
			}
			*dtime_bsvd = FLA_Clock() - dtime_temp;

			dtime_temp = FLA_Clock();
			{
			// Multiply R into U, storing the result in A and then copying back
			// to U.
			FLA_Part_1x2( U,   &UL, &UR,   n_A, FLA_LEFT );
			FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
			          FLA_ONE, UL, R, FLA_ZERO, A );
			FLA_Copy( A, UL );
			}
			*dtime_gemm = FLA_Clock() - dtime_temp;

			FLA_Obj_free( &R );
		}
	}
	else // if ( m_A < n_A )
	{
		FLA_Check_error_code( FLA_NOT_YET_IMPLEMENTED );
	}

	// Copy the converged eigenvalues to the output vector.
	FLA_Copy( d, s );

	// Sort the singular values and singular vectors in descending order.
	FLA_Sort_svd( FLA_BACKWARD, s, U, V );

	FLA_Obj_free( &T );
	FLA_Obj_free( &S );
	FLA_Obj_free( &rL );
	FLA_Obj_free( &rR );
	FLA_Obj_free( &d );
	FLA_Obj_free( &e );
	FLA_Obj_free( &G );
	FLA_Obj_free( &H );
	FLA_Obj_free( &RG );
	FLA_Obj_free( &RH );
	FLA_Obj_free( &W );

	return r_val;
}
示例#6
0
void time_Tevd_v(
               int variant, int type, int n_repeats, int m, int k_accum, int b_alg, int n_iter_max,
               FLA_Obj A_orig, FLA_Obj d, FLA_Obj e, FLA_Obj G, FLA_Obj R, FLA_Obj W, FLA_Obj A, FLA_Obj l,
               double *dtime, double *diff1, double* diff2, double *gflops )
{
  int irep;

  double
    k, dtime_old = 1.0e9;

  FLA_Obj
    A_save, G_save, d_save, e_save;

  if (
       //( variant == 0 ) ||
       //( variant == 1 && type == FLA_ALG_UNB_OPT ) ||
       //( variant == 2 && type == FLA_ALG_UNB_OPT ) ||
       FALSE
     )
  {
    *dtime  = 0.0;
    *gflops = 0.0;
    *diff1  = 0.0;
    *diff2  = 0.0;
    return;
  }

  FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, A, &A_save );
  FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, G, &G_save );
  FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, d, &d_save );
  FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, e, &e_save );

  FLA_Copy_external( A, A_save );
  FLA_Copy_external( G, G_save );
  FLA_Copy_external( d, d_save );
  FLA_Copy_external( e, e_save );

  for ( irep = 0 ; irep < n_repeats; irep++ ){

    FLA_Copy_external( A_save, A );
    FLA_Copy_external( G_save, G );
    FLA_Copy_external( d_save, d );
    FLA_Copy_external( e_save, e );

    *dtime = FLA_Clock();

    switch( variant ){

    case 0:
      REF_Tevd_v( d, e, A );
      break;

    // Time variant 1
    case 1:
    {
      switch( type ){
      case FLA_ALG_UNB_OPT:
        FLA_Tevd_v_opt_var1( n_iter_max, d, e, G, A, b_alg );
        break;
      }
      break;
    }

    // Time variant 2
    case 2:
    {
      switch( type ){
      case FLA_ALG_UNB_OPT:
        FLA_Tevd_v_opt_var2( n_iter_max, d, e, G, R, W, A, b_alg );
        break;
      }
      break;
    }

    }

    *dtime = FLA_Clock() - *dtime;
    dtime_old = min( *dtime, dtime_old );

  }
  {
    FLA_Obj V, A_rev_evd, norm, eye;

	FLA_Copy( d, l );

//FLA_Obj_show( "A_save", A_save, "%9.2e + %9.2e ", "" );
//FLA_Obj_show( "A_evd", A, "%9.2e + %9.2e ", "" );
	FLA_Sort_evd( FLA_FORWARD, l, A );

    FLA_Obj_create_copy_of( FLA_NO_TRANSPOSE, A, &V ); 
    FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, A, &A_rev_evd ); 
    FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, A, &eye ); 
    FLA_Obj_create( FLA_Obj_datatype_proj_to_real( A ), 1, 1, 0, 0, &norm );


    FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, l, A );

    FLA_Gemm( FLA_NO_TRANSPOSE, FLA_CONJ_TRANSPOSE,
              FLA_ONE, A, V, FLA_ZERO, A_rev_evd );
    FLA_Triangularize( FLA_LOWER_TRIANGULAR, FLA_NONUNIT_DIAG, A_rev_evd );

/*
    FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
              FLA_ONE, A, D, FLA_ZERO, A_rev_evd );
    FLA_Copy( A_rev_evd, D );
    FLA_Gemm( FLA_NO_TRANSPOSE, FLA_CONJ_TRANSPOSE,
              FLA_ONE, D, V, FLA_ZERO, A_rev_evd );
    FLA_Triangularize( FLA_LOWER_TRIANGULAR, FLA_NONUNIT_DIAG, A_rev_evd );
*/
//FLA_Obj_show( "A_rev_evd", A_rev_evd, "%9.2e + %9.2e ", "" );
 
    FLA_Axpy( FLA_MINUS_ONE, A_orig, A_rev_evd );
    FLA_Norm_frob( A_rev_evd, norm );
    FLA_Obj_extract_real_scalar( norm, diff1 );
    //*diff = FLA_Max_elemwise_diff( A_orig, A_rev_evd );

    FLA_Set_to_identity( eye );
	FLA_Copy( V, A_rev_evd );
    FLA_Gemm( FLA_NO_TRANSPOSE, FLA_CONJ_TRANSPOSE,
              FLA_ONE, V, A_rev_evd, FLA_MINUS_ONE, eye );
    FLA_Norm_frob( eye, norm );
    FLA_Obj_extract_real_scalar( norm, diff2 );

/*
FLA_Obj_free( &EL );
FLA_Obj_free( &EU );
FLA_Obj_free( &D );
FLA_Obj_free( &dc );
FLA_Obj_free( &ec );
*/

    FLA_Obj_free( &V );
    FLA_Obj_free( &A_rev_evd );
    FLA_Obj_free( &eye );
    FLA_Obj_free( &norm );
  }

  k = 2.00;

  if ( FLA_Obj_is_complex( A ) )
  {
    *gflops = (
                      (       4.5 * k * m * m     ) +
                2.0 * (       3.0 * k * m * m * m ) ) / 
              dtime_old / 1e9;
  }
  else 
  {
    *gflops = (
                      (       4.5 * k * m * m     ) +
                1.0 * (       3.0 * k * m * m * m ) ) / 
              dtime_old / 1e9;
  }

  *dtime = dtime_old;

  FLA_Copy_external( A_save, A );
  FLA_Copy_external( G_save, G );
  FLA_Copy_external( d_save, d );
  FLA_Copy_external( e_save, e );

  FLA_Obj_free( &A_save );
  FLA_Obj_free( &G_save );
  FLA_Obj_free( &d_save );
  FLA_Obj_free( &e_save );
}
void time_Hevd_lv_components(
               int variant, int type, int n_repeats, int m, int n_iter_max, int k_accum, int b_alg,
               FLA_Obj A, FLA_Obj l,
               double* dtime, double* diff1, double* diff2, double* gflops,
               double* dtime_tred, double* gflops_tred,
               double* dtime_tevd, double* gflops_tevd,
               double* dtime_appq, double* gflops_appq, int* k_perf )
{
  int     i;
  double  k;
  double  dtime_save      = 1.0e9;
  double  dtime_tred_save = 1.0e9;
  double  dtime_tevd_save = 1.0e9;
  double  dtime_appq_save = 1.0e9;
  double  flops_tred;
  double  flops_tevd;
  double  flops_appq;
  double  mult_tred;
  double  mult_tevd;
  double  mult_appq;

  FLA_Obj A_save, Z;

  if (
       ( variant == -3 ) ||
       ( variant == -4 ) ||
       ( variant == -5 ) ||
       //( variant == 0 ) ||
       //( variant == -1 ) ||
       //( variant == -2 ) ||
       //( variant == 1 ) ||
       //( variant == 2 ) ||
       //( variant == 3 ) ||
       //( variant == 4 ) ||
       FALSE
     )
  {
    *gflops      = 0.0;
    *dtime       = 0.0;
    *diff1       = 0.0;
    *diff2       = 0.0;
    *dtime_tred  = 0.0;
    *dtime_tevd  = 0.0;
    *dtime_appq  = 0.0;
    *gflops_tred = 0.0;
    *gflops_tevd = 0.0;
    *gflops_appq = 0.0;
    *k_perf      = 0;
    return;
  }

  FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, A, &A_save );
  FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, A, &Z );

  FLA_Copy_external( A, A_save );

  for ( i = 0 ; i < n_repeats; i++ ){

    FLA_Copy_external( A_save, A );

    *dtime = FLA_Clock();

    switch( variant ){

    case -3:
    {
      *k_perf = 0;
      REF_Hevd_lv( A, l,
                   dtime_tred, dtime_tevd, dtime_appq );
      break;
    }

    case -4:
    {
      *k_perf = 0;
      REF_Hevdd_lv( A, l,
                    dtime_tred, dtime_tevd, dtime_appq );
      break;
    }

    case -5:
    {
      *k_perf = 0;
      REF_Hevdr_lv( A, l, Z,
                    dtime_tred, dtime_tevd, dtime_appq );
      break;
    }

    case 0:
    {
      *k_perf = 0;
      REF_Hevd_lv_components( A, l,
                              dtime_tred, dtime_tevd, dtime_appq );
      break;
    }

    case -1:
    {
      *k_perf = 0;
      REF_Hevdd_lv_components( A, l,
                               dtime_tred, dtime_tevd, dtime_appq );
      break;
    }

    case -2:
    {
      *k_perf = 0;
      REF_Hevdr_lv_components( A, l, Z,
                               dtime_tred, dtime_tevd, dtime_appq );
      break;
    }

    // Time variant 1
    case 1:
    {
      *k_perf = FLA_Hevd_lv_var1_components( n_iter_max, A, l, k_accum, b_alg,
                                             dtime_tred, dtime_tevd, dtime_appq );
      break;
    }

    // Time variant 2
    case 2:
    {
      *k_perf = FLA_Hevd_lv_var2_components( n_iter_max, A, l, k_accum, b_alg,
                                             dtime_tred, dtime_tevd, dtime_appq );
      break;
    }

    }

    *dtime = FLA_Clock() - *dtime;
    if ( *dtime < dtime_save )
    {
      dtime_save      = *dtime;
      dtime_tred_save = *dtime_tred;
      dtime_tevd_save = *dtime_tevd;
      dtime_appq_save = *dtime_appq;
    }
  }

  *dtime      = dtime_save;
  *dtime_tred = dtime_tred_save;
  *dtime_tevd = dtime_tevd_save;
  *dtime_appq = dtime_appq_save;

//if ( variant == -3 || variant == 0 )
//printf( "\ndtime is %9.3e\n", *dtime );

  {
    FLA_Obj V, A_rev_evd, norm, eye;

    if ( variant == -2 || variant == -5 ) FLA_Copy( Z, A );

    FLA_Obj_create_copy_of( FLA_NO_TRANSPOSE, A, &V ); 
    FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, A, &A_rev_evd ); 
    FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, A, &eye ); 
    FLA_Obj_create( FLA_Obj_datatype_proj_to_real( A ), 1, 1, 0, 0, &norm );

    FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, l, A );

    FLA_Gemm( FLA_NO_TRANSPOSE, FLA_CONJ_TRANSPOSE,
              FLA_ONE, A, V, FLA_ZERO, A_rev_evd );
    FLA_Triangularize( FLA_LOWER_TRIANGULAR, FLA_NONUNIT_DIAG, A_rev_evd );

//FLA_Obj_show( "A_rev_evd", A_rev_evd, "%9.2e + %9.2e ", "" );
 
    FLA_Axpy( FLA_MINUS_ONE, A_save, A_rev_evd );
    FLA_Norm_frob( A_rev_evd, norm );
    FLA_Obj_extract_real_scalar( norm, diff1 );

    FLA_Set_to_identity( eye );
	FLA_Copy( V, A_rev_evd );
    FLA_Gemm( FLA_NO_TRANSPOSE, FLA_CONJ_TRANSPOSE,
              FLA_ONE, V, A_rev_evd, FLA_MINUS_ONE, eye );
    FLA_Norm_frob( eye, norm );
    FLA_Obj_extract_real_scalar( norm, diff2 );

    FLA_Obj_free( &V );
    FLA_Obj_free( &A_rev_evd );
    FLA_Obj_free( &eye );
    FLA_Obj_free( &norm );
  }

  k = 2.00;

  flops_tred = ( ( 4.0 / 3.0 )   * m * m * m );
  flops_tevd = (   4.5           * k * m * m     +
                   3.0           * k * m * m * m );

  if ( variant == -1 || variant == -2 ||
       variant == -4 || variant == -5 )
    flops_appq = ( 2.0           * m * m * m );
  else
    flops_appq = ( 4.0 / 3.0     * m * m * m );

/*
  if ( FLA_Obj_is_complex( A ) )
  {
    *gflops      = ( 4.0 * flops_tred + 
                     2.0 * flops_tevd + 
                     4.0 * flops_appq ) / *dtime      / 1e9;

    *gflops_tred = ( 4.0 * flops_tred ) / *dtime_tred / 1e9;
    *gflops_tevd = ( 2.0 * flops_tevd ) / *dtime_tevd / 1e9;
    *gflops_appq = ( 4.0 * flops_appq ) / *dtime_appq / 1e9;
  }
  else
  {
    *gflops      = ( 1.0 * flops_tred + 
                     1.0 * flops_tevd + 
                     1.0 * flops_appq ) / *dtime      / 1e9;

    *gflops_tred = ( 1.0 * flops_tred ) / *dtime_tred / 1e9;
    *gflops_tevd = ( 1.0 * flops_tevd ) / *dtime_tevd / 1e9;
    *gflops_appq = ( 1.0 * flops_appq ) / *dtime_appq / 1e9;
  }
*/

  if ( FLA_Obj_is_complex( A ) )
  {
    mult_tred = 4.0;
    mult_tevd = 2.0;
    mult_appq = 4.0;
  }
  else
  {
    mult_tred = 1.0;
    mult_tevd = 1.0;
    mult_appq = 1.0;
  }

  *gflops = ( mult_tred * flops_tred + 
              mult_tevd * flops_tevd + 
              mult_appq * flops_appq ) / *dtime / 1e9;

  *gflops_tred = ( mult_tred * flops_tred ) / *dtime_tred / 1e9;
  *gflops_tevd = ( mult_tevd * flops_tevd ) / *dtime_tevd / 1e9;
  *gflops_appq = ( mult_appq * flops_appq ) / *dtime_appq / 1e9;

  FLA_Copy_external( A_save, A );

  FLA_Obj_free( &A_save );
  FLA_Obj_free( &Z );
}
示例#8
0
int main(int argc, char *argv[])
{
  int 
    m_input,
    m,
    p_first, p_last, p_inc,
    p,
    b_alg,
    variant,
    n_repeats,
    i,
    datatype,
    n_variants = 1;
  
  char *colors = "brkgmcbrkg";
  char *ticks  = "o+*xso+*xs";
  char m_dim_desc[14];
  char m_dim_tag[10];

  double max_gflops=6.0;
  double safemin;

  double
    dtime,
    gflops,
    diff;

  FLA_Obj
    A, l, Q, T, W;
  

  FLA_Init();


  fprintf( stdout, "%c number of repeats:", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c Enter blocking size:", '%' );
  scanf( "%d", &b_alg );
  fprintf( stdout, "%c %d\n", '%', b_alg );

  fprintf( stdout, "%c enter problem size first, last, inc:", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter m (-1 means bind to problem size): ", '%' );
  scanf( "%d", &m_input );
  fprintf( stdout, "%c %d\n", '%', m_input );


  fprintf( stdout, "\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }
/*
char ch = 's';
safemin = dlamch_( &ch );
printf( "safemin = %23.15e\n", safemin );
ch = 'e';
double eps = dlamch_( &ch );
printf( "eps dla = %23.15e\n", eps );
printf( "eps fla = %23.15e\n", FLA_EPSILON_D );
*/

  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {

    m = m_input;

    if( m < 0 ) m = p / f2c_abs(m_input);

    //datatype = FLA_FLOAT;
    //datatype = FLA_DOUBLE;
    //datatype = FLA_COMPLEX;
    datatype = FLA_DOUBLE_COMPLEX;

    FLA_Obj_create( datatype,                           m,      m, 0, 0, &A );
    FLA_Obj_create( datatype,                           m,      m, 0, 0, &Q );
    FLA_Obj_create( datatype,                           32,     m, 0, 0, &T );
    FLA_Obj_create( datatype,                           32,     m, 0, 0, &W );
    FLA_Obj_create( FLA_Obj_datatype_proj_to_real( A ), m,      1, 0, 0, &l );

    //FLA_Random_herm_matrix( FLA_LOWER_TRIANGULAR, A );
    //FLA_Random_spd_matrix( FLA_LOWER_TRIANGULAR, A );

    FLA_Random_matrix( A );
    FLA_Obj_set_to_identity( Q );
    FLA_QR_UT( A, T );
    FLA_Apply_Q_UT( FLA_LEFT, FLA_CONJ_TRANSPOSE, FLA_FORWARD, FLA_COLUMNWISE, A, T, W, Q );
    fill_eigenvalues( l );
    //FLA_Obj_show( "eig", l, "%9.2e ", "" );
    FLA_Apply_diag_matrix( FLA_LEFT, FLA_NO_CONJUGATE, l, Q );
    FLA_Apply_Q_UT( FLA_LEFT, FLA_NO_TRANSPOSE, FLA_FORWARD, FLA_COLUMNWISE, A, T, W, Q );
    FLA_Triangularize( FLA_LOWER_TRIANGULAR, FLA_NONUNIT_DIAG, Q );
    FLA_Copy( Q, A );

    time_Hevd_ln( 0, FLA_ALG_REFERENCE, n_repeats, m, b_alg,
                  A, l, &dtime, &diff, &gflops );

    fprintf( stdout, "data_REFs( %d, 1:2 ) = [ %d %6.3lf %6.2le ]; \n", i, p, gflops, diff );
    fflush( stdout );

    time_Hevd_ln( -1, FLA_ALG_REFERENCE, n_repeats, m, b_alg,
                  A, l, &dtime, &diff, &gflops );

    fprintf( stdout, "data_REFd( %d, 1:2 ) = [ %d %6.3lf %6.2le ]; \n", i, p, gflops, diff );
    fflush( stdout );


    for ( variant = 1; variant <= n_variants; variant++ ){
      
      fprintf( stdout, "data_var%d( %d, 1:9 ) = [ %d ", variant, i, p );
      fflush( stdout );

      time_Hevd_ln( variant, FLA_ALG_UNBLOCKED, n_repeats, m, b_alg,
                    A, l, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      //time_Hevd_ln( variant, FLA_ALG_UNB_OPT, n_repeats, m, b_alg,
      //              A, l, &dtime, &diff, &gflops );

      //fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      //fflush( stdout );

      fprintf( stdout, "];\n" );
      fflush( stdout );
    }

    fprintf( stdout, "\n" );

    FLA_Obj_free( &A );
    FLA_Obj_free( &T );
    FLA_Obj_free( &W );
    FLA_Obj_free( &Q );
    FLA_Obj_free( &l );
  }

/*
  fprintf( stdout, "figure;\n" );

  fprintf( stdout, "plot( data_REF( :,1 ), data_REF( :, 2 ), '-' ); \n" );

  fprintf( stdout, "hold on;\n" );

  for ( i = 1; i <= n_variants; i++ ) {
    fprintf( stdout, "plot( data_var%d( :,1 ), data_var%d( :, 2 ), '%c:%c' ); \n",
            i, i, colors[ i-1 ], ticks[ i-1 ] );
    fprintf( stdout, "plot( data_var%d( :,1 ), data_var%d( :, 4 ), '%c-.%c' ); \n",
            i, i, colors[ i-1 ], ticks[ i-1 ] );
  }

  fprintf( stdout, "legend( ... \n" );
  fprintf( stdout, "'Reference', ... \n" );

  for ( i = 1; i < n_variants; i++ )
    fprintf( stdout, "'unb\\_var%d', 'blk\\_var%d', ... \n", i, i );
  fprintf( stdout, "'unb\\_var%d', 'blk\\_var%d' ); \n", i, i );

  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME Hevd_ln performance (%s, %s)' );\n", 
           m_dim_desc, n_dim_desc );
  fprintf( stdout, "print -depsc tridiag_%s_%s.eps\n", m_dim_tag, n_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );
*/

  FLA_Finalize( );

  return 0;
}
FLA_Error FLA_Svd_ext_u_unb_var1( FLA_Svd_type jobu, FLA_Svd_type jobv,
                                  dim_t n_iter_max,
                                  FLA_Obj A, FLA_Obj s, FLA_Obj U, FLA_Obj V,
                                  dim_t k_accum,
                                  dim_t b_alg )
{
    FLA_Error    r_val = FLA_SUCCESS;
    FLA_Datatype dt;
    FLA_Datatype dt_real;
    FLA_Datatype dt_comp;
    FLA_Obj      scale, T, S, rL, rR, d, e, G, H, C; // C is dummy.
    dim_t        m_A, n_A, min_m_n;
    dim_t        n_GH;
    double       crossover_ratio = 17.0 / 9.0;
    FLA_Bool     u_is_formed = FALSE, 
                 v_is_formed = FALSE;
    int          apply_scale;

    n_GH    = k_accum;

    m_A     = FLA_Obj_length( A );
    n_A     = FLA_Obj_width( A );
    min_m_n = min( m_A, n_A );
    dt      = FLA_Obj_datatype( A );
    dt_real = FLA_Obj_datatype_proj_to_real( A );
    dt_comp = FLA_Obj_datatype_proj_to_complex( A );

    // Create matrices to hold block Householder transformations.
    FLA_Bidiag_UT_create_T( A, &T, &S );

    // Create vectors to hold the realifying scalars.
    if ( FLA_Obj_is_complex( A ) )
    {
        FLA_Obj_create( dt,      min_m_n,      1, 0, 0, &rL );
        FLA_Obj_create( dt,      min_m_n,      1, 0, 0, &rR );
    }

    // Create vectors to hold the diagonal and sub-diagonal.
    FLA_Obj_create( dt_real, min_m_n,      1, 0, 0, &d );
    FLA_Obj_create( dt_real, min_m_n-1,    1, 0, 0, &e );

    // Create matrices to hold the left and right Givens scalars.
    FLA_Obj_create( dt_comp, min_m_n-1, n_GH, 0, 0, &G );
    FLA_Obj_create( dt_comp, min_m_n-1, n_GH, 0, 0, &H );

    // Create a real scaling factor.
    FLA_Obj_create( dt_real, 1, 1, 0, 0, &scale );

    // Scale matrix A if necessary. 
    FLA_Max_abs_value( A, scale );
    apply_scale =
      ( FLA_Obj_gt( scale, FLA_OVERFLOW_SQUARE_THRES  ) == TRUE ) -     
      ( FLA_Obj_lt( scale, FLA_UNDERFLOW_SQUARE_THRES ) == TRUE ); 
    
    if ( apply_scale )
      FLA_Scal( apply_scale > 0 ? FLA_SAFE_MIN : FLA_SAFE_INV_MIN, A );   

    if ( m_A < crossover_ratio * n_A )
    {
        // Reduce the matrix to bidiagonal form.
        // Apply scalars to rotate elements on the superdiagonal to the real domain.
        // Extract the diagonal and superdiagonal from A.
        FLA_Bidiag_UT( A, T, S );
        if ( FLA_Obj_is_complex( A ) )
            FLA_Bidiag_UT_realify( A, rL, rR );
        FLA_Bidiag_UT_extract_real_diagonals( A, d, e );

        // Form U and V.
        if ( u_is_formed == FALSE )
        {
            switch ( jobu )
            {
            case FLA_SVD_VECTORS_MIN_OVERWRITE:
                if ( jobv != FLA_SVD_VECTORS_NONE )
                    FLA_Bidiag_UT_form_V_ext( FLA_UPPER_TRIANGULAR, A, S, FLA_NO_TRANSPOSE, V );
                v_is_formed = TRUE; // For this case, V should be formed here.
                U = A;
            case FLA_SVD_VECTORS_ALL:
            case FLA_SVD_VECTORS_MIN_COPY:
                FLA_Bidiag_UT_form_U_ext( FLA_UPPER_TRIANGULAR, A, T, FLA_NO_TRANSPOSE, U );
                u_is_formed = TRUE;
                break;
            case FLA_SVD_VECTORS_NONE:
                // Do nothing
                break;
            }
        }
        if ( v_is_formed == FALSE )
        {
            if ( jobv == FLA_SVD_VECTORS_MIN_OVERWRITE )
            {
                FLA_Bidiag_UT_form_V_ext( FLA_UPPER_TRIANGULAR, A, S, FLA_CONJ_TRANSPOSE, A );
                v_is_formed = TRUE; /* and */
                V = A; // This V is actually V^H.

                // V^H -> V
                FLA_Obj_flip_base( &V );
                FLA_Obj_flip_view( &V );
                if ( FLA_Obj_is_complex( A ) )
                    FLA_Conjugate( V );
            }
            else if ( jobv != FLA_SVD_VECTORS_NONE )
            {
                FLA_Bidiag_UT_form_V_ext( FLA_UPPER_TRIANGULAR, A, S, FLA_NO_TRANSPOSE, V );
                v_is_formed = TRUE;
            }
        }

        // For complex matrices, apply realification transformation.
        if ( FLA_Obj_is_complex( A ) && jobu != FLA_SVD_VECTORS_NONE )
        {
            FLA_Obj UL, UR;
            FLA_Part_1x2( U,   &UL, &UR,   min_m_n, FLA_LEFT );
            FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE,    rL, UL );
        }
        if ( FLA_Obj_is_complex( A ) && jobv != FLA_SVD_VECTORS_NONE )
        {
            FLA_Obj VL, VR;
            FLA_Part_1x2( V,   &VL, &VR,   min_m_n, FLA_LEFT );
            FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, rR, VL );
        }

        // Perform a singular value decomposition on the upper bidiagonal matrix.
        r_val = FLA_Bsvd_ext_opt_var1( n_iter_max,
                                       d, e, G, H,
                                       jobu, U, jobv, V,
                                       FALSE, C, // C is not referenced
                                       b_alg );
    }
    else // if ( crossover_ratio * n_A <= m_A )
    {
        FLA_Obj TQ, R;
        FLA_Obj AT,
                AB;

        // Perform a QR factorization on A.
        FLA_QR_UT_create_T( A, &TQ );
        FLA_QR_UT( A, TQ );

        // Set the lower triangle of R to zero and then copy the upper
        // triangle of A to R.
        FLA_Part_2x1( A,   &AT,
                           &AB,   n_A, FLA_TOP );
        FLA_Obj_create( dt, n_A, n_A, 0, 0, &R );
        FLA_Setr( FLA_LOWER_TRIANGULAR, FLA_ZERO, R );
        FLA_Copyr( FLA_UPPER_TRIANGULAR, AT, R );

        // Form U; if necessary overwrite on A.
        if ( u_is_formed == FALSE )
        {
            switch ( jobu )
            {
            case FLA_SVD_VECTORS_MIN_OVERWRITE:
                U = A;
            case FLA_SVD_VECTORS_ALL:
            case FLA_SVD_VECTORS_MIN_COPY:
                FLA_QR_UT_form_Q( A, TQ, U );
                u_is_formed = TRUE;
                break;
            case FLA_SVD_VECTORS_NONE:
                // Do nothing
                break;
            }
        }
        FLA_Obj_free( &TQ );

        // Reduce the matrix to bidiagonal form.
        // Apply scalars to rotate elements on the superdiagonal to the real domain.
        // Extract the diagonal and superdiagonal from A.
        FLA_Bidiag_UT( R, T, S );
        if ( FLA_Obj_is_complex( R ) )
            FLA_Bidiag_UT_realify( R, rL, rR );
        FLA_Bidiag_UT_extract_real_diagonals( R, d, e );

        if ( v_is_formed == FALSE )
        {
            if ( jobv == FLA_SVD_VECTORS_MIN_OVERWRITE )
            {
                FLA_Bidiag_UT_form_V_ext( FLA_UPPER_TRIANGULAR, R, S, FLA_CONJ_TRANSPOSE, AT );
                v_is_formed = TRUE; /* and */
                V = AT; // This V is actually V^H.

                // V^H -> V
                FLA_Obj_flip_base( &V );
                FLA_Obj_flip_view( &V );
                if ( FLA_Obj_is_complex( A ) )
                    FLA_Conjugate( V );
            }
            else if ( jobv != FLA_SVD_VECTORS_NONE )
            {
                FLA_Bidiag_UT_form_V_ext( FLA_UPPER_TRIANGULAR, R, S, FLA_NO_TRANSPOSE, V );
                v_is_formed = TRUE;
            }
        }

        // Apply householder vectors U in R.
        FLA_Bidiag_UT_form_U_ext( FLA_UPPER_TRIANGULAR, R, T, FLA_NO_TRANSPOSE, R );

        // Apply the realifying scalars in rL and rR to U and V, respectively.
        if ( FLA_Obj_is_complex( A ) && jobu != FLA_SVD_VECTORS_NONE )
        {
            FLA_Obj RL, RR;
            FLA_Part_1x2( R,   &RL, &RR,   min_m_n, FLA_LEFT );
            FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE,    rL, RL );
        }
        if ( FLA_Obj_is_complex( A ) && jobv != FLA_SVD_VECTORS_NONE )
        {
            FLA_Obj VL, VR;
            FLA_Part_1x2( V,   &VL, &VR,   min_m_n, FLA_LEFT );
            FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, rR, VL );
        }

        // Perform a singular value decomposition on the bidiagonal matrix.
        r_val = FLA_Bsvd_ext_opt_var1( n_iter_max,
                                       d, e, G, H,
                                       jobu, R, jobv, V,
                                       FALSE, C,
                                       b_alg );

        // Multiply R into U, storing the result in A and then copying back
        // to U.
        if ( jobu != FLA_SVD_VECTORS_NONE )
        {
            FLA_Obj UL, UR;
            FLA_Part_1x2( U,   &UL, &UR,   min_m_n, FLA_LEFT );

            if ( jobu == FLA_SVD_VECTORS_MIN_OVERWRITE || 
                 jobv == FLA_SVD_VECTORS_MIN_OVERWRITE )
            {
                FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, UL, &C );
                FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
                          FLA_ONE, UL, R, FLA_ZERO, C );
                FLA_Copy( C, UL );
                FLA_Obj_free( &C );
            }
            else
            {
                FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
                          FLA_ONE, UL, R, FLA_ZERO, A );
                FLA_Copy( A, UL );
            }
        }
        FLA_Obj_free( &R );
    }

    // Copy the converged eigenvalues to the output vector.
    FLA_Copy( d, s );

    // No sort is required as it is applied on FLA_Bsvd.

    if ( apply_scale ) 
      FLA_Scal( apply_scale < 0 ? FLA_SAFE_MIN : FLA_SAFE_INV_MIN, s ); 

    // When V is overwritten, flip it again.
    if ( jobv == FLA_SVD_VECTORS_MIN_OVERWRITE )
    {
        // Always apply conjugation first wrt dimensions used; then, flip base.
        if ( FLA_Obj_is_complex( V ) )
            FLA_Conjugate( V );
        FLA_Obj_flip_base( &V );
    }

    FLA_Obj_free( &scale );
    FLA_Obj_free( &T );
    FLA_Obj_free( &S );

    if ( FLA_Obj_is_complex( A ) )
    {
        FLA_Obj_free( &rL );
        FLA_Obj_free( &rR );
    }

    FLA_Obj_free( &d );
    FLA_Obj_free( &e );
    FLA_Obj_free( &G );
    FLA_Obj_free( &H );

    return r_val;
}
示例#10
0
int main( int argc, char** argv ) {
  FLA_Datatype datatype = TESTTYPE;
  FLA_Datatype realtype = REALTYPE;
  FLA_Obj      
    A, TU, TV, 
    A_copy, A_recovered,
    U, V, Vb, B, Be, d, e, 
    DU, DV;

  FLA_Obj     
    ATL, ATR,
    ABL, ABR, Ae;

  FLA_Uplo     uplo;
  dim_t        m, n, min_m_n;
  FLA_Error    init_result; 

  double       residual_A = 0.0;

  if ( argc == 3 ) {
    m = atoi(argv[1]);
    n = atoi(argv[2]);
    min_m_n = min(m,n);
  } else {
    fprintf(stderr, "       \n");
    fprintf(stderr, "Usage: %s m n\n", argv[0]);
    fprintf(stderr, "       m : matrix length\n");
    fprintf(stderr, "       n : matrix width\n");
    fprintf(stderr, "       \n");
    return -1;
  }
  if ( m == 0 || n == 0 )
    return 0;

  FLA_Init_safe( &init_result );          

  // FLAME Bidiag setup
  FLA_Obj_create( datatype, m, n, 0, 0, &A );
  FLA_Bidiag_UT_create_T( A, &TU, &TV );

  // Rand A and create A_copy.
  FLA_Random_matrix( A ); 
  {
    scomplex *buff_A = FLA_Obj_buffer_at_view( A );
    buff_A[0].real = 4.4011e-01; buff_A[0].imag = -4.0150e-09; buff_A[2].real = -2.2385e-01; buff_A[2].imag = -1.5546e-01; buff_A[4].real = -6.3461e-02; buff_A[4].imag = 2.7892e-01; buff_A[6].real = -1.3197e-01; buff_A[6].imag = 5.0888e-01;  
    buff_A[1].real = 3.3352e-01; buff_A[1].imag = -6.6346e-02; buff_A[3].real = -1.9307e-01; buff_A[3].imag = -8.4066e-02; buff_A[5].real = -6.0446e-03; buff_A[5].imag = 2.2094e-01; buff_A[7].real = -2.3299e-02; buff_A[7].imag = 4.0553e-01;
  }

  //FLA_Set_to_identity( A );
  //FLA_Scal( FLA_MINUS_ONE, A );

  if ( m >= n ) {
    uplo = FLA_UPPER_TRIANGULAR;
    FLA_Part_2x2( A, &ATL, &ATR,
                     &ABL, &ABR, min_m_n - 1, 1, FLA_TL );
    Ae = ATR; 
  } else {
    uplo = FLA_LOWER_TRIANGULAR;
    FLA_Part_2x2( A, &ATL, &ATR,
                     &ABL, &ABR, 1, min_m_n - 1, FLA_TL );
    Ae = ABL;
  }

  FLA_Obj_create_copy_of( FLA_NO_TRANSPOSE, A, &A_copy );
  FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, A, &A_recovered );

  // Bidiag test
  {
    FLA_Obj      norm;
    FLA_Bool     apply_scale;

    FLA_Obj_create( realtype, 1,1, 0,0, &norm );

    FLA_Max_abs_value( A, norm );
    apply_scale = FLA_Obj_gt( norm, FLA_OVERFLOW_SQUARE_THRES ); 

    if ( apply_scale ) FLA_Scal( FLA_SAFE_MIN, A );
    FLA_Bidiag_UT( A, TU, TV );
    if ( apply_scale ) FLA_Bidiag_UT_scale_diagonals( FLA_SAFE_INV_MIN, A ); 

    FLA_Obj_free( &norm );
  }


  // Orthonomal basis U, V. 
  FLA_Obj_create( datatype, m, min_m_n, 0, 0, &U ); FLA_Set( FLA_ZERO, U );
  FLA_Obj_create( datatype, min_m_n, n, 0, 0, &V ); FLA_Set( FLA_ZERO, V );

  FLA_Bidiag_UT_form_U_ext( uplo, A, TU, FLA_NO_TRANSPOSE,   U );
  FLA_Bidiag_UT_form_V_ext( uplo, A, TV, FLA_CONJ_TRANSPOSE, V ); 

  if ( FLA_Obj_is_complex( A ) ){
    FLA_Obj rL, rR;
    
    FLA_Obj_create( datatype, min_m_n, 1, 0, 0, &rL );
    FLA_Obj_create( datatype, min_m_n, 1, 0, 0, &rR );

    FLA_Obj_fshow( stdout, " - Factor no realified - ", A, "% 6.4e", "------");
    FLA_Bidiag_UT_realify( A, rL, rR );
    FLA_Obj_fshow( stdout, " - Factor    realified - ", A, "% 6.4e", "------");

    FLA_Obj_fshow( stdout, " - rL - ", rL, "% 6.4e", "------");
    FLA_Obj_fshow( stdout, " - rR - ", rR, "% 6.4e", "------");

    FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE, rL, U );
    FLA_Apply_diag_matrix( FLA_LEFT,  FLA_CONJUGATE, rR, V );

    FLA_Obj_free( &rL );
    FLA_Obj_free( &rR );
  }

  // U^H U
  FLA_Obj_create( datatype, min_m_n, min_m_n, 0, 0, &DU );
  FLA_Gemm_external( FLA_CONJ_TRANSPOSE, FLA_NO_TRANSPOSE, 
                     FLA_ONE, U, U, FLA_ZERO, DU );

  // V^H V
  FLA_Obj_create( datatype, min_m_n, min_m_n, 0, 0, &DV );
  FLA_Gemm_external( FLA_NO_TRANSPOSE, FLA_CONJ_TRANSPOSE, 
                     FLA_ONE, V, V, FLA_ZERO, DV );
  
  // Recover the matrix
  FLA_Obj_create( datatype, min_m_n, min_m_n, 0, 0, &B );
  FLA_Set( FLA_ZERO, B );

  // Set B
  FLA_Obj_create( datatype, min_m_n, 1, 0, 0, &d );  
  FLA_Set_diagonal_vector( A, d );
  FLA_Set_diagonal_matrix( d, B );
  FLA_Obj_free( &d );

  if ( min_m_n > 1 ) {
    FLA_Obj_create( datatype, min_m_n - 1 , 1, 0, 0, &e );  
    FLA_Set_diagonal_vector( Ae, e );
    if ( uplo == FLA_UPPER_TRIANGULAR ) {
      FLA_Part_2x2( B, &ATL, &ATR,
                    &ABL, &ABR, min_m_n - 1, 1, FLA_TL );
      Be = ATR;
    } else {
      FLA_Part_2x2( B, &ATL, &ATR,
                    &ABL, &ABR, 1, min_m_n - 1, FLA_TL );
      Be = ABL;
    }
    FLA_Set_diagonal_matrix( e, Be );
    FLA_Obj_free( &e );
  }

  // Vb := B (V^H)
  FLA_Obj_create_copy_of( FLA_NO_TRANSPOSE, V, &Vb );
  FLA_Trmm_external( FLA_LEFT, uplo, FLA_NO_TRANSPOSE,
                     FLA_NONUNIT_DIAG, FLA_ONE, B, Vb );

  // A := U Vb
  FLA_Gemm_external( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
                     FLA_ONE, U, Vb, FLA_ZERO, A_recovered );

  residual_A    = FLA_Max_elemwise_diff( A_copy, A_recovered );

  if (1) {
    FLA_Obj_fshow( stdout, " - Given - ", A_copy, "% 6.4e", "------");
    FLA_Obj_fshow( stdout, " - Factor - ", A, "% 6.4e", "------");
    FLA_Obj_fshow( stdout, " - TU - ", TU, "% 6.4e", "------");
    FLA_Obj_fshow( stdout, " - TV - ", TV, "% 6.4e", "------");
    FLA_Obj_fshow( stdout, " - B - ", B, "% 6.4e", "------");
    FLA_Obj_fshow( stdout, " - U - ", U, "% 6.4e", "------");
    FLA_Obj_fshow( stdout, " - V - ", V, "% 6.4e", "------");
    FLA_Obj_fshow( stdout, " - Vb - ", Vb, "% 6.4e", "------");
    FLA_Obj_fshow( stdout, " - U'U - ", DU,  "% 6.4e", "------");
    FLA_Obj_fshow( stdout, " - VV' - ", DV,  "% 6.4e", "------");
    FLA_Obj_fshow( stdout, " - Recovered A - ", A_recovered, "% 6.4e", "------");
    fprintf( stdout, "lapack2flame: %lu x %lu: ", m, n);
    fprintf( stdout, "recovery A = %12.10e\n\n", residual_A ) ;
  }
  
  FLA_Obj_free( &A );
  FLA_Obj_free( &TU );
  FLA_Obj_free( &TV );

  FLA_Obj_free( &B );

  FLA_Obj_free( &U );
  FLA_Obj_free( &V );
  FLA_Obj_free( &Vb );

  FLA_Obj_free( &DU );
  FLA_Obj_free( &DV );

  FLA_Obj_free( &A_copy );
  FLA_Obj_free( &A_recovered );


  FLA_Finalize_safe( init_result );     
}