示例#1
0
FLA_Error FLA_Copyt_c_blk_var2( FLA_Obj A, FLA_Obj B, fla_copyt_t* cntl )
{
  FLA_Obj AT,              A0,
          AB,              A1,
                           A2;

  FLA_Obj BT,              B0,
          BB,              B1,
                           B2;

  dim_t b;

  FLA_Part_2x1( A,    &AT, 
                      &AB,            0, FLA_BOTTOM );

  FLA_Part_2x1( B,    &BT, 
                      &BB,            0, FLA_BOTTOM );

  while ( FLA_Obj_length( AB ) < FLA_Obj_length( A ) ){

    b = FLA_Determine_blocksize( AT, FLA_TOP, FLA_Cntl_blocksize( cntl ) );

    FLA_Repart_2x1_to_3x1( AT,                &A0, 
                                              &A1, 
                        /* ** */            /* ** */
                           AB,                &A2,        b, FLA_TOP );

    FLA_Repart_2x1_to_3x1( BT,                &B0, 
                                              &B1, 
                        /* ** */            /* ** */
                           BB,                &B2,        b, FLA_TOP );

    /*------------------------------------------------------------*/

    FLA_Copyt_internal( FLA_CONJ_NO_TRANSPOSE, A1, B1,
                        FLA_Cntl_sub_copyt( cntl ) );

    /*------------------------------------------------------------*/

    FLA_Cont_with_3x1_to_2x1( &AT,                A0, 
                            /* ** */           /* ** */
                                                  A1, 
                              &AB,                A2,     FLA_BOTTOM );

    FLA_Cont_with_3x1_to_2x1( &BT,                B0, 
                            /* ** */           /* ** */
                                                  B1, 
                              &BB,                B2,     FLA_BOTTOM );
  }

  return FLA_SUCCESS;
}
示例#2
0
FLA_Error FLA_Copyt_h_blk_var2( FLA_Obj A, FLA_Obj B, fla_copyt_t* cntl )
{
  FLA_Obj AL,    AR,       A0,  A1,  A2;

  FLA_Obj BT,              B0,
          BB,              B1,
                           B2;

  dim_t b;

  FLA_Part_1x2( A,    &AL,  &AR,      0, FLA_RIGHT );

  FLA_Part_2x1( B,    &BT, 
                      &BB,            0, FLA_BOTTOM );

  while ( FLA_Obj_width( AR ) < FLA_Obj_width( A ) ){

    b = FLA_Determine_blocksize( AL, FLA_LEFT, FLA_Cntl_blocksize( cntl ) );

    FLA_Repart_1x2_to_1x3( AL,  /**/ AR,        &A0, &A1, /**/ &A2,
                           b, FLA_LEFT );

    FLA_Repart_2x1_to_3x1( BT,                &B0, 
                                              &B1, 
                        /* ** */            /* ** */
                           BB,                &B2,        b, FLA_TOP );

    /*------------------------------------------------------------*/

    FLA_Copyt_internal( FLA_CONJ_TRANSPOSE, A1, B1,
                        FLA_Cntl_sub_copyt( cntl ) );

    /*------------------------------------------------------------*/

    FLA_Cont_with_1x3_to_1x2( &AL,  /**/ &AR,        A0, /**/ A1, A2,
                              FLA_RIGHT );

    FLA_Cont_with_3x1_to_2x1( &BT,                B0, 
                            /* ** */           /* ** */
                                                  B1, 
                              &BB,                B2,     FLA_BOTTOM );
  }

  return FLA_SUCCESS;
}
示例#3
0
FLA_Error FLA_Copyt_h_blk_var3( FLA_Obj A, FLA_Obj B, fla_copyt_t* cntl )
{
  FLA_Obj AT,              A0,
          AB,              A1,
                           A2;

  FLA_Obj BL,    BR,       B0,  B1,  B2;

  dim_t b;

  FLA_Part_2x1( A,    &AT, 
                      &AB,            0, FLA_TOP );

  FLA_Part_1x2( B,    &BL,  &BR,      0, FLA_LEFT );

  while ( FLA_Obj_length( AT ) < FLA_Obj_length( A ) ){

    b = FLA_Determine_blocksize( AB, FLA_BOTTOM, FLA_Cntl_blocksize( cntl ) );

    FLA_Repart_2x1_to_3x1( AT,                &A0, 
                        /* ** */            /* ** */
                                              &A1, 
                           AB,                &A2,        b, FLA_BOTTOM );

    FLA_Repart_1x2_to_1x3( BL,  /**/ BR,        &B0, /**/ &B1, &B2,
                           b, FLA_RIGHT );

    /*------------------------------------------------------------*/

    FLA_Copyt_internal( FLA_CONJ_TRANSPOSE, A1, B1,
                        FLA_Cntl_sub_copyt( cntl ) );

    /*------------------------------------------------------------*/

    FLA_Cont_with_3x1_to_2x1( &AT,                A0, 
                                                  A1, 
                            /* ** */           /* ** */
                              &AB,                A2,     FLA_TOP );

    FLA_Cont_with_1x3_to_1x2( &BL,  /**/ &BR,        B0, B1, /**/ B2,
                              FLA_LEFT );
  }

  return FLA_SUCCESS;
}
示例#4
0
FLA_Error FLA_Copyt_c_blk_var3( FLA_Obj A, FLA_Obj B, fla_copyt_t* cntl )
{
  FLA_Obj AL,    AR,       A0,  A1,  A2;

  FLA_Obj BL,    BR,       B0,  B1,  B2;

  dim_t b;

  FLA_Part_1x2( A,    &AL,  &AR,      0, FLA_LEFT );

  FLA_Part_1x2( B,    &BL,  &BR,      0, FLA_LEFT );

  while ( FLA_Obj_width( AL ) < FLA_Obj_width( A ) ){

    b = FLA_Determine_blocksize( AR, FLA_RIGHT, FLA_Cntl_blocksize( cntl ) );

    FLA_Repart_1x2_to_1x3( AL,  /**/ AR,        &A0, /**/ &A1, &A2,
                           b, FLA_RIGHT );

    FLA_Repart_1x2_to_1x3( BL,  /**/ BR,        &B0, /**/ &B1, &B2,
                           b, FLA_RIGHT );

    /*------------------------------------------------------------*/

    FLA_Copyt_internal( FLA_CONJ_NO_TRANSPOSE, A1, B1,
                        FLA_Cntl_sub_copyt( cntl ) );

    /*------------------------------------------------------------*/

    FLA_Cont_with_1x3_to_1x2( &AL,  /**/ &AR,        A0, A1, /**/ A2,
                              FLA_LEFT );

    FLA_Cont_with_1x3_to_1x2( &BL,  /**/ &BR,        B0, B1, /**/ B2,
                              FLA_LEFT );
  }

  return FLA_SUCCESS;
}
FLA_Error FLA_Apply_Q_UT_lnfc_blk_var1( FLA_Obj A, FLA_Obj T, FLA_Obj W, FLA_Obj B, fla_apqut_t* cntl )
/*
  Apply a unitary matrix Q to a matrix B from the left,

    B :=  Q B

  where Q is the forward product of Householder transformations:

    Q  =  H(0) H(1) ... H(k-1)

  where H(i) corresponds to the Householder vector stored below the diagonal
  in the ith column of A. Thus, the operation becomes:

    B :=  Q B
       =  H(0) H(1) ... H(k-1) B

  From this, we can see that we must move through A from bottom-right to top-
  left, since the Householder vector for H(k-1) was stored in the last column
  of A. We intend to apply blocks of reflectors at a time, where a block
  reflector H of b consecutive Householder transforms may be expressed as:

    H  =  ( H(i) H(i+1) ... H(i+b-1) )
       =  ( I - U inv(T) U' )

  where:
    - U is the strictly lower trapezoidal (with implicit unit diagonal) matrix
      of Householder vectors, stored below the diagonal of A in columns i through
      i+b-1, corresponding to H(i) through H(i+b-1).
    - T is the upper triangular block Householder matrix corresponding to
      Householder vectors i through i+b-1.

  Consider applying H to B as an intermediate step towards applying all of Q:

    B  :=  H B
        =  ( I - U inv(T) U' ) B
        =  B - U inv(T) U' B

  We must move from bottom-right to top-left. So, we partition:

    U -> / U11 \  B -> / B1 \  T -> ( T2 T1 )
         \ U21 /       \ B2 / 

  where:
    - U11 is stored in strictly lower triangle of A11 with implicit unit
      diagonal.
    - U21 is stored in A21.
    - T1 is an upper triangular block of row-panel matrix T.

  Substituting repartitioned U, B, and T, we have:

    / B1 \  :=   / B1 \ - / U11 \ inv(T1) / U11 \' / B1 \
    \ B2 /       \ B2 /   \ U21 /         \ U21 /  \ B2 /
             =   / B1 \ - / U11 \ inv(T1) ( U11' U21' ) / B1 \
                 \ B2 /   \ U21 /                       \ B2 /
             =   / B1 \ - / U11 \ inv(T1) ( U11' B1 + U21' B2 )
                 \ B2 /   \ U21 /

  Thus, B1 is updated as:

      B1    :=     B1   -   U11 inv(T1) ( U11' B1 + U21' B2 )

  And B2 is updated as:

      B2    :=     B2   -   U21 inv(T1) ( U11' B1 + U21' B2 )

  Note that:

    inv(T1) ( U11' B1 + U21' B2 )

  is common to both updates, and thus may be computed and stored in
  workspace, and then re-used.

  -FGVZ
*/
{
  FLA_Obj ATL,   ATR,      A00, A01, A02, 
          ABL,   ABR,      A10, A11, A12,
                           A20, A21, A22;

  FLA_Obj TL,    TR,       T0,  T1,  T2;

  FLA_Obj T1T,
          T2B;

  FLA_Obj WTL,  WTR,
          WBL,  WBR;

  FLA_Obj BT,              B0,
          BB,              B1,
                           B2;

  dim_t   b_alg, b;
  dim_t   m_BR, n_BR;

  // Query the algorithmic blocksize by inspecting the length of T.
  b_alg = FLA_Obj_length( T );

  // If m > n, then we have to initialize our partitionings carefully so
  // that we begin in the proper location in A and B (since we traverse
  // matrix A from BR to TL).
  if ( FLA_Obj_length( A ) > FLA_Obj_width( A ) )
  {
    m_BR = FLA_Obj_length( A ) - FLA_Obj_width( A );
    n_BR = 0;
  }
  else if ( FLA_Obj_length( A ) < FLA_Obj_width( A ) )
  {
    m_BR = 0;
    n_BR = FLA_Obj_width( A ) - FLA_Obj_length( A );
  }
  else
  {
    m_BR = 0;
    n_BR = 0;
  }

  FLA_Part_2x2( A,    &ATL, &ATR,
                      &ABL, &ABR,     m_BR, n_BR, FLA_BR );

  // A and T are dependent; we determine T matrix w.r.t. A
  FLA_Part_1x2( T,    &TL,  &TR,      FLA_Obj_min_dim( A ), FLA_LEFT );

  FLA_Part_2x1( B,    &BT, 
                      &BB,            m_BR, FLA_BOTTOM );

  while ( FLA_Obj_min_dim( ATL ) > 0 ){

    b = min( b_alg, FLA_Obj_min_dim( ATL ) );

    // Since T was filled from left to right, and since we need to access them
    // in reverse order, we need to handle the case where the last block is
    // smaller than the other b x b blocks.
    if ( FLA_Obj_width( TR ) == 0 && FLA_Obj_width( T ) % b_alg > 0 )
      b = FLA_Obj_width( T ) % b_alg;

    FLA_Repart_2x2_to_3x3( ATL, /**/ ATR,       &A00, &A01, /**/ &A02,
                                                &A10, &A11, /**/ &A12,
                        /* ************* */   /* ******************** */
                           ABL, /**/ ABR,       &A20, &A21, /**/ &A22,
                           b, b, FLA_TL );

    FLA_Repart_1x2_to_1x3( TL,  /**/ TR,        &T0, &T1, /**/ &T2,
                           b, FLA_LEFT );

    FLA_Repart_2x1_to_3x1( BT,                &B0, 
                                              &B1, 
                        /* ** */            /* ** */
                           BB,                &B2,        b, FLA_TOP );

    /*------------------------------------------------------------*/

    FLA_Part_2x1( T1,    &T1T, 
                         &T2B,     b, FLA_TOP );

    FLA_Part_2x2( W,     &WTL, &WTR,
                         &WBL, &WBR,     b, FLA_Obj_width( B1 ), FLA_TL );

    // WTL = B1;

    FLA_Copyt_internal( FLA_NO_TRANSPOSE, B1, WTL,
                        FLA_Cntl_sub_copyt( cntl ) );

    // U11 = trilu( A11 );
    // U21 = A21;
    // 
    // WTL = inv( triu(T1T) ) * ( U11' * B1 + U21' * B2 );

    FLA_Trmm_internal( FLA_LEFT, FLA_LOWER_TRIANGULAR,
                       FLA_CONJ_TRANSPOSE, FLA_UNIT_DIAG,
                       FLA_ONE, A11, WTL,
                       FLA_Cntl_sub_trmm1( cntl ) );

    FLA_Gemm_internal( FLA_CONJ_TRANSPOSE, FLA_NO_TRANSPOSE,
                       FLA_ONE, A21, B2, FLA_ONE, WTL,
                       FLA_Cntl_sub_gemm1( cntl ) );

    FLA_Trsm_internal( FLA_LEFT, FLA_UPPER_TRIANGULAR,
                       FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,
                       FLA_ONE, T1T, WTL,
                       FLA_Cntl_sub_trsm( cntl ) );

    // B2 = B2 - U21 * WTL;
    // B1 = B1 - U11 * WTL;

    FLA_Gemm_internal( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
                       FLA_MINUS_ONE, A21, WTL, FLA_ONE, B2,
                       FLA_Cntl_sub_gemm2( cntl ) );

    FLA_Trmm_internal( FLA_LEFT, FLA_LOWER_TRIANGULAR,
                       FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,
                       FLA_MINUS_ONE, A11, WTL,
                       FLA_Cntl_sub_trmm2( cntl ) );

    FLA_Axpyt_internal( FLA_NO_TRANSPOSE, FLA_ONE, WTL, B1,
                        FLA_Cntl_sub_axpyt( cntl ) );

    /*------------------------------------------------------------*/

    FLA_Cont_with_3x3_to_2x2( &ATL, /**/ &ATR,       A00, /**/ A01, A02,
                            /* ************** */  /* ****************** */
                                                     A10, /**/ A11, A12,
                              &ABL, /**/ &ABR,       A20, /**/ A21, A22,
                              FLA_BR );

    FLA_Cont_with_1x3_to_1x2( &TL,  /**/ &TR,        T0, /**/ T1, T2,
                              FLA_RIGHT );

    FLA_Cont_with_3x1_to_2x1( &BT,                B0, 
                            /* ** */           /* ** */
                                                  B1, 
                              &BB,                B2,     FLA_BOTTOM );
  }

  return FLA_SUCCESS;
}
FLA_Error FLA_Apply_Q_UT_lhfr_blk_var1( FLA_Obj A, FLA_Obj T, FLA_Obj W, FLA_Obj B, fla_apqut_t* cntl )
{
/*
  Apply the conjugate-transpose of a unitary matrix Q to a matrix B from the
  left,

    B := Q' B

  where Q is the forward product of Householder transformations:

    Q  =  H(0) H(1) ... H(k-1)

  where H(i) corresponds to the Householder vector stored above the diagonal
  in the ith row of A. Thus, the operation becomes:

    B :=  Q' B
       =  ( H(0) H(1) ... H(k-1) )' B
       =  H(k-1)' ... H(1)' H(0)' B

  From this, we can see that we must move through A from top-left to bottom-
  right, since the Householder vector for H(0) was stored in the first row
  of A. We intend to apply blocks of reflectors at a time, where a block
  reflector H of b consecutive Householder transforms may be expressed as:

    H  =  ( H(i) H(i+1) ... H(i+b-1) )'
       =  ( I - U inv(T) U' )'

  where:
    - U^T is the strictly upper trapezoidal (with implicit unit diagonal) matrix
      of Householder vectors, stored above the diagonal of A in rows i through
      i+b-1, corresponding to H(i) through H(i+b-1).
    - T is the upper triangular block Householder matrix corresponding to
      Householder vectors i through i+b-1.

  Consider applying H to B as an intermediate step towards applying all of Q':

    B  :=  H B
        =  ( I - U inv(T) U' )' B
        =  ( I - U inv(T)' U' ) B
        =  B - U inv(T)' U' B

  We must move from top-left to bottom-right. So, we partition:

    U^T -> ( U11 U12 )  B -> / B1 \  T -> ( T1 T2 )
                             \ B2 /

  where:
    - U11 is stored in the strictly upper triangle of A11 with implicit unit
      diagonal.
    - U12 is stored in A12.
    - T1 is an upper triangular block of row-panel matrix T.

  Substituting repartitioned U, B, and T, we have:

    / B1 \  :=   / B1 \ - ( U11 U12 )^T inv(T1)' conj( U11 U12 ) / B1 \
    \ B2 /       \ B2 /                                          \ B2 /
             =   / B1 \ - / U11^T \ inv(T1)' conj( U11 U12 ) / B1 \
                 \ B2 /   \ U12^T /                          \ B2 /
             =   / B1 \ - / U11^T \ inv(T1)' ( conj(U11) B1 + conj(U12) B2 )
                 \ B2 /   \ U12^T /

  Thus, B1 is updated as:

      B1    :=     B1   -   U11^T inv(T1)' ( conj(U11) B1 + conj(U12) B2 )

  And B2 is updated as:

      B2    :=     B2   -   U12^T inv(T1)' ( conj(U11) B1 + conj(U12) B2 )

  Note that:

    inv(T1)' ( conj(U11) B1 + conj(U12) B2 )

  is common to both updates, and thus may be computed and stored in
  workspace, and then re-used.

  -FGVZ
*/
  FLA_Obj ATL,   ATR,      A00, A01, A02, 
          ABL,   ABR,      A10, A11, A12,
                           A20, A21, A22;

  FLA_Obj TL,    TR,       T0,  T1,  T2;

  FLA_Obj T1T,
          T2B;

  FLA_Obj WTL,  WTR,
          WBL,  WBR;

  FLA_Obj BT,              B0,
          BB,              B1,
                           B2;

  dim_t   b_alg, b;

  // Query the algorithmic blocksize by inspecting the length of T.
  b_alg = FLA_Obj_length( T );

  FLA_Part_2x2( A,    &ATL, &ATR,
                      &ABL, &ABR,     0, 0, FLA_TL );

  FLA_Part_1x2( T,    &TL,  &TR,      0, FLA_LEFT );

  FLA_Part_2x1( B,    &BT, 
                      &BB,            0, FLA_TOP );

  while ( FLA_Obj_min_dim( ABR ) > 0 ){

    b = min( b_alg, FLA_Obj_min_dim( ABR ) );

    FLA_Repart_2x2_to_3x3( ATL, /**/ ATR,       &A00, /**/ &A01, &A02,
                        /* ************* */   /* ******************** */
                                                &A10, /**/ &A11, &A12,
                           ABL, /**/ ABR,       &A20, /**/ &A21, &A22,
                           b, b, FLA_BR );

    FLA_Repart_1x2_to_1x3( TL,  /**/ TR,        &T0, /**/ &T1, &T2,
                           b, FLA_RIGHT );

    FLA_Repart_2x1_to_3x1( BT,                &B0, 
                        /* ** */            /* ** */
                                              &B1, 
                           BB,                &B2,        b, FLA_BOTTOM );

    /*------------------------------------------------------------*/

    FLA_Part_2x1( T1,    &T1T, 
                         &T2B,     b, FLA_TOP );

    FLA_Part_2x2( W,     &WTL, &WTR,
                         &WBL, &WBR,     b, FLA_Obj_width( B1 ), FLA_TL );

    // WTL = B1;

    FLA_Copyt_internal( FLA_NO_TRANSPOSE, B1, WTL,
                        FLA_Cntl_sub_copyt( cntl ) );

    // U11 = triuu( A11 );
    // U12 = A12;
    //
    // WTL = inv( triu(T1T) )' * ( conj(U11) * B1 + conj(U12) * B2 );

    FLA_Trmm_internal( FLA_LEFT, FLA_UPPER_TRIANGULAR,
                       FLA_CONJ_NO_TRANSPOSE, FLA_UNIT_DIAG,
                       FLA_ONE, A11, WTL,
                       FLA_Cntl_sub_trmm1( cntl ) );

    FLA_Gemm_internal( FLA_CONJ_NO_TRANSPOSE, FLA_NO_TRANSPOSE, 
                       FLA_ONE, A12, B2, FLA_ONE, WTL,
                       FLA_Cntl_sub_gemm1( cntl ) );

    FLA_Trsm_internal( FLA_LEFT, FLA_UPPER_TRIANGULAR,
                       FLA_CONJ_TRANSPOSE, FLA_NONUNIT_DIAG,
                       FLA_ONE, T1T, WTL,
                       FLA_Cntl_sub_trsm( cntl ) );

    // B2 = B2 - U12^T * WTL;
    // B1 = B1 - U11^T * WTL;

    FLA_Gemm_internal( FLA_TRANSPOSE, FLA_NO_TRANSPOSE,
                       FLA_MINUS_ONE, A12, WTL, FLA_ONE, B2,
                       FLA_Cntl_sub_gemm2( cntl ) );

    FLA_Trmm_internal( FLA_LEFT, FLA_UPPER_TRIANGULAR,
                       FLA_TRANSPOSE, FLA_UNIT_DIAG,
                       FLA_MINUS_ONE, A11, WTL,
                       FLA_Cntl_sub_trmm2( cntl ) );

    FLA_Axpyt_internal( FLA_NO_TRANSPOSE, FLA_ONE, WTL, B1,
                        FLA_Cntl_sub_axpyt( cntl ) );

    /*------------------------------------------------------------*/

    FLA_Cont_with_3x3_to_2x2( &ATL, /**/ &ATR,       A00, A01, /**/ A02,
                                                     A10, A11, /**/ A12,
                            /* ************** */  /* ****************** */
                              &ABL, /**/ &ABR,       A20, A21, /**/ A22,
                              FLA_TL );

    FLA_Cont_with_1x3_to_1x2( &TL,  /**/ &TR,        T0, T1, /**/ T2,
                              FLA_LEFT );

    FLA_Cont_with_3x1_to_2x1( &BT,                B0, 
                                                  B1, 
                            /* ** */           /* ** */
                              &BB,                B2,     FLA_TOP );
  }

  return FLA_SUCCESS;
}
FLA_Error FLA_Apply_Q_UT_rnbr_blk_var1( FLA_Obj A, FLA_Obj T, FLA_Obj W, FLA_Obj B, fla_apqut_t* cntl )
/*
  Apply a unitary matrix Q to a matrix B from the right,

    B :=  B Q

  where Q is the backward product of Householder transformations:

    Q  =  H(k-1) ... H(1) H(0)

  where H(i) corresponds to the Householder vector stored above the diagonal
  in the ith row of A. Thus, the operation becomes:

    B :=  B Q
       =  B ( H(k-1) ... H(1) H(0) )
       =  B ( H(k-1)' ... H(1)' H(0)' )
       =  B ( H(0) H(1) ... H(k-1) )'
       =  B H(k-1)' ... H(1)' H(0)'

  From this, we can see that we must move through A from bottom-right to top-
  left, since the Householder vector for H(k-1) was stored in the last row
  of A. We intend to apply blocks of reflectors at a time, where a block
  reflector H of b consecutive Householder transforms may be expressed as:

    H  =  ( H(i) H(i+1) ... H(i+b-1) )'
       =  ( I - U inv(T) U' )'

  where:
    - U^T is the strictly upper trapezoidal (with implicit unit diagonal) matrix
      of Householder vectors, stored above the diagonal of A in rows i through
      i+b-1, corresponding to H(i) through H(i+b-1).
    - T is the upper triangular block Householder matrix corresponding to
      Householder vectors i through i+b-1.

  Consider applying H to B as an intermediate step towards applying all of Q:

    B  :=  B H
        =  B ( I - U inv(T) U' )'
        =  B ( I - U inv(T)' U' )
        =  B - B U inv(T)' U'

  We must move from bottom-right to top-left. So, we partition:

    U^T -> ( U11 U12 )  B -> ( B1 B2 )  T -> ( T2 T1 )

  where:
    - U11 is stored in strictly upper triangle of A11 with implicit unit
      diagonal.
    - U12 is stored in A12.
    - T1 is an upper triangular block of row-panel matrix T.

  Substituting repartitioned U, B, and T, we have:

    ( B1 B2 ) :=  ( B1 B2 ) - ( B1 B2 ) ( U11 U12 )^T inv(T1)' conj( U11 U12 )
               =  ( B1 B2 ) - ( B1 B2 ) / U11^T \ inv(T1)' conj( U11 U12 )
                                        \ U12^T /
               =  ( B1 B2 ) - ( B1 U11^T + B2 U12^T ) inv(T1)' conj( U11 U12 )

  Thus, B1 is updated as:

      B1    :=      B1   -   ( B1 U11^T + B2 U12^T ) inv(T1)' conj(U11)

  And B2 is updated as:

      B2    :=      B2   -   ( B1 U11^T + B2 U12^T ) inv(T1)' conj(U12)

  Note that:

    ( B1 U11^T + B2 U12^T ) inv(T1)'

  is common to both updates, and thus may be computed and stored in
  workspace, and then re-used.

  -FGVZ
*/
{
  FLA_Obj ATL,   ATR,      A00, A01, A02, 
          ABL,   ABR,      A10, A11, A12,
                           A20, A21, A22;

  FLA_Obj TL,    TR,       T0,  T1,  T2;

  FLA_Obj T1T,
          T2B;

  FLA_Obj WTL,  WTR,
          WBL,  WBR;

  FLA_Obj BL,    BR,       B0,  B1,  B2;

  dim_t   b_alg, b;
  dim_t   m_BR, n_BR;

  // Query the algorithmic blocksize by inspecting the length of T.
  b_alg = FLA_Obj_length( T );

  // If m < n, then we have to initialize our partitionings carefully so
  // that we begin in the proper location in A and B (since we traverse
  // matrix A from BR to TL).
  if ( FLA_Obj_length( A ) < FLA_Obj_width( A ) )
  {
    m_BR = 0;
    n_BR = FLA_Obj_width( A ) - FLA_Obj_length( A );
  }
  else if ( FLA_Obj_length( A ) > FLA_Obj_width( A ) )
  {
    m_BR = FLA_Obj_length( A ) - FLA_Obj_width( A );
    n_BR = 0;
  }
  else
  {
    m_BR = 0;
    n_BR = 0;
  }

  FLA_Part_2x2( A,    &ATL, &ATR,
                      &ABL, &ABR,     m_BR, n_BR, FLA_BR );

  // A and T are dependent; we determine T matrix w.r.t. A
  FLA_Part_1x2( T,    &TL,  &TR,      FLA_Obj_min_dim( A ), FLA_LEFT );

  // Be carefule that A contains reflector in row-wise;
  // corresponding B should be partitioned with n_BR.
  FLA_Part_1x2( B,    &BL,  &BR,      n_BR, FLA_RIGHT );

  while ( FLA_Obj_min_dim( ATL ) > 0 ){

    b = min( b_alg, FLA_Obj_min_dim( ATL ) );

    // Since T was filled from left to right, and since we need to access them
    // in reverse order, we need to handle the case where the last block is
    // smaller than the other b x b blocks.
    if ( FLA_Obj_width( TR ) == 0 && FLA_Obj_width( T ) % b_alg > 0 )
      b = FLA_Obj_width( T ) % b_alg;

    FLA_Repart_2x2_to_3x3( ATL, /**/ ATR,       &A00, &A01, /**/ &A02,
                                                &A10, &A11, /**/ &A12,
                        /* ************* */   /* ******************** */
                           ABL, /**/ ABR,       &A20, &A21, /**/ &A22,
                           b, b, FLA_TL );

    FLA_Repart_1x2_to_1x3( TL,  /**/ TR,        &T0, &T1, /**/ &T2,
                           b, FLA_LEFT );

    FLA_Repart_1x2_to_1x3( BL,  /**/ BR,        &B0, &B1, /**/ &B2,
                           b, FLA_LEFT );

    /*------------------------------------------------------------*/

    FLA_Part_2x1( T1,    &T1T, 
                         &T2B,     b, FLA_TOP );

    FLA_Part_2x2( W,     &WTL, &WTR,
                         &WBL, &WBR,     b, FLA_Obj_length( B1 ), FLA_TL );

    // WTL = B1^T;

    FLA_Copyt_internal( FLA_TRANSPOSE, B1, WTL,
                        FLA_Cntl_sub_copyt( cntl ) );

    // U11 = triuu( A11 );
    // U12 = A12;
    // Let WTL^T be conformal to B1.
    //
    // WTL^T = ( B1 * U11^T + B2 * U12^T ) * inv( triu(T1T)' );
    // WTL   = inv( conj(triu(T1T)) ) * ( U11 * B1^T + U12 * B2^T );

    FLA_Trmm_internal( FLA_LEFT, FLA_UPPER_TRIANGULAR,
                       FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,
                       FLA_ONE, A11, WTL,
                       FLA_Cntl_sub_trmm1( cntl ) );

    FLA_Gemm_internal( FLA_NO_TRANSPOSE, FLA_TRANSPOSE, 
                       FLA_ONE, A12, B2, FLA_ONE, WTL,
                       FLA_Cntl_sub_gemm1( cntl ) );

    FLA_Trsm_internal( FLA_LEFT, FLA_UPPER_TRIANGULAR,
                       FLA_CONJ_NO_TRANSPOSE, FLA_NONUNIT_DIAG,
                       FLA_ONE, T1T, WTL,
                       FLA_Cntl_sub_trsm( cntl ) );

    // B2 = B2 - WTL^T * conj(U12);
    // B1 = B1 - WTL^T * conj(U11);
    //    = B1 - ( U11' * WTL )^T;

    FLA_Gemm_internal( FLA_TRANSPOSE, FLA_CONJ_NO_TRANSPOSE,
                       FLA_MINUS_ONE, WTL, A12, FLA_ONE, B2,
                       FLA_Cntl_sub_gemm2( cntl ) );

    FLA_Trmm_internal( FLA_LEFT, FLA_UPPER_TRIANGULAR,
                       FLA_CONJ_TRANSPOSE, FLA_UNIT_DIAG,
                       FLA_MINUS_ONE, A11, WTL,
                       FLA_Cntl_sub_trmm2( cntl ) );

    FLA_Axpyt_internal( FLA_TRANSPOSE, FLA_ONE, WTL, B1,
                        FLA_Cntl_sub_axpyt( cntl ) );

    /*------------------------------------------------------------*/

    FLA_Cont_with_3x3_to_2x2( &ATL, /**/ &ATR,       A00, /**/ A01, A02,
                            /* ************** */  /* ****************** */
                                                     A10, /**/ A11, A12,
                              &ABL, /**/ &ABR,       A20, /**/ A21, A22,
                              FLA_BR );

    FLA_Cont_with_1x3_to_1x2( &TL,  /**/ &TR,        T0, /**/ T1, T2,
                              FLA_RIGHT );

    FLA_Cont_with_1x3_to_1x2( &BL,  /**/ &BR,        B0, /**/ B1, B2,
                              FLA_RIGHT );
  }

  return FLA_SUCCESS;
}
FLA_Error FLA_Apply_Q_UT_rhbc_blk_var1( FLA_Obj A, FLA_Obj T, FLA_Obj W, FLA_Obj B, fla_apqut_t* cntl )
/*
  Apply the conjugate-transpose of a unitary matrix Q to a matrix B from the
  right,

    B :=  B Q'

  where Q is the backward product of Householder transformations:

    Q  =  H(k-1) ... H(1) H(0)

  where H(i) corresponds to the Householder vector stored below the diagonal
  in the ith column of A. Thus, the operation becomes:

    B :=  B Q
       =  B ( H(k-1) ... H(1) H(0) )'
       =  B ( H(k-1)' ... H(1)' H(0)' )'
       =  B ( H(0) H(1) ... H(k-1) )
       =  B H(0) H(1) ... H(k-1)

  From this, we can see that we must move through A from top-left to bottom-
  right, since the Householder vector for H(0) was stored in the first column
  of A. We intend to apply blocks of reflectors at a time, where a block
  reflector H of b consecutive Householder transforms may be expressed as:

    H  =  ( H(i) H(i+1) ... H(i+b-1) )
       =  ( I - U inv(T) U' )

  where:
    - U is the strictly lower trapezoidal (with implicit unit diagonal) matrix
      of Householder vectors, stored below the diagonal of A in columns i through
      i+b-1, corresponding to H(i) through H(i+b-1).
    - T is the upper triangular block Householder matrix corresponding to
      Householder vectors i through i+b-1.

  Consider applying H to B as an intermediate step towards applying all of Q':

    B  :=  B H
        =  B ( I - U inv(T) U' )
        =  B - B U inv(T) U'

  We must move from top-left to bottom-right. So, we partition:

    U -> / U11 \  B -> ( B1 B2 )  T -> ( T1 T2 )
         \ U21 /
  where:
    - U11 is stored in strictly lower triangle of A11 with implicit unit
      diagonal.
    - U21 is stored in A21.
    - T1 is an upper triangular block of row-panel matrix T.

  Substituting repartitioned U, B, and T, we have:

    ( B1 B2 ) :=  ( B1 B2 ) - ( B1 B2 ) / U11 \ inv(T1) / U11 \'
                                        \ U21 /         \ U21 /
               =  ( B1 B2 ) - ( B1 B2 ) / U11 \ inv(T1) ( U11' U21' )
                                        \ U21 /
               =  ( B1 B2 ) - ( B1 U11 + B2 U21 ) inv(T1) ( U11' U21' )

  Thus, B1 is updated as:

      B1    :=      B1   -   ( B1 U11 + B2 U21 ) inv(T1) U11'

  And B2 is updated as:

      B2    :=      B2   -   ( B1 U11 + B2 U21 ) inv(T1) U21'

  Note that:

    ( B1 U11 + B2 U21 ) inv(T1)

  is common to both updates, and thus may be computed and stored in
  workspace, and then re-used.

  -FGVZ
*/
{
  FLA_Obj ATL,   ATR,      A00, A01, A02, 
          ABL,   ABR,      A10, A11, A12,
                           A20, A21, A22;

  FLA_Obj TL,    TR,       T0,  T1,  T2;

  FLA_Obj T1T,
          T2B;

  FLA_Obj WTL,  WTR,
          WBL,  WBR;

  FLA_Obj BL,    BR,       B0,  B1,  B2;

  dim_t   b_alg, b;

  // Query the algorithmic blocksize by inspecting the length of T.
  b_alg = FLA_Obj_length( T );

  FLA_Part_2x2( A,    &ATL, &ATR,
                      &ABL, &ABR,     0, 0, FLA_TL );

  FLA_Part_1x2( T,    &TL,  &TR,      0, FLA_LEFT );

  FLA_Part_1x2( B,    &BL,  &BR,      0, FLA_LEFT );

  while ( FLA_Obj_min_dim( ABR ) > 0 ){

    b = min( b_alg, FLA_Obj_min_dim( ABR ) );

    FLA_Repart_2x2_to_3x3( ATL, /**/ ATR,       &A00, /**/ &A01, &A02,
                        /* ************* */   /* ******************** */
                                                &A10, /**/ &A11, &A12,
                           ABL, /**/ ABR,       &A20, /**/ &A21, &A22,
                           b, b, FLA_BR );

    FLA_Repart_1x2_to_1x3( TL,  /**/ TR,        &T0, /**/ &T1, &T2,
                           b, FLA_RIGHT );

    FLA_Repart_1x2_to_1x3( BL,  /**/ BR,        &B0, /**/ &B1, &B2,
                           b, FLA_RIGHT );

    /*------------------------------------------------------------*/

    FLA_Part_2x1( T1,    &T1T, 
                         &T2B,     b, FLA_TOP );

    FLA_Part_2x2( W,     &WTL, &WTR,
                         &WBL, &WBR,     b, FLA_Obj_length( B1 ), FLA_TL );

    // WTL = B1^T;

    FLA_Copyt_internal( FLA_TRANSPOSE, B1, WTL,
                        FLA_Cntl_sub_copyt( cntl ) );

    // U11 = trilu( A11 );
    // U21 = A21;
    // Let WTL^T be conformal to B1.
    //
    // WTL^T = ( B1 * U11 + B2 * U21 ) * inv( triu(T1T) );
    // WTL   = inv( triu(T1T)^T ) * ( U11^T * B1^T + U21^T * B2^T );

    FLA_Trmm_internal( FLA_LEFT, FLA_LOWER_TRIANGULAR,
                       FLA_TRANSPOSE, FLA_UNIT_DIAG,
                       FLA_ONE, A11, WTL,
                       FLA_Cntl_sub_trmm1( cntl ) );

    FLA_Gemm_internal( FLA_TRANSPOSE, FLA_TRANSPOSE, 
                       FLA_ONE, A21, B2, FLA_ONE, WTL,
                       FLA_Cntl_sub_gemm1( cntl ) );

    FLA_Trsm_internal( FLA_LEFT, FLA_UPPER_TRIANGULAR,
                       FLA_TRANSPOSE, FLA_NONUNIT_DIAG,
                       FLA_ONE, T1T, WTL,
                       FLA_Cntl_sub_trsm( cntl ) );

    // B2 = B2 - WTL^T * U21';
    // B1 = B1 - WTL^T * U11';
    //    = B1 - ( conj(U11) * WTL )^T;

    FLA_Gemm_internal( FLA_TRANSPOSE, FLA_CONJ_TRANSPOSE,
                       FLA_MINUS_ONE, WTL, A21, FLA_ONE, B2,
                       FLA_Cntl_sub_gemm2( cntl ) );

    FLA_Trmm_internal( FLA_LEFT, FLA_LOWER_TRIANGULAR,
                       FLA_CONJ_NO_TRANSPOSE, FLA_UNIT_DIAG,
                       FLA_MINUS_ONE, A11, WTL,
                       FLA_Cntl_sub_trmm2( cntl ) );

    FLA_Axpyt_internal( FLA_TRANSPOSE, FLA_ONE, WTL, B1,
                        FLA_Cntl_sub_axpyt( cntl ) );

    /*------------------------------------------------------------*/

    FLA_Cont_with_3x3_to_2x2( &ATL, /**/ &ATR,       A00, A01, /**/ A02,
                                                     A10, A11, /**/ A12,
                            /* ************** */  /* ****************** */
                              &ABL, /**/ &ABR,       A20, A21, /**/ A22,
                              FLA_TL );

    FLA_Cont_with_1x3_to_1x2( &TL,  /**/ &TR,        T0, T1, /**/ T2,
                              FLA_LEFT );

    FLA_Cont_with_1x3_to_1x2( &BL,  /**/ &BR,        B0, B1, /**/ B2,
                              FLA_LEFT );
  }

  return FLA_SUCCESS;
}
FLA_Error FLA_Apply_QUD_UT_lhfc_blk_var1( FLA_Obj T, FLA_Obj W,
                                                     FLA_Obj R,
                                          FLA_Obj U, FLA_Obj C,
                                          FLA_Obj V, FLA_Obj D, fla_apqudut_t* cntl )
{
  FLA_Obj TL,    TR,       T0,  T1,  T2;

  FLA_Obj UL,    UR,       U0,  U1,  U2;

  FLA_Obj VL,    VR,       V0,  V1,  V2;

  FLA_Obj RT,              R0,
          RB,              R1,
                           R2;

  FLA_Obj T1T,
          T1B;

  FLA_Obj W1TL,  W1TR,
          W1BL,  W1BR;

  dim_t   b_alg, b;

  // Query the algorithmic blocksize by inspecting the length of T.
  b_alg = FLA_Obj_length( T );

  FLA_Part_1x2( T,    &TL,  &TR,      0, FLA_LEFT );

  FLA_Part_1x2( U,    &UL,  &UR,      0, FLA_LEFT );

  FLA_Part_1x2( V,    &VL,  &VR,      0, FLA_LEFT );

  FLA_Part_2x1( R,    &RT, 
                      &RB,            0, FLA_TOP );

  while ( FLA_Obj_width( UL ) < FLA_Obj_width( U ) ){

    b = min( b_alg, FLA_Obj_width( UR ) );

    FLA_Repart_1x2_to_1x3( TL,  /**/ TR,        &T0, /**/ &T1, &T2,
                           b, FLA_RIGHT );

    FLA_Repart_1x2_to_1x3( UL,  /**/ UR,        &U0, /**/ &U1, &U2,
                           b, FLA_RIGHT );

    FLA_Repart_1x2_to_1x3( VL,  /**/ VR,        &V0, /**/ &V1, &V2,
                           b, FLA_RIGHT );

    FLA_Repart_2x1_to_3x1( RT,                &R0, 
                        /* ** */            /* ** */
                                              &R1, 
                           RB,                &R2,        b, FLA_BOTTOM );

    /*------------------------------------------------------------*/

    FLA_Part_2x1( T1,    &T1T,
                         &T1B,    b, FLA_TOP );

    FLA_Part_2x2( W,     &W1TL, &W1TR,
                         &W1BL, &W1BR,     b, FLA_Obj_width( R1 ), FLA_TL );

    // W1TL = R1;

    FLA_Copyt_internal( FLA_NO_TRANSPOSE, R1, W1TL,
                        FLA_Cntl_sub_copyt( cntl ) );

    // W1TL = inv( triu( T1T ) )' * ( R1 + U1' * C + V1' * D );

    FLA_Gemm_internal( FLA_CONJ_TRANSPOSE, FLA_NO_TRANSPOSE, 
                       FLA_ONE, U1, C, FLA_ONE, W1TL,
                       FLA_Cntl_sub_gemm1( cntl ) );

    FLA_Gemm_internal( FLA_CONJ_TRANSPOSE, FLA_NO_TRANSPOSE, 
                       FLA_ONE, V1, D, FLA_ONE, W1TL,
                       FLA_Cntl_sub_gemm2( cntl ) );

    FLA_Trsm_internal( FLA_LEFT, FLA_UPPER_TRIANGULAR,
                       FLA_CONJ_TRANSPOSE, FLA_NONUNIT_DIAG,
                       FLA_ONE, T1T, W1TL,
                       FLA_Cntl_sub_trsm( cntl ) );

    // R1 = R1 - W1TL;
    // C  = C  - U1 * W1TL;
    // D  = D  + V1 * W1TL;

    FLA_Axpyt_internal( FLA_NO_TRANSPOSE, FLA_MINUS_ONE, W1TL, R1,
                        FLA_Cntl_sub_axpyt( cntl ) );

    FLA_Gemm_internal( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
                       FLA_MINUS_ONE, U1, W1TL, FLA_ONE, C,
                       FLA_Cntl_sub_gemm3( cntl ) );

    FLA_Gemm_internal( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
                       FLA_ONE, V1, W1TL, FLA_ONE, D,
                       FLA_Cntl_sub_gemm4( cntl ) );

    /*------------------------------------------------------------*/

    FLA_Cont_with_1x3_to_1x2( &TL,  /**/ &TR,        T0, T1, /**/ T2,
                              FLA_LEFT );

    FLA_Cont_with_1x3_to_1x2( &UL,  /**/ &UR,        U0, U1, /**/ U2,
                              FLA_LEFT );

    FLA_Cont_with_1x3_to_1x2( &VL,  /**/ &VR,        V0, V1, /**/ V2,
                              FLA_LEFT );

    FLA_Cont_with_3x1_to_2x1( &RT,                R0, 
                                                  R1, 
                            /* ** */           /* ** */
                              &RB,                R2,     FLA_TOP );
  }

  return FLA_SUCCESS;
}
FLA_Error FLA_Apply_Q_UT_rnfr_blk_var3( FLA_Obj A, FLA_Obj TW, FLA_Obj W, FLA_Obj B, fla_apqut_t* cntl )
{
  FLA_Obj ATL,   ATR,      A00, A01, A02, 
          ABL,   ABR,      A10, A11, A12,
                           A20, A21, A22;

  FLA_Obj TWTL,  TWTR,     TW00, TW01, TW02, 
          TWBL,  TWBR,     TW10,  T11,  W12,
                           TW20, TW21, TW22;

  FLA_Obj WTL,   WTR,
          WBL,   WBR;

  FLA_Obj BL,    BR,       B0,  B1,  B2;

  dim_t b;

  FLA_Part_2x2( A,    &ATL, &ATR,
                      &ABL, &ABR,     0, 0, FLA_TL );

  FLA_Part_2x2( TW,   &TWTL, &TWTR,
                      &TWBL, &TWBR,     0, 0, FLA_TL );

  FLA_Part_1x2( B,    &BL,  &BR,      0, FLA_LEFT );

  while ( FLA_Obj_min_dim( ABR ) > 0 ){

    b = FLA_Determine_blocksize( ABR, FLA_BR, FLA_Cntl_blocksize( cntl ) );

    FLA_Repart_2x2_to_3x3( ATL, /**/ ATR,       &A00, /**/ &A01, &A02,
                        /* ************* */   /* ******************** */
                                                &A10, /**/ &A11, &A12,
                           ABL, /**/ ABR,       &A20, /**/ &A21, &A22,
                           b, b, FLA_BR );

    FLA_Repart_2x2_to_3x3( TWTL, /**/ TWTR,       &TW00, /**/ &TW01, &TW02,
                        /* *************** */   /* *********************** */
                                                  &TW10, /**/  &T11,  &W12,
                           TWBL, /**/ TWBR,       &TW20, /**/ &TW21, &TW22,
                           b, b, FLA_BR );

    FLA_Repart_1x2_to_1x3( BL,  /**/ BR,        &B0, /**/ &B1, &B2,
                           b, FLA_RIGHT );

    /*------------------------------------------------------------*/

    FLA_Part_2x2( W,    &WTL, &WTR,
                        &WBL, &WBR,     b, FLA_Obj_length( B1 ), FLA_TL );

    // WTL = B1;

    FLA_Copyt_internal( FLA_TRANSPOSE, B1, WTL,
                        FLA_Cntl_sub_copyt( cntl ) );

    // U11 = trilu( A11 );
    // U12 = A12;
    // Let WTL^T be conformal to B1.
    //
    // WTL^T = ( B1 * U11^T + B2 * U12^T ) * inv( triu(T11) );
    // WTL   = inv( triu(T11) )^T * ( U11 * B1^T + U12 * B2^T );

    FLA_Trmm_internal( FLA_LEFT, FLA_UPPER_TRIANGULAR,
                       FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,
                       FLA_ONE, A11, WTL,
                       FLA_Cntl_sub_trmm1( cntl ) );

    FLA_Gemm_internal( FLA_NO_TRANSPOSE, FLA_TRANSPOSE, 
                       FLA_ONE, A12, B2, FLA_ONE, WTL,
                       FLA_Cntl_sub_gemm1( cntl ) );

    FLA_Trsm_internal( FLA_LEFT, FLA_UPPER_TRIANGULAR,
                       FLA_TRANSPOSE, FLA_NONUNIT_DIAG,
                       FLA_ONE, T11, WTL,
                       FLA_Cntl_sub_trsm( cntl ) );

    // B2 = B2 - WTL^T * conj(U12);
    // B1 = B1 - WTL^T * conj(U11);
    //    = B1 - ( U11' * WTL )^T;

    FLA_Gemm_internal( FLA_TRANSPOSE, FLA_CONJ_NO_TRANSPOSE,
                       FLA_MINUS_ONE, WTL, A12, FLA_ONE, B2,
                       FLA_Cntl_sub_gemm2( cntl ) );

    FLA_Trmm_internal( FLA_LEFT, FLA_UPPER_TRIANGULAR,
                       FLA_CONJ_TRANSPOSE, FLA_UNIT_DIAG,
                       FLA_MINUS_ONE, A11, WTL,
                       FLA_Cntl_sub_trmm2( cntl ) );

    FLA_Axpyt_internal( FLA_TRANSPOSE, FLA_ONE, WTL, B1,
                        FLA_Cntl_sub_axpyt( cntl ) );

    /*------------------------------------------------------------*/

    FLA_Cont_with_3x3_to_2x2( &ATL, /**/ &ATR,       A00, A01, /**/ A02,
                                                     A10, A11, /**/ A12,
                            /* ************** */  /* ****************** */
                              &ABL, /**/ &ABR,       A20, A21, /**/ A22,
                              FLA_TL );

    FLA_Cont_with_3x3_to_2x2( &TWTL, /**/ &TWTR,       TW00, TW01, /**/ TW02,
                                                       TW10,  T11, /**/  W12,
                            /* **************** */  /* ********************* */
                              &TWBL, /**/ &TWBR,       TW20, TW21, /**/ TW22,
                              FLA_TL );

    FLA_Cont_with_1x3_to_1x2( &BL,  /**/ &BR,        B0, B1, /**/ B2,
                              FLA_LEFT );
  }

  return FLA_SUCCESS;
}