示例#1
0
static int lh7a40x_clcd_setup (struct clcd_fb *fb)
{
	dma_addr_t dma;
	u32 len = FRAMESIZE (lcd_panel.mode.xres*lcd_panel.mode.yres
			     *(lcd_panel.bpp/8));

	fb->panel = &lcd_panel;

		/* Enforce the sync polarity defaults */
	if (!(fb->panel->tim2 & TIM2_IHS))
		fb->fb.var.sync |= FB_SYNC_HOR_HIGH_ACT;
	if (!(fb->panel->tim2 & TIM2_IVS))
		fb->fb.var.sync |= FB_SYNC_VERT_HIGH_ACT;

#if defined (HAS_LCD_PANEL_EXTRA)
	fb->board_data = &lcd_panel_extra;
#endif

	fb->fb.screen_base
		= dma_alloc_writecombine (&fb->dev->dev, len,
					  &dma, GFP_KERNEL);
	printk ("CLCD: LCD setup fb virt 0x%p phys 0x%p l %x io 0x%p \n",
		fb->fb.screen_base, (void*) dma, len,
		(void*) io_p2v (CLCDC_PHYS));
	printk ("CLCD: pixclock %d\n", lcd_panel.mode.pixclock);

	if (!fb->fb.screen_base) {
		printk(KERN_ERR "CLCD: unable to map framebuffer\n");
		return -ENOMEM;
	}

#if defined (USE_RGB555)
	fb->fb.var.green.length = 5; /* Panel uses RGB 5:5:5 */
#endif

	fb->fb.fix.smem_start = dma;
	fb->fb.fix.smem_len = len;

		/* Drive PE4 high to prevent CPLD crash */
	GPIO_PEDD |= (1<<4);
	GPIO_PED  |= (1<<4);

	GPIO_PINMUX |= (1<<1) | (1<<0); /* LCDVD[15:4] */

//	fb->fb.fbops->fb_check_var (&fb->fb.var, &fb->fb);
//	fb->fb.fbops->fb_set_par (&fb->fb);

	return 0;
}
示例#2
0
/* Compute the amplitude (sqrt energy) in each of the bands */
void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bank, int _C)
{
   int i, c, N;
   const celt_int16 *eBands = m->eBands;
   const int C = CHANNELS(_C);
   N = FRAMESIZE(m);
   for (c=0;c<C;c++)
   {
      for (i=0;i<m->nbEBands;i++)
      {
         int j;
         celt_word32 maxval=0;
         celt_word32 sum = 0;
         
         j=eBands[i]; do {
            maxval = MAX32(maxval, X[j+c*N]);
            maxval = MAX32(maxval, -X[j+c*N]);
         } while (++j<eBands[i+1]);
         
         if (maxval > 0)
         {
            int shift = celt_ilog2(maxval)-10;
            j=eBands[i]; do {
               sum = MAC16_16(sum, EXTRACT16(VSHR32(X[j+c*N],shift)),
                                   EXTRACT16(VSHR32(X[j+c*N],shift)));
            } while (++j<eBands[i+1]);
            /* We're adding one here to make damn sure we never end up with a pitch vector that's
               larger than unity norm */
            bank[i+c*m->nbEBands] = EPSILON+VSHR32(EXTEND32(celt_sqrt(sum)),-shift);
         } else {
            bank[i+c*m->nbEBands] = EPSILON;
         }
         /*printf ("%f ", bank[i+c*m->nbEBands]);*/
      }
   }
   /*printf ("\n");*/
}
示例#3
0
         } else {
            bank[i+c*m->nbEBands] = EPSILON;
         }
         /*printf ("%f ", bank[i+c*m->nbEBands]);*/
      }
   }
   /*printf ("\n");*/
}

/* Normalise each band such that the energy is one. */
void normalise_bands(const CELTMode *m, const celt_sig * restrict freq, celt_norm * restrict X, const celt_ener *bank, int _C)
{
   int i, c, N;
   const celt_int16 *eBands = m->eBands;
   const int C = CHANNELS(_C);
   N = FRAMESIZE(m);
   for (c=0;c<C;c++)
   {
      i=0; do {
         celt_word16 g;
         int j,shift;
         celt_word16 E;
         shift = celt_zlog2(bank[i+c*m->nbEBands])-13;
         E = VSHR32(bank[i+c*m->nbEBands], shift);
         g = EXTRACT16(celt_rcp(SHL32(E,3)));
         j=eBands[i]; do {
            X[j+c*N] = MULT16_16_Q15(VSHR32(freq[j+c*N],shift-1),g);
         } while (++j<eBands[i+1]);
      } while (++i<m->nbEBands);
   }
}