示例#1
0
/**
  Initialize the state information for the CPU Architectural Protocol

  @param  ImageHandle   of the loaded driver
  @param  SystemTable   Pointer to the System Table

  @retval EFI_SUCCESS           Protocol registered
  @retval EFI_OUT_OF_RESOURCES  Cannot allocate protocol data structure
  @retval EFI_DEVICE_ERROR      Hardware problems

**/
EFI_STATUS
GicV3DxeInitialize (
  IN EFI_HANDLE         ImageHandle,
  IN EFI_SYSTEM_TABLE   *SystemTable
  )
{
  EFI_STATUS              Status;
  UINTN                   Index;
  UINT32                  RegOffset;
  UINTN                   RegShift;
  UINT64                  CpuTarget;
  UINT64                  MpId;

  // Make sure the Interrupt Controller Protocol is not already installed in the system.
  ASSERT_PROTOCOL_ALREADY_INSTALLED (NULL, &gHardwareInterruptProtocolGuid);

  mGicDistributorBase    = PcdGet32 (PcdGicDistributorBase);
  mGicRedistributorsBase = PcdGet32 (PcdGicRedistributorsBase);
  mGicNumInterrupts      = ArmGicGetMaxNumInterrupts (mGicDistributorBase);

  //
  // We will be driving this GIC in native v3 mode, i.e., with Affinity
  // Routing enabled. So ensure that the ARE bit is set.
  //
  if (!FeaturePcdGet (PcdArmGicV3WithV2Legacy)) {
    MmioOr32 (mGicDistributorBase + ARM_GIC_ICDDCR, ARM_GIC_ICDDCR_ARE);
  }

  for (Index = 0; Index < mGicNumInterrupts; Index++) {
    GicV3DisableInterruptSource (&gHardwareInterruptV3Protocol, Index);

    // Set Priority
    RegOffset = Index / 4;
    RegShift = (Index % 4) * 8;
    MmioAndThenOr32 (
      mGicDistributorBase + ARM_GIC_ICDIPR + (4 * RegOffset),
      ~(0xff << RegShift),
      ARM_GIC_DEFAULT_PRIORITY << RegShift
      );
  }

  //
  // Targets the interrupts to the Primary Cpu
  //

  if (FeaturePcdGet (PcdArmGicV3WithV2Legacy)) {
    // Only Primary CPU will run this code. We can identify our GIC CPU ID by reading
    // the GIC Distributor Target register. The 8 first GICD_ITARGETSRn are banked to each
    // connected CPU. These 8 registers hold the CPU targets fields for interrupts 0-31.
    // More Info in the GIC Specification about "Interrupt Processor Targets Registers"
    //
    // Read the first Interrupt Processor Targets Register (that corresponds to the 4
    // first SGIs)
    CpuTarget = MmioRead32 (mGicDistributorBase + ARM_GIC_ICDIPTR);

    // The CPU target is a bit field mapping each CPU to a GIC CPU Interface. This value
    // is 0 when we run on a uniprocessor platform.
    if (CpuTarget != 0) {
      // The 8 first Interrupt Processor Targets Registers are read-only
      for (Index = 8; Index < (mGicNumInterrupts / 4); Index++) {
        MmioWrite32 (mGicDistributorBase + ARM_GIC_ICDIPTR + (Index * 4), CpuTarget);
      }
    }
  } else {
    MpId = ArmReadMpidr ();
    CpuTarget = MpId & (ARM_CORE_AFF0 | ARM_CORE_AFF1 | ARM_CORE_AFF2 | ARM_CORE_AFF3);

    if ((MmioRead32 (mGicDistributorBase + ARM_GIC_ICDDCR) & ARM_GIC_ICDDCR_DS) != 0) {
      //
      // If the Disable Security (DS) control bit is set, we are dealing with a
      // GIC that has only one security state. In this case, let's assume we are
      // executing in non-secure state (which is appropriate for DXE modules)
      // and that no other firmware has performed any configuration on the GIC.
      // This means we need to reconfigure all interrupts to non-secure Group 1
      // first.
      //
      MmioWrite32 (mGicRedistributorsBase + ARM_GICR_CTLR_FRAME_SIZE + ARM_GIC_ICDISR, 0xffffffff);

      for (Index = 32; Index < mGicNumInterrupts; Index += 32) {
        MmioWrite32 (mGicDistributorBase + ARM_GIC_ICDISR + Index / 8, 0xffffffff);
      }
    }

    // Route the SPIs to the primary CPU. SPIs start at the INTID 32
    for (Index = 0; Index < (mGicNumInterrupts - 32); Index++) {
      MmioWrite32 (mGicDistributorBase + ARM_GICD_IROUTER + (Index * 8), CpuTarget | ARM_GICD_IROUTER_IRM);
    }
  }

  // Set binary point reg to 0x7 (no preemption)
  ArmGicV3SetBinaryPointer (0x7);

  // Set priority mask reg to 0xff to allow all priorities through
  ArmGicV3SetPriorityMask (0xff);

  // Enable gic cpu interface
  ArmGicV3EnableInterruptInterface ();

  // Enable gic distributor
  ArmGicEnableDistributor (mGicDistributorBase);

  Status = InstallAndRegisterInterruptService (
          &gHardwareInterruptV3Protocol, GicV3IrqInterruptHandler, GicV3ExitBootServicesEvent);

  return Status;
}
示例#2
0
/**
  Returns if the capsule can be supported via UpdateCapsule().

  @param  CapsuleHeaderArray    Virtual pointer to an array of virtual pointers to the capsules
                                being passed into update capsule.
  @param  CapsuleCount          Number of pointers to EFI_CAPSULE_HEADER in
                                CaspuleHeaderArray.
  @param  MaxiumCapsuleSize     On output the maximum size that UpdateCapsule() can
                                support as an argument to UpdateCapsule() via
                                CapsuleHeaderArray and ScatterGatherList.
  @param  ResetType             Returns the type of reset required for the capsule update.

  @retval EFI_SUCCESS           Valid answer returned.
  @retval EFI_UNSUPPORTED       The capsule image is not supported on this platform, and
                                MaximumCapsuleSize and ResetType are undefined.
  @retval EFI_INVALID_PARAMETER MaximumCapsuleSize is NULL, or ResetTyep is NULL,
                                Or CapsuleCount is Zero, or CapsuleImage is not valid.

**/
EFI_STATUS
EFIAPI
QueryCapsuleCapabilities (
  IN  EFI_CAPSULE_HEADER   **CapsuleHeaderArray,
  IN  UINTN                CapsuleCount,
  OUT UINT64               *MaxiumCapsuleSize,
  OUT EFI_RESET_TYPE       *ResetType
  )
{
  EFI_STATUS                Status;
  UINTN                     ArrayNumber;
  EFI_CAPSULE_HEADER        *CapsuleHeader;
  BOOLEAN                   NeedReset;

  //
  // Capsule Count can't be less than one.
  //
  if (CapsuleCount < 1) {
    return EFI_INVALID_PARAMETER;
  }
  
  //
  // Check whether input parameter is valid
  //
  if ((MaxiumCapsuleSize == NULL) ||(ResetType == NULL)) {
    return EFI_INVALID_PARAMETER;
  }

  CapsuleHeader = NULL;
  NeedReset     = FALSE;

  for (ArrayNumber = 0; ArrayNumber < CapsuleCount; ArrayNumber++) {
    CapsuleHeader = CapsuleHeaderArray[ArrayNumber];
    //
    // A capsule which has the CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE flag must have
    // CAPSULE_FLAGS_PERSIST_ACROSS_RESET set in its header as well.
    //
    if ((CapsuleHeader->Flags & (CAPSULE_FLAGS_PERSIST_ACROSS_RESET | CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE)) == CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE) {
      return EFI_INVALID_PARAMETER;
    }
    //
    // A capsule which has the CAPSULE_FLAGS_INITIATE_RESET flag must have
    // CAPSULE_FLAGS_PERSIST_ACROSS_RESET set in its header as well.
    //
    if ((CapsuleHeader->Flags & (CAPSULE_FLAGS_PERSIST_ACROSS_RESET | CAPSULE_FLAGS_INITIATE_RESET)) == CAPSULE_FLAGS_INITIATE_RESET) {
      return EFI_INVALID_PARAMETER;
    }

    //
    // Check FMP capsule flag 
    //
    if (CompareGuid(&CapsuleHeader->CapsuleGuid, &gEfiFmpCapsuleGuid)
     && (CapsuleHeader->Flags & CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE) != 0 ) {
       return EFI_INVALID_PARAMETER;
    }

    //
    // Check Capsule image without populate flag is supported by firmware
    //
    if ((CapsuleHeader->Flags & CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE) == 0) {
      Status = SupportCapsuleImage (CapsuleHeader);
      if (EFI_ERROR(Status)) {
        return Status;
      }
    }
  }

  //
  // Find out whether there is any capsule defined to persist across system reset. 
  //
  for (ArrayNumber = 0; ArrayNumber < CapsuleCount ; ArrayNumber++) {
    CapsuleHeader = CapsuleHeaderArray[ArrayNumber];
    if ((CapsuleHeader->Flags & CAPSULE_FLAGS_PERSIST_ACROSS_RESET) != 0) {
      NeedReset = TRUE;
      break;
    }
  }

  if (NeedReset) {
    //
    //Check if the platform supports update capsule across a system reset
    //
    if (!FeaturePcdGet(PcdSupportUpdateCapsuleReset)) {
      return EFI_UNSUPPORTED;
    }
    *ResetType = EfiResetWarm;
    *MaxiumCapsuleSize = (UINT64) mMaxSizePopulateCapsule;
  } else {
    //
    // For non-reset capsule image.
    //
    *ResetType = EfiResetCold;
    *MaxiumCapsuleSize = (UINT64) mMaxSizeNonPopulateCapsule;
  }

  return EFI_SUCCESS;
}
示例#3
0
/**
  Allocates and fills in the Page Directory and Page Table Entries to
  establish a 1:1 Virtual to Physical mapping.
  If BootScriptExector driver will run in 64-bit mode, this function will establish the 1:1 
  virtual to physical mapping page table.
  If BootScriptExector driver will not run in 64-bit mode, this function will do nothing. 
  
  @return  the 1:1 Virtual to Physical identity mapping page table base address. 

**/
EFI_PHYSICAL_ADDRESS
S3CreateIdentityMappingPageTables (
  VOID
  )
{  
  if (FeaturePcdGet (PcdDxeIplSwitchToLongMode)) {
    UINT32                                        RegEax;
    UINT32                                        RegEdx;
    UINT8                                         PhysicalAddressBits;
    UINT32                                        NumberOfPml4EntriesNeeded;
    UINT32                                        NumberOfPdpEntriesNeeded;
    EFI_PHYSICAL_ADDRESS                          S3NvsPageTableAddress;
    UINTN                                         TotalPageTableSize;
    VOID                                          *Hob;
    BOOLEAN                                       Page1GSupport;

    Page1GSupport = FALSE;
    if (PcdGetBool(PcdUse1GPageTable)) {
      AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
      if (RegEax >= 0x80000001) {
        AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx);
        if ((RegEdx & BIT26) != 0) {
          Page1GSupport = TRUE;
        }
      }
    }

    //
    // Get physical address bits supported.
    //
    Hob = GetFirstHob (EFI_HOB_TYPE_CPU);
    if (Hob != NULL) {
      PhysicalAddressBits = ((EFI_HOB_CPU *) Hob)->SizeOfMemorySpace;
    } else {
      AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
      if (RegEax >= 0x80000008) {
        AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);
        PhysicalAddressBits = (UINT8) RegEax;
      } else {
        PhysicalAddressBits = 36;
      }
    }
    
    //
    // IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses.
    //
    ASSERT (PhysicalAddressBits <= 52);
    if (PhysicalAddressBits > 48) {
      PhysicalAddressBits = 48;
    }

    //
    // Calculate the table entries needed.
    //
    if (PhysicalAddressBits <= 39 ) {
      NumberOfPml4EntriesNeeded = 1;
      NumberOfPdpEntriesNeeded = (UINT32)LShiftU64 (1, (PhysicalAddressBits - 30));
    } else {
      NumberOfPml4EntriesNeeded = (UINT32)LShiftU64 (1, (PhysicalAddressBits - 39));
      NumberOfPdpEntriesNeeded = 512;
    }

    //
    // We need calculate whole page size then allocate once, because S3 restore page table does not know each page in Nvs.
    //
    if (!Page1GSupport) {
      TotalPageTableSize = (UINTN)(1 + NumberOfPml4EntriesNeeded + NumberOfPml4EntriesNeeded * NumberOfPdpEntriesNeeded);
    } else {
      TotalPageTableSize = (UINTN)(1 + NumberOfPml4EntriesNeeded);
    }
    DEBUG ((EFI_D_ERROR, "TotalPageTableSize - %x pages\n", TotalPageTableSize));

    //
    // By architecture only one PageMapLevel4 exists - so lets allocate storage for it.
    //
    S3NvsPageTableAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocateMemoryBelow4G (EfiReservedMemoryType, EFI_PAGES_TO_SIZE(TotalPageTableSize));
    ASSERT (S3NvsPageTableAddress != 0);
    return S3NvsPageTableAddress;
  } else {
    //
    // If DXE is running 32-bit mode, no need to establish page table.
    //
    return  (EFI_PHYSICAL_ADDRESS) 0;  
  }
}
示例#4
0
文件: FrontPage.c 项目: OznOg/edk2
/**
  Function show progress bar to wait for user input.


  @param   TimeoutDefault  The fault time out value before the system continue to boot.

  @retval  EFI_SUCCESS       User pressed some key except "Enter"
  @retval  EFI_TIME_OUT      Timeout expired or user press "Enter"

**/
EFI_STATUS
ShowProgress (
  IN UINT16                       TimeoutDefault
  )
{
  CHAR16                        *TmpStr;
  UINT16                        TimeoutRemain;
  EFI_STATUS                    Status;
  EFI_INPUT_KEY                 Key;
  EFI_GRAPHICS_OUTPUT_BLT_PIXEL Foreground;
  EFI_GRAPHICS_OUTPUT_BLT_PIXEL Background;
  EFI_GRAPHICS_OUTPUT_BLT_PIXEL Color;

  if (TimeoutDefault != 0) {
    DEBUG ((EFI_D_INFO, "\n\nStart showing progress bar... Press any key to stop it! ...Zzz....\n"));

    SetMem (&Foreground, sizeof (EFI_GRAPHICS_OUTPUT_BLT_PIXEL), 0xff);
    SetMem (&Background, sizeof (EFI_GRAPHICS_OUTPUT_BLT_PIXEL), 0x0);
    SetMem (&Color, sizeof (EFI_GRAPHICS_OUTPUT_BLT_PIXEL), 0xff);
    
    TmpStr = GetStringById (STRING_TOKEN (STR_START_BOOT_OPTION));

    if (!FeaturePcdGet(PcdBootlogoOnlyEnable)) {
      //
      // Clear the progress status bar first
      //
      if (TmpStr != NULL) {
        PlatformBdsShowProgress (Foreground, Background, TmpStr, Color, 0, 0);
      }
    }
    

    TimeoutRemain = TimeoutDefault;
    while (TimeoutRemain != 0) {
      DEBUG ((EFI_D_INFO, "Showing progress bar...Remaining %d second!\n", TimeoutRemain));

      Status = WaitForSingleEvent (gST->ConIn->WaitForKey, ONE_SECOND);
      if (Status != EFI_TIMEOUT) {
        break;
      }
      TimeoutRemain--;
      
      if (!FeaturePcdGet(PcdBootlogoOnlyEnable)) {
        //
        // Show progress
        //
        if (TmpStr != NULL) {
          PlatformBdsShowProgress (
            Foreground,
            Background,
            TmpStr,
            Color,
            ((TimeoutDefault - TimeoutRemain) * 100 / TimeoutDefault),
            0
            );
        }
      }
    }
    
    if (TmpStr != NULL) {
      gBS->FreePool (TmpStr);
    }

    //
    // Timeout expired
    //
    if (TimeoutRemain == 0) {
      return EFI_TIMEOUT;
    }
  }

  //
  // User pressed some key
  //
  if (!PcdGetBool (PcdConInConnectOnDemand)) {
    Status = gST->ConIn->ReadKeyStroke (gST->ConIn, &Key);
    if (EFI_ERROR (Status)) {
      return Status;
    }

    if (Key.UnicodeChar == CHAR_CARRIAGE_RETURN) {
      //
      // User pressed enter, equivalent to select "continue"
      //
      return EFI_TIMEOUT;
    }
  }

  return EFI_SUCCESS;
}
示例#5
0
/**
  Set value for an PCD entry

  @param TokenNumber     Pcd token number autogenerated by build tools.
  @param Data            Value want to be set for PCD entry
  @param Size            Size of value.
  @param PtrType         If TRUE, the type of PCD entry's value is Pointer.
                         If False, the type of PCD entry's value is not Pointer.

  @retval EFI_INVALID_PARAMETER  If this PCD type is VPD, VPD PCD can not be set.
  @retval EFI_INVALID_PARAMETER  If Size can not be set to size table.
  @retval EFI_INVALID_PARAMETER  If Size of non-Ptr type PCD does not match the size information in PCD database.
  @retval EFI_NOT_FOUND          If value type of PCD entry is intergrate, but not in
                                 range of UINT8, UINT16, UINT32, UINT64
  @retval EFI_NOT_FOUND          Can not find the PCD type according to token number.
**/
EFI_STATUS
SetWorker (
  IN          UINTN               TokenNumber,
  IN          VOID                *Data,
  IN OUT      UINTN               *Size,
  IN          BOOLEAN             PtrType
  )
{
  UINT32              LocalTokenNumber;
  UINTN               PeiNexTokenNumber;
  PEI_PCD_DATABASE    *PeiPcdDb;
  STRING_HEAD         StringTableIdx;
  UINTN               Offset;
  VOID                *InternalData;
  UINTN               MaxSize;
  UINT32              LocalTokenCount;

  if (!FeaturePcdGet(PcdPeiFullPcdDatabaseEnable)) {
    return EFI_UNSUPPORTED;
  }

  //
  // TokenNumber Zero is reserved as PCD_INVALID_TOKEN_NUMBER.
  // We have to decrement TokenNumber by 1 to make it usable
  // as the array index.
  //
  TokenNumber--;
  PeiPcdDb        = GetPcdDatabase ();
  LocalTokenCount = PeiPcdDb->LocalTokenCount;

  // EBC compiler is very choosy. It may report warning about comparison
  // between UINTN and 0 . So we add 1 in each size of the
  // comparison.
  ASSERT (TokenNumber + 1 < (LocalTokenCount + 1));

  if (PtrType) {
    //
    // Get MaxSize first, then check new size with max buffer size.
    //
    GetPtrTypeSize (TokenNumber, &MaxSize, PeiPcdDb);
    if (*Size > MaxSize) {
      *Size = MaxSize;
      return EFI_INVALID_PARAMETER;
    }
  } else {
    if (*Size != PeiPcdGetSize (TokenNumber + 1)) {
      return EFI_INVALID_PARAMETER;
    }
  }

  //
  // We only invoke the callback function for Dynamic Type PCD Entry.
  // For Dynamic EX PCD entry, we have invoked the callback function for Dynamic EX
  // type PCD entry in ExSetWorker.
  //
  PeiNexTokenNumber = PeiPcdDb->LocalTokenCount - PeiPcdDb->ExTokenCount;
  if (TokenNumber + 1 < PeiNexTokenNumber + 1) {
    InvokeCallbackOnSet (0, NULL, TokenNumber + 1, Data, *Size);
  }

  LocalTokenNumber = GetLocalTokenNumber (PeiPcdDb, TokenNumber + 1);

  Offset          = LocalTokenNumber & PCD_DATABASE_OFFSET_MASK;
  InternalData    = (VOID *) ((UINT8 *) PeiPcdDb + Offset);

  switch (LocalTokenNumber & PCD_TYPE_ALL_SET) {
    case PCD_TYPE_VPD:
    case PCD_TYPE_HII:
    case PCD_TYPE_HII|PCD_TYPE_STRING:
    {
      ASSERT (FALSE);
      return EFI_INVALID_PARAMETER;
    }

    case PCD_TYPE_STRING:
      if (SetPtrTypeSize (TokenNumber, Size, PeiPcdDb)) {
        StringTableIdx = *((STRING_HEAD *)InternalData);
        CopyMem ((UINT8 *)PeiPcdDb + PeiPcdDb->StringTableOffset + StringTableIdx, Data, *Size);
        return EFI_SUCCESS;
      } else {
        return EFI_INVALID_PARAMETER;
      }

    case PCD_TYPE_DATA:
    {
      if (PtrType) {
        if (SetPtrTypeSize (TokenNumber, Size, PeiPcdDb)) {
          CopyMem (InternalData, Data, *Size);
          return EFI_SUCCESS;
        } else {
          return EFI_INVALID_PARAMETER;
        }
      }

      switch (*Size) {
        case sizeof(UINT8):
          *((UINT8 *) InternalData) = *((UINT8 *) Data);
          return EFI_SUCCESS;

        case sizeof(UINT16):
          *((UINT16 *) InternalData) = *((UINT16 *) Data);
          return EFI_SUCCESS;

        case sizeof(UINT32):
          *((UINT32 *) InternalData) = *((UINT32 *) Data);
          return EFI_SUCCESS;

        case sizeof(UINT64):
          *((UINT64 *) InternalData) = *((UINT64 *) Data);
          return EFI_SUCCESS;

        default:
          ASSERT (FALSE);
          return EFI_NOT_FOUND;
      }
    }

  }

  ASSERT (FALSE);
  return EFI_NOT_FOUND;

}
EFI_STATUS
EFIAPI
MemoryPeim (
  IN EFI_PHYSICAL_ADDRESS               UefiMemoryBase,
  IN UINT64                             UefiMemorySize
  )
{
  EFI_RESOURCE_ATTRIBUTE_TYPE ResourceAttributes;
  UINT64                      SystemMemoryTop;

  // Ensure PcdSystemMemorySize has been set
  ASSERT (PcdGet64 (PcdSystemMemorySize) != 0);

  //
  // Now, the permanent memory has been installed, we can call AllocatePages()
  //
  ResourceAttributes = (
      EFI_RESOURCE_ATTRIBUTE_PRESENT |
      EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
      EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
      EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
      EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
      EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE |
      EFI_RESOURCE_ATTRIBUTE_TESTED
  );

  SystemMemoryTop = PcdGet64 (PcdSystemMemoryBase) +
                    PcdGet64 (PcdSystemMemorySize);

  if (SystemMemoryTop - 1 > MAX_ADDRESS) {
    BuildResourceDescriptorHob (
        EFI_RESOURCE_SYSTEM_MEMORY,
        ResourceAttributes,
        PcdGet64 (PcdSystemMemoryBase),
        (UINT64)MAX_ADDRESS - PcdGet64 (PcdSystemMemoryBase) + 1
        );
    BuildResourceDescriptorHob (
        EFI_RESOURCE_SYSTEM_MEMORY,
        ResourceAttributes,
        (UINT64)MAX_ADDRESS + 1,
        SystemMemoryTop - MAX_ADDRESS - 1
        );
  } else {
    BuildResourceDescriptorHob (
        EFI_RESOURCE_SYSTEM_MEMORY,
        ResourceAttributes,
        PcdGet64 (PcdSystemMemoryBase),
        PcdGet64 (PcdSystemMemorySize)
        );
  }

  //
  // When running under virtualization, the PI/UEFI memory region may be
  // clean but not invalidated in system caches or in lower level caches
  // on other CPUs. So invalidate the region by virtual address, to ensure
  // that the contents we put there with the caches and MMU off will still
  // be visible after turning them on.
  //
  InvalidateDataCacheRange ((VOID*)(UINTN)UefiMemoryBase, UefiMemorySize);

  // Build Memory Allocation Hob
  InitMmu ();

  if (FeaturePcdGet (PcdPrePiProduceMemoryTypeInformationHob)) {
    // Optional feature that helps prevent EFI memory map fragmentation.
    BuildMemoryTypeInformationHob ();
  }

  return EFI_SUCCESS;
}
/**
   Decompresses a section to the output buffer.

   This function looks up the compression type field in the input section and
   applies the appropriate compression algorithm to compress the section to a
   callee allocated buffer.

   @param  This                  Points to this instance of the
                                 EFI_PEI_DECOMPRESS_PEI PPI.
   @param  CompressionSection    Points to the compressed section.
   @param  OutputBuffer          Holds the returned pointer to the decompressed
                                 sections.
   @param  OutputSize            Holds the returned size of the decompress
                                 section streams.

   @retval EFI_SUCCESS           The section was decompressed successfully.
                                 OutputBuffer contains the resulting data and
                                 OutputSize contains the resulting size.

**/
EFI_STATUS
EFIAPI
Decompress (
  IN CONST  EFI_PEI_DECOMPRESS_PPI  *This,
  IN CONST  EFI_COMPRESSION_SECTION *CompressionSection,
  OUT       VOID                    **OutputBuffer,
  OUT       UINTN                   *OutputSize
 )
{
  EFI_STATUS                      Status;
  UINT8                           *DstBuffer;
  UINT8                           *ScratchBuffer;
  UINT32                          DstBufferSize;
  UINT32                          ScratchBufferSize;
  VOID                            *CompressionSource;
  UINT32                          CompressionSourceSize;
  UINT32                          UncompressedLength;
  UINT8                           CompressionType;

  if (CompressionSection->CommonHeader.Type != EFI_SECTION_COMPRESSION) {
    ASSERT (FALSE);
    return EFI_INVALID_PARAMETER;
  }

  if (IS_SECTION2 (CompressionSection)) {
    CompressionSource = (VOID *) ((UINT8 *) CompressionSection + sizeof (EFI_COMPRESSION_SECTION2));
    CompressionSourceSize = (UINT32) (SECTION2_SIZE (CompressionSection) - sizeof (EFI_COMPRESSION_SECTION2));
    UncompressedLength = ((EFI_COMPRESSION_SECTION2 *) CompressionSection)->UncompressedLength;
    CompressionType = ((EFI_COMPRESSION_SECTION2 *) CompressionSection)->CompressionType;
  } else {
    CompressionSource = (VOID *) ((UINT8 *) CompressionSection + sizeof (EFI_COMPRESSION_SECTION));
    CompressionSourceSize = (UINT32) (SECTION_SIZE (CompressionSection) - sizeof (EFI_COMPRESSION_SECTION));
    UncompressedLength = CompressionSection->UncompressedLength;
    CompressionType = CompressionSection->CompressionType;
  }

  //
  // This is a compression set, expand it
  //
  switch (CompressionType) {
  case EFI_STANDARD_COMPRESSION:
    if (FeaturePcdGet(PcdDxeIplSupportUefiDecompress)) {
      //
      // Load EFI standard compression.
      // For compressed data, decompress them to destination buffer.
      //
      Status = UefiDecompressGetInfo (
                 CompressionSource,
                 CompressionSourceSize,
                 &DstBufferSize,
                 &ScratchBufferSize
                 );
      if (EFI_ERROR (Status)) {
        //
        // GetInfo failed
        //
        DEBUG ((DEBUG_ERROR, "Decompress GetInfo Failed - %r\n", Status));
        return EFI_NOT_FOUND;
      }
      //
      // Allocate scratch buffer
      //
      ScratchBuffer = AllocatePages (EFI_SIZE_TO_PAGES (ScratchBufferSize));
      if (ScratchBuffer == NULL) {
        return EFI_OUT_OF_RESOURCES;
      }
      //
      // Allocate destination buffer
      //
      DstBuffer = AllocatePages (EFI_SIZE_TO_PAGES (DstBufferSize));
      if (DstBuffer == NULL) {
        return EFI_OUT_OF_RESOURCES;
      }
      //
      // Call decompress function
      //
      Status = UefiDecompress (
                  CompressionSource,
                  DstBuffer,
                  ScratchBuffer
                  );
      if (EFI_ERROR (Status)) {
        //
        // Decompress failed
        //
        DEBUG ((DEBUG_ERROR, "Decompress Failed - %r\n", Status));
        return EFI_NOT_FOUND;
      }
      break;
    } else {
      //
      // PcdDxeIplSupportUefiDecompress is FALSE
      // Don't support UEFI decompression algorithm.
      //
      ASSERT (FALSE);
      return EFI_NOT_FOUND;
    }

  case EFI_NOT_COMPRESSED:
    //
    // Allocate destination buffer
    //
    DstBufferSize = UncompressedLength;
    DstBuffer     = AllocatePages (EFI_SIZE_TO_PAGES (DstBufferSize));
    if (DstBuffer == NULL) {
      return EFI_OUT_OF_RESOURCES;
    }
    //
    // stream is not actually compressed, just encapsulated.  So just copy it.
    //
    CopyMem (DstBuffer, CompressionSource, DstBufferSize);
    break;

  default:
    //
    // Don't support other unknown compression type.
    //
    ASSERT (FALSE);
    return EFI_NOT_FOUND;
  }

  *OutputSize = DstBufferSize;
  *OutputBuffer = DstBuffer;

  return EFI_SUCCESS;
}
示例#8
0
/**
  Return the Virtual Memory Map of your platform

  This Virtual Memory Map is used by MemoryInitPei Module to initialize the MMU on your platform.

  @param[out]   VirtualMemoryMap    Array of ARM_MEMORY_REGION_DESCRIPTOR describing a Physical-to-
                                    Virtual Memory mapping. This array must be ended by a zero-filled
                                    entry

**/
VOID
ArmPlatformGetVirtualMemoryMap (
  IN ARM_MEMORY_REGION_DESCRIPTOR** VirtualMemoryMap
  )
{
  ARM_MEMORY_REGION_ATTRIBUTES  CacheAttributes;
  UINTN                         Index = 0;
  ARM_MEMORY_REGION_DESCRIPTOR  *VirtualMemoryTable;

  ASSERT (VirtualMemoryMap != NULL);

  VirtualMemoryTable = (ARM_MEMORY_REGION_DESCRIPTOR*)AllocatePages(EFI_SIZE_TO_PAGES (sizeof(ARM_MEMORY_REGION_DESCRIPTOR) * MAX_VIRTUAL_MEMORY_MAP_DESCRIPTORS));
  if (VirtualMemoryTable == NULL) {
    return;
  }

  if (FeaturePcdGet(PcdCacheEnable) == TRUE) {
    CacheAttributes = DDR_ATTRIBUTES_CACHED;
  } else {
    CacheAttributes = DDR_ATTRIBUTES_UNCACHED;
  }

#ifdef ARM_BIGLITTLE_TC2
  // Secure NOR0 Flash
  VirtualMemoryTable[Index].PhysicalBase    = ARM_VE_SEC_NOR0_BASE;
  VirtualMemoryTable[Index].VirtualBase     = ARM_VE_SEC_NOR0_BASE;
  VirtualMemoryTable[Index].Length          = ARM_VE_SEC_NOR0_SZ;
  VirtualMemoryTable[Index].Attributes      = ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;
  // Secure RAM
  VirtualMemoryTable[++Index].PhysicalBase  = ARM_VE_SEC_RAM0_BASE;
  VirtualMemoryTable[Index].VirtualBase     = ARM_VE_SEC_RAM0_BASE;
  VirtualMemoryTable[Index].Length          = ARM_VE_SEC_RAM0_SZ;
  VirtualMemoryTable[Index].Attributes      = ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;
#endif

  // SMB CS0 - NOR0 Flash
  VirtualMemoryTable[Index].PhysicalBase    = ARM_VE_SMB_NOR0_BASE;
  VirtualMemoryTable[Index].VirtualBase     = ARM_VE_SMB_NOR0_BASE;
  VirtualMemoryTable[Index].Length          = SIZE_256KB * 255;
  VirtualMemoryTable[Index].Attributes      = ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;
  // Environment Variables region
  VirtualMemoryTable[++Index].PhysicalBase  = ARM_VE_SMB_NOR0_BASE + (SIZE_256KB * 255);
  VirtualMemoryTable[Index].VirtualBase     = ARM_VE_SMB_NOR0_BASE + (SIZE_256KB * 255);
  VirtualMemoryTable[Index].Length          = SIZE_64KB * 4;
  VirtualMemoryTable[Index].Attributes      = ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;

  // SMB CS1 or CS4 - NOR1 Flash
  VirtualMemoryTable[++Index].PhysicalBase  = ARM_VE_SMB_NOR1_BASE;
  VirtualMemoryTable[Index].VirtualBase     = ARM_VE_SMB_NOR1_BASE;
  VirtualMemoryTable[Index].Length          = SIZE_256KB * 255;
  VirtualMemoryTable[Index].Attributes      = ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;
  // Environment Variables region
  VirtualMemoryTable[++Index].PhysicalBase  = ARM_VE_SMB_NOR1_BASE + (SIZE_256KB * 255);
  VirtualMemoryTable[Index].VirtualBase     = ARM_VE_SMB_NOR1_BASE + (SIZE_256KB * 255);
  VirtualMemoryTable[Index].Length          = SIZE_64KB * 4;
  VirtualMemoryTable[Index].Attributes      = ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;

  // SMB CS3 or CS1 - PSRAM
  VirtualMemoryTable[++Index].PhysicalBase  = ARM_VE_SMB_SRAM_BASE;
  VirtualMemoryTable[Index].VirtualBase     = ARM_VE_SMB_SRAM_BASE;
  VirtualMemoryTable[Index].Length          = ARM_VE_SMB_SRAM_SZ;
  VirtualMemoryTable[Index].Attributes      = CacheAttributes;

  // Motherboard peripherals
  VirtualMemoryTable[++Index].PhysicalBase  = ARM_VE_SMB_PERIPH_BASE;
  VirtualMemoryTable[Index].VirtualBase     = ARM_VE_SMB_PERIPH_BASE;
  VirtualMemoryTable[Index].Length          = ARM_VE_SMB_PERIPH_SZ;
  VirtualMemoryTable[Index].Attributes      = ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;

#ifdef ARM_BIGLITTLE_TC2
  // Non-secure ROM
  VirtualMemoryTable[++Index].PhysicalBase  = ARM_VE_TC2_NON_SECURE_ROM_BASE;
  VirtualMemoryTable[Index].VirtualBase     = ARM_VE_TC2_NON_SECURE_ROM_BASE;
  VirtualMemoryTable[Index].Length          = ARM_VE_TC2_NON_SECURE_ROM_SZ;
  VirtualMemoryTable[Index].Attributes      = CacheAttributes;
#endif

  // OnChip peripherals
  VirtualMemoryTable[++Index].PhysicalBase  = ARM_VE_ONCHIP_PERIPH_BASE;
  VirtualMemoryTable[Index].VirtualBase     = ARM_VE_ONCHIP_PERIPH_BASE;
  VirtualMemoryTable[Index].Length          = ARM_VE_ONCHIP_PERIPH_SZ;
  VirtualMemoryTable[Index].Attributes      = ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;

  // SCC Region
  VirtualMemoryTable[++Index].PhysicalBase  = ARM_CTA15A7_SCC_BASE;
  VirtualMemoryTable[Index].VirtualBase     = ARM_CTA15A7_SCC_BASE;
  VirtualMemoryTable[Index].Length          = SIZE_64KB;
  VirtualMemoryTable[Index].Attributes      = ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;

#ifdef ARM_BIGLITTLE_TC2
  // TC2 OnChip non-secure SRAM
  VirtualMemoryTable[++Index].PhysicalBase  = ARM_VE_TC2_NON_SECURE_SRAM_BASE;
  VirtualMemoryTable[Index].VirtualBase     = ARM_VE_TC2_NON_SECURE_SRAM_BASE;
  VirtualMemoryTable[Index].Length          = ARM_VE_TC2_NON_SECURE_SRAM_SZ;
  VirtualMemoryTable[Index].Attributes      = CacheAttributes;
#endif

#ifndef ARM_BIGLITTLE_TC2
  // Workaround for SRAM bug in RTSM
  if (PcdGet64 (PcdSystemMemoryBase) != 0x80000000) {
    VirtualMemoryTable[++Index].PhysicalBase  = 0x80000000;
    VirtualMemoryTable[Index].VirtualBase     = 0x80000000;
    VirtualMemoryTable[Index].Length          = PcdGet64 (PcdSystemMemoryBase) - 0x80000000;
    VirtualMemoryTable[Index].Attributes      = CacheAttributes;
  }
#endif

  // DDR
  VirtualMemoryTable[++Index].PhysicalBase  = PcdGet64 (PcdSystemMemoryBase);
  VirtualMemoryTable[Index].VirtualBase     = PcdGet64 (PcdSystemMemoryBase);
  VirtualMemoryTable[Index].Length          = PcdGet64 (PcdSystemMemorySize);
  VirtualMemoryTable[Index].Attributes      = CacheAttributes;

  // Detect if it is a 1GB or 2GB Test Chip
  //   [16:19]: 0=1GB TC2, 1=2GB TC2
  if (MmioRead32(ARM_VE_SYS_PROCID0_REG) & (0xF << 16)) {
    DEBUG((EFI_D_ERROR,"Info: 2GB Test Chip 2 detected.\n"));
    BuildResourceDescriptorHob (
        EFI_RESOURCE_SYSTEM_MEMORY,
        EFI_RESOURCE_ATTRIBUTE_PRESENT | EFI_RESOURCE_ATTRIBUTE_INITIALIZED | EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
          EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE | EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE | EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE |
          EFI_RESOURCE_ATTRIBUTE_TESTED,
        PcdGet64 (PcdSystemMemoryBase) + PcdGet64 (PcdSystemMemorySize),
        SIZE_1GB
    );

    // Map the additional 1GB into the MMU
    VirtualMemoryTable[++Index].PhysicalBase  = PcdGet64 (PcdSystemMemoryBase) + PcdGet64 (PcdSystemMemorySize);
    VirtualMemoryTable[Index].VirtualBase     = PcdGet64 (PcdSystemMemoryBase) + PcdGet64 (PcdSystemMemorySize);
    VirtualMemoryTable[Index].Length          = SIZE_1GB;
    VirtualMemoryTable[Index].Attributes      = CacheAttributes;
  }

  // End of Table
  VirtualMemoryTable[++Index].PhysicalBase  = 0;
  VirtualMemoryTable[Index].VirtualBase     = 0;
  VirtualMemoryTable[Index].Length          = 0;
  VirtualMemoryTable[Index].Attributes      = (ARM_MEMORY_REGION_ATTRIBUTES)0;

  ASSERT((Index + 1) <= MAX_VIRTUAL_MEMORY_MAP_DESCRIPTORS);

  *VirtualMemoryMap = VirtualMemoryTable;
}
示例#9
0
/**
  The module Entry Point of the CPU SMM driver.

  @param  ImageHandle    The firmware allocated handle for the EFI image.
  @param  SystemTable    A pointer to the EFI System Table.

  @retval EFI_SUCCESS    The entry point is executed successfully.
  @retval Other          Some error occurs when executing this entry point.

**/
EFI_STATUS
EFIAPI
PiCpuSmmEntry (
  IN EFI_HANDLE        ImageHandle,
  IN EFI_SYSTEM_TABLE  *SystemTable
  )
{
  EFI_STATUS                 Status;
  EFI_MP_SERVICES_PROTOCOL   *MpServices;
  UINTN                      NumberOfEnabledProcessors;
  UINTN                      Index;
  VOID                       *Buffer;
  UINTN                      BufferPages;
  UINTN                      TileCodeSize;
  UINTN                      TileDataSize;
  UINTN                      TileSize;
  UINT8                      *Stacks;
  VOID                       *Registration;
  UINT32                     RegEax;
  UINT32                     RegEdx;
  UINTN                      FamilyId;
  UINTN                      ModelId;
  UINT32                     Cr3;

  //
  // Initialize Debug Agent to support source level debug in SMM code
  //
  InitializeDebugAgent (DEBUG_AGENT_INIT_SMM, NULL, NULL);

  //
  // Report the start of CPU SMM initialization.
  //
  REPORT_STATUS_CODE (
    EFI_PROGRESS_CODE,
    EFI_COMPUTING_UNIT_HOST_PROCESSOR | EFI_CU_HP_PC_SMM_INIT
    );

  //
  // Fix segment address of the long-mode-switch jump
  //
  if (sizeof (UINTN) == sizeof (UINT64)) {
    gSmmJmpAddr.Segment = LONG_MODE_CODE_SEGMENT;
  }

  //
  // Find out SMRR Base and SMRR Size
  //
  FindSmramInfo (&mCpuHotPlugData.SmrrBase, &mCpuHotPlugData.SmrrSize);

  //
  // Get MP Services Protocol
  //
  Status = SystemTable->BootServices->LocateProtocol (&gEfiMpServiceProtocolGuid, NULL, (VOID **)&MpServices);
  ASSERT_EFI_ERROR (Status);

  //
  // Use MP Services Protocol to retrieve the number of processors and number of enabled processors
  //
  Status = MpServices->GetNumberOfProcessors (MpServices, &mNumberOfCpus, &NumberOfEnabledProcessors);
  ASSERT_EFI_ERROR (Status);
  ASSERT (mNumberOfCpus <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));

  //
  // If support CPU hot plug, PcdCpuSmmEnableBspElection should be set to TRUE.
  // A constant BSP index makes no sense because it may be hot removed.
  //
  DEBUG_CODE (
    if (FeaturePcdGet (PcdCpuHotPlugSupport)) {

      ASSERT (FeaturePcdGet (PcdCpuSmmEnableBspElection));
    }
  );
示例#10
0
/**
  Retrieve the PCI Card device BAR information via PciIo interface.

  @param PciIoDevice        PCI Card device instance.

**/
VOID
GetBackPcCardBar (
  IN  PCI_IO_DEVICE                  *PciIoDevice
  )
{
  UINT32  Address;

  if (!FeaturePcdGet (PcdPciBusHotplugDeviceSupport)) {
    return;
  }

  //
  // Read PciBar information from the bar register
  //
  if (!gFullEnumeration) {
    Address = 0;
    PciIoDevice->PciIo.Pci.Read (
                             &(PciIoDevice->PciIo),
                             EfiPciIoWidthUint32,
                             PCI_CARD_MEMORY_BASE_0,
                             1,
                             &Address
                             );

    (PciIoDevice->PciBar)[P2C_MEM_1].BaseAddress  = (UINT64) (Address);
    (PciIoDevice->PciBar)[P2C_MEM_1].Length       = 0x2000000;
    (PciIoDevice->PciBar)[P2C_MEM_1].BarType      = PciBarTypeMem32;

    Address = 0;
    PciIoDevice->PciIo.Pci.Read (
                             &(PciIoDevice->PciIo),
                             EfiPciIoWidthUint32,
                             PCI_CARD_MEMORY_BASE_1,
                             1,
                             &Address
                             );
    (PciIoDevice->PciBar)[P2C_MEM_2].BaseAddress  = (UINT64) (Address);
    (PciIoDevice->PciBar)[P2C_MEM_2].Length       = 0x2000000;
    (PciIoDevice->PciBar)[P2C_MEM_2].BarType      = PciBarTypePMem32;

    Address = 0;
    PciIoDevice->PciIo.Pci.Read (
                             &(PciIoDevice->PciIo),
                             EfiPciIoWidthUint32,
                             PCI_CARD_IO_BASE_0_LOWER,
                             1,
                             &Address
                             );
    (PciIoDevice->PciBar)[P2C_IO_1].BaseAddress = (UINT64) (Address);
    (PciIoDevice->PciBar)[P2C_IO_1].Length      = 0x100;
    (PciIoDevice->PciBar)[P2C_IO_1].BarType     = PciBarTypeIo16;

    Address = 0;
    PciIoDevice->PciIo.Pci.Read (
                             &(PciIoDevice->PciIo),
                             EfiPciIoWidthUint32,
                             PCI_CARD_IO_BASE_1_LOWER,
                             1,
                             &Address
                             );
    (PciIoDevice->PciBar)[P2C_IO_2].BaseAddress = (UINT64) (Address);
    (PciIoDevice->PciBar)[P2C_IO_2].Length      = 0x100;
    (PciIoDevice->PciBar)[P2C_IO_2].BarType     = PciBarTypeIo16;

  }

  if (gPciHotPlugInit != NULL && FeaturePcdGet (PcdPciBusHotplugDeviceSupport)) {
    GetResourcePaddingForHpb (PciIoDevice);
  }
}
示例#11
0
/**
  Submits the I/O and memory resource requirements for the specified PCI Host Bridge.

  @param PciResAlloc  Point to protocol instance of EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.

  @retval EFI_SUCCESS           Successfully finished resource allocation.
  @retval EFI_NOT_FOUND         Cannot get root bridge instance.
  @retval EFI_OUT_OF_RESOURCES  Platform failed to program the resources if no hot plug supported.
  @retval other                 Some error occurred when allocating resources for the PCI Host Bridge.

  @note   Feature flag PcdPciBusHotplugDeviceSupport determine whether need support hotplug.

**/
EFI_STATUS
PciHostBridgeResourceAllocator (
  IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *PciResAlloc
  )
{
  PCI_IO_DEVICE                                  *RootBridgeDev;
  EFI_HANDLE                                     RootBridgeHandle;
  VOID                                           *AcpiConfig;
  EFI_STATUS                                     Status;
  UINT64                                         IoBase;
  UINT64                                         Mem32Base;
  UINT64                                         PMem32Base;
  UINT64                                         Mem64Base;
  UINT64                                         PMem64Base;
  UINT64                                         IoResStatus;
  UINT64                                         Mem32ResStatus;
  UINT64                                         PMem32ResStatus;
  UINT64                                         Mem64ResStatus;
  UINT64                                         PMem64ResStatus;
  UINT64                                         MaxOptionRomSize;
  PCI_RESOURCE_NODE                              *IoBridge;
  PCI_RESOURCE_NODE                              *Mem32Bridge;
  PCI_RESOURCE_NODE                              *PMem32Bridge;
  PCI_RESOURCE_NODE                              *Mem64Bridge;
  PCI_RESOURCE_NODE                              *PMem64Bridge;
  PCI_RESOURCE_NODE                              IoPool;
  PCI_RESOURCE_NODE                              Mem32Pool;
  PCI_RESOURCE_NODE                              PMem32Pool;
  PCI_RESOURCE_NODE                              Mem64Pool;
  PCI_RESOURCE_NODE                              PMem64Pool;
  BOOLEAN                                        ReAllocate;
  EFI_DEVICE_HANDLE_EXTENDED_DATA_PAYLOAD        HandleExtendedData;
  EFI_RESOURCE_ALLOC_FAILURE_ERROR_DATA_PAYLOAD  AllocFailExtendedData;

  //
  // Reallocate flag
  //
  ReAllocate = FALSE;

  //
  // It may try several times if the resource allocation fails
  //
  while (TRUE) {
    //
    // Initialize resource pool
    //
    InitializeResourcePool (&IoPool, PciBarTypeIo16);
    InitializeResourcePool (&Mem32Pool, PciBarTypeMem32);
    InitializeResourcePool (&PMem32Pool, PciBarTypePMem32);
    InitializeResourcePool (&Mem64Pool, PciBarTypeMem64);
    InitializeResourcePool (&PMem64Pool, PciBarTypePMem64);

    RootBridgeDev     = NULL;
    RootBridgeHandle  = 0;

    while (PciResAlloc->GetNextRootBridge (PciResAlloc, &RootBridgeHandle) == EFI_SUCCESS) {
      //
      // Get Root Bridge Device by handle
      //
      RootBridgeDev = GetRootBridgeByHandle (RootBridgeHandle);

      if (RootBridgeDev == NULL) {
        return EFI_NOT_FOUND;
      }

      //
      // Create the entire system resource map from the information collected by
      // enumerator. Several resource tree was created
      //

      //
      // If non-stardard PCI Bridge I/O window alignment is supported,
      // set I/O aligment to minimum possible alignment for root bridge.
      //
      IoBridge = CreateResourceNode (
                   RootBridgeDev,
                   0,
                   FeaturePcdGet (PcdPciBridgeIoAlignmentProbe) ? 0x1FF: 0xFFF,
                   RB_IO_RANGE,
                   PciBarTypeIo16,
                   PciResUsageTypical
                   );

      Mem32Bridge = CreateResourceNode (
                      RootBridgeDev,
                      0,
                      0xFFFFF,
                      RB_MEM32_RANGE,
                      PciBarTypeMem32,
                      PciResUsageTypical
                      );

      PMem32Bridge = CreateResourceNode (
                       RootBridgeDev,
                       0,
                       0xFFFFF,
                       RB_PMEM32_RANGE,
                       PciBarTypePMem32,
                       PciResUsageTypical
                       );

      Mem64Bridge = CreateResourceNode (
                      RootBridgeDev,
                      0,
                      0xFFFFF,
                      RB_MEM64_RANGE,
                      PciBarTypeMem64,
                      PciResUsageTypical
                      );

      PMem64Bridge = CreateResourceNode (
                       RootBridgeDev,
                       0,
                       0xFFFFF,
                       RB_PMEM64_RANGE,
                       PciBarTypePMem64,
                       PciResUsageTypical
                       );

      //
      // Create resourcemap by going through all the devices subject to this root bridge
      //
      CreateResourceMap (
        RootBridgeDev,
        IoBridge,
        Mem32Bridge,
        PMem32Bridge,
        Mem64Bridge,
        PMem64Bridge
        );

      //
      // Get the max ROM size that the root bridge can process
      //
      RootBridgeDev->RomSize = Mem32Bridge->Length;

      //
      // Skip to enlarge the resource request during realloction
      //
      if (!ReAllocate) {
        //
        // Get Max Option Rom size for current root bridge
        //
        MaxOptionRomSize = GetMaxOptionRomSize (RootBridgeDev);

        //
        // Enlarger the mem32 resource to accomdate the option rom
        // if the mem32 resource is not enough to hold the rom
        //
        if (MaxOptionRomSize > Mem32Bridge->Length) {

          Mem32Bridge->Length     = MaxOptionRomSize;
          RootBridgeDev->RomSize  = MaxOptionRomSize;

          //
          // Alignment should be adjusted as well
          //
          if (Mem32Bridge->Alignment < MaxOptionRomSize - 1) {
            Mem32Bridge->Alignment = MaxOptionRomSize - 1;
          }
        }
      }

      //
      // Based on the all the resource tree, contruct ACPI resource node to
      // submit the resource aperture to pci host bridge protocol
      //
      Status = ConstructAcpiResourceRequestor (
                 RootBridgeDev,
                 IoBridge,
                 Mem32Bridge,
                 PMem32Bridge,
                 Mem64Bridge,
                 PMem64Bridge,
                 &AcpiConfig
                 );

      //
      // Insert these resource nodes into the database
      //
      InsertResourceNode (&IoPool, IoBridge);
      InsertResourceNode (&Mem32Pool, Mem32Bridge);
      InsertResourceNode (&PMem32Pool, PMem32Bridge);
      InsertResourceNode (&Mem64Pool, Mem64Bridge);
      InsertResourceNode (&PMem64Pool, PMem64Bridge);

      if (Status == EFI_SUCCESS) {
        //
        // Submit the resource requirement
        //
        Status = PciResAlloc->SubmitResources (
                                PciResAlloc,
                                RootBridgeDev->Handle,
                                AcpiConfig
                                );
        //
        // If SubmitResources returns error, PciBus isn't able to start.
        // It's a fatal error so assertion is added.
        //
        DEBUG ((EFI_D_INFO, "PciBus: HostBridge->SubmitResources() - %r\n", Status));
        ASSERT_EFI_ERROR (Status);
      }

      //
      // Free acpi resource node
      //
      if (AcpiConfig != NULL) {
        FreePool (AcpiConfig);
      }

      if (EFI_ERROR (Status)) {
        //
        // Destroy all the resource tree
        //
        DestroyResourceTree (&IoPool);
        DestroyResourceTree (&Mem32Pool);
        DestroyResourceTree (&PMem32Pool);
        DestroyResourceTree (&Mem64Pool);
        DestroyResourceTree (&PMem64Pool);
        return Status;
      }
    }
    //
    // End while, at least one Root Bridge should be found.
    //
    ASSERT (RootBridgeDev != NULL);

    //
    // Notify platform to start to program the resource
    //
    Status = NotifyPhase (PciResAlloc, EfiPciHostBridgeAllocateResources);
    DEBUG ((EFI_D_INFO, "PciBus: HostBridge->NotifyPhase(AllocateResources) - %r\n", Status));
    if (!FeaturePcdGet (PcdPciBusHotplugDeviceSupport)) {
      //
      // If Hot Plug is not supported
      //
      if (EFI_ERROR (Status)) {
        //
        // Allocation failed, then return
        //
        return EFI_OUT_OF_RESOURCES;
      }
      //
      // Allocation succeed.
      // Get host bridge handle for status report, and then skip the main while
      //
      HandleExtendedData.Handle = RootBridgeDev->PciRootBridgeIo->ParentHandle;

      break;

    } else {
      //
      // If Hot Plug is supported
      //
      if (!EFI_ERROR (Status)) {
        //
        // Allocation succeed, then continue the following
        //
        break;
      }

      //
      // If the resource allocation is unsuccessful, free resources on bridge
      //

      RootBridgeDev     = NULL;
      RootBridgeHandle  = 0;

      IoResStatus       = EFI_RESOURCE_SATISFIED;
      Mem32ResStatus    = EFI_RESOURCE_SATISFIED;
      PMem32ResStatus   = EFI_RESOURCE_SATISFIED;
      Mem64ResStatus    = EFI_RESOURCE_SATISFIED;
      PMem64ResStatus   = EFI_RESOURCE_SATISFIED;

      while (PciResAlloc->GetNextRootBridge (PciResAlloc, &RootBridgeHandle) == EFI_SUCCESS) {
        //
        // Get RootBridg Device by handle
        //
        RootBridgeDev = GetRootBridgeByHandle (RootBridgeHandle);
        if (RootBridgeDev == NULL) {
          return EFI_NOT_FOUND;
        }

        //
        // Get host bridge handle for status report
        //
        HandleExtendedData.Handle = RootBridgeDev->PciRootBridgeIo->ParentHandle;

        //
        // Get acpi resource node for all the resource types
        //
        AcpiConfig = NULL;

        Status = PciResAlloc->GetProposedResources (
                                PciResAlloc,
                                RootBridgeDev->Handle,
                                &AcpiConfig
                                );

        if (EFI_ERROR (Status)) {
          return Status;
        }

        if (AcpiConfig != NULL) {
          //
          // Adjust resource allocation policy for each RB
          //
          GetResourceAllocationStatus (
            AcpiConfig,
            &IoResStatus,
            &Mem32ResStatus,
            &PMem32ResStatus,
            &Mem64ResStatus,
            &PMem64ResStatus
            );
          FreePool (AcpiConfig);
        }
      }
      //
      // End while
      //

      //
      // Raise the EFI_IOB_EC_RESOURCE_CONFLICT status code
      //
      //
      // It is very difficult to follow the spec here
      // Device path , Bar index can not be get here
      //
      ZeroMem (&AllocFailExtendedData, sizeof (AllocFailExtendedData));

      REPORT_STATUS_CODE_WITH_EXTENDED_DATA (
            EFI_PROGRESS_CODE,
            EFI_IO_BUS_PCI | EFI_IOB_EC_RESOURCE_CONFLICT,
            (VOID *) &AllocFailExtendedData,
            sizeof (AllocFailExtendedData)
            );

      Status = PciHostBridgeAdjustAllocation (
                 &IoPool,
                 &Mem32Pool,
                 &PMem32Pool,
                 &Mem64Pool,
                 &PMem64Pool,
                 IoResStatus,
                 Mem32ResStatus,
                 PMem32ResStatus,
                 Mem64ResStatus,
                 PMem64ResStatus
                 );

      //
      // Destroy all the resource tree
      //
      DestroyResourceTree (&IoPool);
      DestroyResourceTree (&Mem32Pool);
      DestroyResourceTree (&PMem32Pool);
      DestroyResourceTree (&Mem64Pool);
      DestroyResourceTree (&PMem64Pool);

      NotifyPhase (PciResAlloc, EfiPciHostBridgeFreeResources);

      if (EFI_ERROR (Status)) {
        return Status;
      }

      ReAllocate = TRUE;
    }
  }
  //
  // End main while
  //

  //
  // Raise the EFI_IOB_PCI_RES_ALLOC status code
  //
  REPORT_STATUS_CODE_WITH_EXTENDED_DATA (
        EFI_PROGRESS_CODE,
        EFI_IO_BUS_PCI | EFI_IOB_PCI_RES_ALLOC,
        (VOID *) &HandleExtendedData,
        sizeof (HandleExtendedData)
        );

  //
  // Notify pci bus driver starts to program the resource
  //
  Status = NotifyPhase (PciResAlloc, EfiPciHostBridgeSetResources);

  if (EFI_ERROR (Status)) {
    return Status;
  }

  RootBridgeDev     = NULL;

  RootBridgeHandle  = 0;

  while (PciResAlloc->GetNextRootBridge (PciResAlloc, &RootBridgeHandle) == EFI_SUCCESS) {
    //
    // Get RootBridg Device by handle
    //
    RootBridgeDev = GetRootBridgeByHandle (RootBridgeHandle);

    if (RootBridgeDev == NULL) {
      return EFI_NOT_FOUND;
    }

    //
    // Get acpi resource node for all the resource types
    //
    AcpiConfig = NULL;
    Status = PciResAlloc->GetProposedResources (
                            PciResAlloc,
                            RootBridgeDev->Handle,
                            &AcpiConfig
                            );

    if (EFI_ERROR (Status)) {
      return Status;
    }

    //
    // Get the resource base by interpreting acpi resource node
    //
    //
    GetResourceBase (
      AcpiConfig,
      &IoBase,
      &Mem32Base,
      &PMem32Base,
      &Mem64Base,
      &PMem64Base
      );

    //
    // Process option rom for this root bridge
    //
    ProcessOptionRom (RootBridgeDev, Mem32Base, RootBridgeDev->RomSize);

    //
    // Create the entire system resource map from the information collected by
    // enumerator. Several resource tree was created
    //
    IoBridge     = FindResourceNode (RootBridgeDev, &IoPool);
    Mem32Bridge  = FindResourceNode (RootBridgeDev, &Mem32Pool);
    PMem32Bridge = FindResourceNode (RootBridgeDev, &PMem32Pool);
    Mem64Bridge  = FindResourceNode (RootBridgeDev, &Mem64Pool);
    PMem64Bridge = FindResourceNode (RootBridgeDev, &PMem64Pool);

    ASSERT (IoBridge     != NULL);
    ASSERT (Mem32Bridge  != NULL);
    ASSERT (PMem32Bridge != NULL);
    ASSERT (Mem64Bridge  != NULL);
    ASSERT (PMem64Bridge != NULL);

    //
    // Program IO resources
    //
    ProgramResource (
      IoBase,
      IoBridge
      );

    //
    // Program Mem32 resources
    //
    ProgramResource (
      Mem32Base,
      Mem32Bridge
      );

    //
    // Program PMem32 resources
    //
    ProgramResource (
      PMem32Base,
      PMem32Bridge
      );

    //
    // Program Mem64 resources
    //
    ProgramResource (
      Mem64Base,
      Mem64Bridge
      );

    //
    // Program PMem64 resources
    //
    ProgramResource (
      PMem64Base,
      PMem64Bridge
      );

    IoBridge    ->PciDev->PciBar[IoBridge    ->Bar].BaseAddress = IoBase;
    Mem32Bridge ->PciDev->PciBar[Mem32Bridge ->Bar].BaseAddress = Mem32Base;
    PMem32Bridge->PciDev->PciBar[PMem32Bridge->Bar].BaseAddress = PMem32Base;
    Mem64Bridge ->PciDev->PciBar[Mem64Bridge ->Bar].BaseAddress = Mem64Base;
    PMem64Bridge->PciDev->PciBar[PMem64Bridge->Bar].BaseAddress = PMem64Base;

    //
    // Dump the resource map for current root bridge
    //
    DEBUG_CODE (
      DumpResourceMap (
        RootBridgeDev,
        IoBridge,
        Mem32Bridge,
        PMem32Bridge,
        Mem64Bridge,
        PMem64Bridge
        );
    );

    FreePool (AcpiConfig);
  }
示例#12
0
/**
  Return the Virtual Memory Map of your platform

  This Virtual Memory Map is used by MemoryInitPei Module to initialize the MMU on your platform.

  @param[out]   VirtualMemoryMap    Array of ARM_MEMORY_REGION_DESCRIPTOR describing a Physical-to-
                                    Virtual Memory mapping. This array must be ended by a zero-filled
                                    entry

**/
VOID
ArmPlatformGetVirtualMemoryMap (
  IN ARM_MEMORY_REGION_DESCRIPTOR** VirtualMemoryMap
  )
{
  ARM_MEMORY_REGION_ATTRIBUTES  CacheAttributes;
  UINTN                         Index = 0;
  ARM_MEMORY_REGION_DESCRIPTOR  *VirtualMemoryTable;

  ASSERT(VirtualMemoryMap != NULL);

  VirtualMemoryTable = (ARM_MEMORY_REGION_DESCRIPTOR*)AllocatePages(EFI_SIZE_TO_PAGES (sizeof(ARM_MEMORY_REGION_DESCRIPTOR) * MAX_VIRTUAL_MEMORY_MAP_DESCRIPTORS));
  if (VirtualMemoryTable == NULL) {
      return;
  }

  if (FeaturePcdGet(PcdCacheEnable) == TRUE) {
      CacheAttributes = DDR_ATTRIBUTES_CACHED;
  } else {
      CacheAttributes = DDR_ATTRIBUTES_UNCACHED;
  }

  // ReMap (Either NOR Flash or DRAM)
  VirtualMemoryTable[Index].PhysicalBase = ARM_VE_REMAP_BASE;
  VirtualMemoryTable[Index].VirtualBase  = ARM_VE_REMAP_BASE;
  VirtualMemoryTable[Index].Length       = ARM_VE_REMAP_SZ;

  if (FeaturePcdGet(PcdNorFlashRemapping) == FALSE) {
    // Map the NOR Flash as Secure Memory
    if (FeaturePcdGet(PcdCacheEnable) == TRUE) {
      VirtualMemoryTable[Index].Attributes   = DDR_ATTRIBUTES_CACHED;
    } else {
      VirtualMemoryTable[Index].Attributes   = DDR_ATTRIBUTES_UNCACHED;
    }
  } else {
    // DRAM mapping
    VirtualMemoryTable[Index].Attributes   = CacheAttributes;
  }

  // DDR
  VirtualMemoryTable[++Index].PhysicalBase = ARM_VE_DRAM_BASE;
  VirtualMemoryTable[Index].VirtualBase  = ARM_VE_DRAM_BASE;
  VirtualMemoryTable[Index].Length       = ARM_VE_DRAM_SZ;
  VirtualMemoryTable[Index].Attributes   = CacheAttributes;

  // SMC CS7
  VirtualMemoryTable[++Index].PhysicalBase = ARM_VE_ON_CHIP_PERIPH_BASE;
  VirtualMemoryTable[Index].VirtualBase  = ARM_VE_ON_CHIP_PERIPH_BASE;
  VirtualMemoryTable[Index].Length       = ARM_VE_ON_CHIP_PERIPH_SZ;
  VirtualMemoryTable[Index].Attributes   = ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;

  // SMB CS0-CS1 - NOR Flash 1 & 2
  VirtualMemoryTable[++Index].PhysicalBase = ARM_VE_SMB_NOR0_BASE;
  VirtualMemoryTable[Index].VirtualBase  = ARM_VE_SMB_NOR0_BASE;
  VirtualMemoryTable[Index].Length       = ARM_VE_SMB_NOR0_SZ + ARM_VE_SMB_NOR1_SZ;
  VirtualMemoryTable[Index].Attributes   = ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;

  // SMB CS2 - SRAM
  VirtualMemoryTable[++Index].PhysicalBase = ARM_VE_SMB_SRAM_BASE;
  VirtualMemoryTable[Index].VirtualBase  = ARM_VE_SMB_SRAM_BASE;
  VirtualMemoryTable[Index].Length       = ARM_VE_SMB_SRAM_SZ;
  VirtualMemoryTable[Index].Attributes   = CacheAttributes;

  // SMB CS3-CS6 - Motherboard Peripherals
  VirtualMemoryTable[++Index].PhysicalBase = ARM_VE_SMB_PERIPH_BASE;
  VirtualMemoryTable[Index].VirtualBase  = ARM_VE_SMB_PERIPH_BASE;
  VirtualMemoryTable[Index].Length       = 2 * ARM_VE_SMB_PERIPH_SZ;
  VirtualMemoryTable[Index].Attributes   = ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;

  // If a Logic Tile is connected to The ARM Versatile Express Motherboard
  if (MmioRead32(ARM_VE_SYS_PROCID1_REG) != 0) {
      VirtualMemoryTable[++Index].PhysicalBase = ARM_VE_EXT_AXI_BASE;
      VirtualMemoryTable[Index].VirtualBase  = ARM_VE_EXT_AXI_BASE;
      VirtualMemoryTable[Index].Length       = ARM_VE_EXT_AXI_SZ;
      VirtualMemoryTable[Index].Attributes   = ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;

      ASSERT((Index + 1) == (MAX_VIRTUAL_MEMORY_MAP_DESCRIPTORS + 1));
  } else {
    ASSERT((Index + 1) == MAX_VIRTUAL_MEMORY_MAP_DESCRIPTORS);
  }

  // End of Table
  VirtualMemoryTable[++Index].PhysicalBase = 0;
  VirtualMemoryTable[Index].VirtualBase  = 0;
  VirtualMemoryTable[Index].Length       = 0;
  VirtualMemoryTable[Index].Attributes   = (ARM_MEMORY_REGION_ATTRIBUTES)0;

  *VirtualMemoryMap = VirtualMemoryTable;
}
/**
  Main entry for Firmware Performance Data Table PEIM.

  This routine is to register report status code listener for FPDT.

  @param[in]  FileHandle              Handle of the file being invoked.
  @param[in]  PeiServices             Pointer to PEI Services table.

  @retval EFI_SUCCESS Report status code listener is registered successfully.

**/
EFI_STATUS
EFIAPI
FirmwarePerformancePeiEntryPoint (
  IN       EFI_PEI_FILE_HANDLE  FileHandle,
  IN CONST EFI_PEI_SERVICES     **PeiServices
  )
{
  EFI_STATUS               Status;
  EFI_BOOT_MODE            BootMode;
  EFI_PEI_RSC_HANDLER_PPI  *RscHandler;
  PEI_SEC_PERFORMANCE_PPI  *SecPerf;
  FIRMWARE_SEC_PERFORMANCE Performance;

  Status = PeiServicesGetBootMode(&BootMode);
  ASSERT_EFI_ERROR (Status);

  if (BootMode == BOOT_ON_S3_RESUME) {
    if (FeaturePcdGet (PcdFirmwarePerformanceDataTableS3Support)) {
      //
      // S3 resume - register status code listener for OS wake vector.
      //
      Status = PeiServicesLocatePpi (
                 &gEfiPeiRscHandlerPpiGuid,
                 0,
                 NULL,
                 (VOID **) &RscHandler
                 );
      ASSERT_EFI_ERROR (Status);

      Status = RscHandler->Register (FpdtStatusCodeListenerPei);
      ASSERT_EFI_ERROR (Status);
    }
  } else {
    //
    // Normal boot - build Hob for SEC performance data.
    //
    Status = PeiServicesLocatePpi (
               &gPeiSecPerformancePpiGuid,
               0,
               NULL,
               (VOID **) &SecPerf
               );
    if (!EFI_ERROR (Status)) {
      Status = SecPerf->GetPerformance (PeiServices, SecPerf, &Performance);
    }
    if (!EFI_ERROR (Status)) {
      BuildGuidDataHob (
        &gEfiFirmwarePerformanceGuid,
        &Performance,
        sizeof (FIRMWARE_SEC_PERFORMANCE)
      );
      DEBUG ((EFI_D_INFO, "FPDT: SEC Performance Hob ResetEnd = %ld\n", Performance.ResetEnd));
    } else {
      //
      // SEC performance PPI is not installed or fail to get performance data
      // from SEC Performance PPI.
      //
      DEBUG ((EFI_D_ERROR, "FPDT: WARNING: SEC Performance PPI not installed or failed!\n"));
    }
  }

  return EFI_SUCCESS;
}
示例#14
0
/**
  Copy the content of spare block to a boot block. Size is FTW_BLOCK_SIZE.
  Spare block is accessed by FTW working FVB protocol interface. LBA is 1.
  Target block is accessed by FvbBlock protocol interface. LBA is Lba.

  FTW will do extra work on boot block update.
  FTW should depend on a protocol of EFI_ADDRESS_RANGE_SWAP_PROTOCOL,
  which is produced by a chipset driver.
  FTW updating boot block steps may be:
  1. GetRangeLocation(), if the Range is inside the boot block, FTW know
  that boot block will be update. It shall add a FLAG in the working block.
  2. When spare block is ready,
  3. SetSwapState(EFI_SWAPPED)
  4. erasing boot block,
  5. programming boot block until the boot block is ok.
  6. SetSwapState(UNSWAPPED)
  FTW shall not allow to update boot block when battery state is error.

  @param FtwDevice       The private data of FTW driver

  @retval EFI_SUCCESS             Spare block content is copied to boot block
  @retval EFI_INVALID_PARAMETER   Input parameter error
  @retval EFI_OUT_OF_RESOURCES    Allocate memory error
  @retval EFI_ABORTED             The function could not complete successfully

**/
EFI_STATUS
FlushSpareBlockToBootBlock (
  EFI_FTW_DEVICE                      *FtwDevice
  )
{
  EFI_STATUS                          Status;
  UINTN                               Length;
  UINT8                               *Buffer;
  UINTN                               Count;
  UINT8                               *Ptr;
  UINTN                               Index;
  BOOLEAN                             TopSwap;
  EFI_SWAP_ADDRESS_RANGE_PROTOCOL     *SarProtocol;
  EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL  *BootFvb;
  EFI_LBA                             BootLba;

  if (!FeaturePcdGet(PcdFullFtwServiceEnable)) {
    return EFI_UNSUPPORTED;
  }

  //
  // Locate swap address range protocol
  //
  Status = FtwGetSarProtocol ((VOID **) &SarProtocol);
  if (EFI_ERROR (Status)) {
    return Status;
  }
  //
  // Allocate a memory buffer
  //
  Length = FtwDevice->SpareAreaLength;
  Buffer  = AllocatePool (Length);
  if (Buffer == NULL) {
    return EFI_OUT_OF_RESOURCES;
  }
  //
  // Get TopSwap bit state
  //
  Status = SarProtocol->GetSwapState (SarProtocol, &TopSwap);
  if (EFI_ERROR (Status)) {
    DEBUG ((EFI_D_ERROR, "Ftw: Get Top Swapped status - %r\n", Status));
    FreePool (Buffer);
    return EFI_ABORTED;
  }

  if (TopSwap) {
    //
    // Get FVB of current boot block
    //
    if (GetFvbByAddress (FtwDevice->SpareAreaAddress + FtwDevice->SpareAreaLength, &BootFvb) == NULL) {
      FreePool (Buffer);
      return EFI_ABORTED;
    }
    //
    // Read data from current boot block
    //
    BootLba = 0;
    Ptr     = Buffer;
    for (Index = 0; Index < FtwDevice->NumberOfSpareBlock; Index += 1) {
      Count = FtwDevice->BlockSize;
      Status = BootFvb->Read (
                          BootFvb,
                          BootLba + Index,
                          0,
                          &Count,
                          Ptr
                          );
      if (EFI_ERROR (Status)) {
        FreePool (Buffer);
        return Status;
      }

      Ptr += Count;
    }
  } else {
    //
    // Read data from spare block
    //
    Ptr = Buffer;
    for (Index = 0; Index < FtwDevice->NumberOfSpareBlock; Index += 1) {
      Count = FtwDevice->BlockSize;
      Status = FtwDevice->FtwBackupFvb->Read (
                                          FtwDevice->FtwBackupFvb,
                                          FtwDevice->FtwSpareLba + Index,
                                          0,
                                          &Count,
                                          Ptr
                                          );
      if (EFI_ERROR (Status)) {
        FreePool (Buffer);
        return Status;
      }

      Ptr += Count;
    }
    //
    // Set TopSwap bit
    //
    Status = SarProtocol->SetSwapState (SarProtocol, TRUE);
    if (EFI_ERROR (Status)) {
      FreePool (Buffer);
      return Status;
    }
  }
  //
  // Erase current spare block
  // Because TopSwap is set, this actually erase the top block (boot block)!
  //
  Status = FtwEraseSpareBlock (FtwDevice);
  if (EFI_ERROR (Status)) {
    FreePool (Buffer);
    return EFI_ABORTED;
  }
  //
  // Write memory buffer to current spare block. Still top block.
  //
  Ptr = Buffer;
  for (Index = 0; Index < FtwDevice->NumberOfSpareBlock; Index += 1) {
    Count = FtwDevice->BlockSize;
    Status = FtwDevice->FtwBackupFvb->Write (
                                        FtwDevice->FtwBackupFvb,
                                        FtwDevice->FtwSpareLba + Index,
                                        0,
                                        &Count,
                                        Ptr
                                        );
    if (EFI_ERROR (Status)) {
      DEBUG ((EFI_D_ERROR, "Ftw: FVB Write boot block - %r\n", Status));
      FreePool (Buffer);
      return Status;
    }

    Ptr += Count;
  }

  FreePool (Buffer);

  //
  // Clear TopSwap bit
  //
  Status = SarProtocol->SetSwapState (SarProtocol, FALSE);

  return Status;
}
示例#15
0
文件: MemoryTest.c 项目: b-man/edk2
/**

  Show progress bar with title above it. It only works in Graphics mode.


  @param TitleForeground Foreground color for Title.
  @param TitleBackground Background color for Title.
  @param Title           Title above progress bar.
  @param ProgressColor   Progress bar color.
  @param Progress        Progress (0-100)
  @param PreviousValue   The previous value of the progress.

  @retval  EFI_STATUS       Success update the progress bar

**/
EFI_STATUS
PlatformBdsShowProgress (
  IN EFI_GRAPHICS_OUTPUT_BLT_PIXEL TitleForeground,
  IN EFI_GRAPHICS_OUTPUT_BLT_PIXEL TitleBackground,
  IN CHAR16                        *Title,
  IN EFI_GRAPHICS_OUTPUT_BLT_PIXEL ProgressColor,
  IN UINTN                         Progress,
  IN UINTN                         PreviousValue
  )
{
  EFI_STATUS                     Status;
  EFI_GRAPHICS_OUTPUT_PROTOCOL   *GraphicsOutput;
  EFI_UGA_DRAW_PROTOCOL          *UgaDraw;
  UINT32                         SizeOfX;
  UINT32                         SizeOfY;
  UINT32                         ColorDepth;
  UINT32                         RefreshRate;
  EFI_GRAPHICS_OUTPUT_BLT_PIXEL  Color;
  UINTN                          BlockHeight;
  UINTN                          BlockWidth;
  UINTN                          BlockNum;
  UINTN                          PosX;
  UINTN                          PosY;
  UINTN                          Index;

  if (Progress > 100) {
    return EFI_INVALID_PARAMETER;
  }

  UgaDraw = NULL;
  Status = gBS->HandleProtocol (
                  gST->ConsoleOutHandle,
                  &gEfiGraphicsOutputProtocolGuid,
                  (VOID **) &GraphicsOutput
                  );
  if (EFI_ERROR (Status) && FeaturePcdGet (PcdUgaConsumeSupport)) {
    GraphicsOutput = NULL;

    Status = gBS->HandleProtocol (
                    gST->ConsoleOutHandle,
                    &gEfiUgaDrawProtocolGuid,
                    (VOID **) &UgaDraw
                    );
  }
  if (EFI_ERROR (Status)) {
    return EFI_UNSUPPORTED;
  }

  SizeOfX = 0;
  SizeOfY = 0;
  if (GraphicsOutput != NULL) {
    SizeOfX = GraphicsOutput->Mode->Info->HorizontalResolution;
    SizeOfY = GraphicsOutput->Mode->Info->VerticalResolution;
  } else if (UgaDraw != NULL) {
    Status = UgaDraw->GetMode (
                        UgaDraw,
                        &SizeOfX,
                        &SizeOfY,
                        &ColorDepth,
                        &RefreshRate
                        );
    if (EFI_ERROR (Status)) {
      return EFI_UNSUPPORTED;
    }
  } else {
    return EFI_UNSUPPORTED;
  }

  BlockWidth  = SizeOfX / 100;
  BlockHeight = SizeOfY / 50;

  BlockNum    = Progress;

  PosX        = 0;
  PosY        = SizeOfY * 48 / 50;

  if (BlockNum == 0) {
    //
    // Clear progress area
    //
    SetMem (&Color, sizeof (EFI_GRAPHICS_OUTPUT_BLT_PIXEL), 0x0);

    if (GraphicsOutput != NULL) {
      Status = GraphicsOutput->Blt (
                          GraphicsOutput,
                          &Color,
                          EfiBltVideoFill,
                          0,
                          0,
                          0,
                          PosY - EFI_GLYPH_HEIGHT - 1,
                          SizeOfX,
                          SizeOfY - (PosY - EFI_GLYPH_HEIGHT - 1),
                          SizeOfX * sizeof (EFI_GRAPHICS_OUTPUT_BLT_PIXEL)
                          );
    } else if (FeaturePcdGet (PcdUgaConsumeSupport)) {
      Status = UgaDraw->Blt (
                          UgaDraw,
                          (EFI_UGA_PIXEL *) &Color,
                          EfiUgaVideoFill,
                          0,
                          0,
                          0,
                          PosY - EFI_GLYPH_HEIGHT - 1,
                          SizeOfX,
                          SizeOfY - (PosY - EFI_GLYPH_HEIGHT - 1),
                          SizeOfX * sizeof (EFI_UGA_PIXEL)
                          );
    } else {
      return EFI_UNSUPPORTED;
    }
  }
  //
  // Show progress by drawing blocks
  //
  for (Index = PreviousValue; Index < BlockNum; Index++) {
    PosX = Index * BlockWidth;
    if (GraphicsOutput != NULL) {
      Status = GraphicsOutput->Blt (
                          GraphicsOutput,
                          &ProgressColor,
                          EfiBltVideoFill,
                          0,
                          0,
                          PosX,
                          PosY,
                          BlockWidth - 1,
                          BlockHeight,
                          (BlockWidth) * sizeof (EFI_GRAPHICS_OUTPUT_BLT_PIXEL)
                          );
    } else if (FeaturePcdGet (PcdUgaConsumeSupport)) {
      Status = UgaDraw->Blt (
                          UgaDraw,
                          (EFI_UGA_PIXEL *) &ProgressColor,
                          EfiUgaVideoFill,
                          0,
                          0,
                          PosX,
                          PosY,
                          BlockWidth - 1,
                          BlockHeight,
                          (BlockWidth) * sizeof (EFI_UGA_PIXEL)
                          );
    } else {
      return EFI_UNSUPPORTED;
    }
  }

  PrintXY (
    (SizeOfX - StrLen (Title) * EFI_GLYPH_WIDTH) / 2,
    PosY - EFI_GLYPH_HEIGHT - 1,
    &TitleForeground,
    &TitleBackground,
    Title
    );

  return EFI_SUCCESS;
}
示例#16
0
/**
  Use SystemTable Conout to stop video based Simple Text Out consoles from going
  to the video device. Put up LogoFile on every video device that is a console.

  @param[in]  LogoFile   File name of logo to display on the center of the screen.

  @retval EFI_SUCCESS     ConsoleControl has been flipped to graphics and logo displayed.
  @retval EFI_UNSUPPORTED Logo not found

**/
EFI_STATUS
EFIAPI
EnableQuietBoot (
  IN  EFI_GUID  *LogoFile
  )
{
  EFI_STATUS                    Status;
  EFI_OEM_BADGING_PROTOCOL      *Badging;
  UINT32                        SizeOfX;
  UINT32                        SizeOfY;
  INTN                          DestX;
  INTN                          DestY;
  UINT8                         *ImageData;
  UINTN                         ImageSize;
  UINTN                         BltSize;
  UINT32                        Instance;
  EFI_BADGING_FORMAT            Format;
  EFI_BADGING_DISPLAY_ATTRIBUTE Attribute;
  UINTN                         CoordinateX;
  UINTN                         CoordinateY;
  UINTN                         Height;
  UINTN                         Width;
  EFI_GRAPHICS_OUTPUT_BLT_PIXEL *Blt;
  EFI_UGA_DRAW_PROTOCOL         *UgaDraw;
  UINT32                        ColorDepth;
  UINT32                        RefreshRate;
  EFI_GRAPHICS_OUTPUT_PROTOCOL  *GraphicsOutput;
  EFI_BOOT_LOGO_PROTOCOL        *BootLogo;
  UINTN                         NumberOfLogos;
  EFI_GRAPHICS_OUTPUT_BLT_PIXEL *LogoBlt;
  UINTN                         LogoDestX;
  UINTN                         LogoDestY;
  UINTN                         LogoHeight;
  UINTN                         LogoWidth;
  UINTN                         NewDestX;
  UINTN                         NewDestY;
  UINTN                         NewHeight;
  UINTN                         NewWidth;
  UINT64                        BufferSize;

  UgaDraw = NULL;
  //
  // Try to open GOP first
  //
  Status = gBS->HandleProtocol (gST->ConsoleOutHandle, &gEfiGraphicsOutputProtocolGuid, (VOID **) &GraphicsOutput);
  if (EFI_ERROR (Status) && FeaturePcdGet (PcdUgaConsumeSupport)) {
    GraphicsOutput = NULL;
    //
    // Open GOP failed, try to open UGA
    //
    Status = gBS->HandleProtocol (gST->ConsoleOutHandle, &gEfiUgaDrawProtocolGuid, (VOID **) &UgaDraw);
  }
  if (EFI_ERROR (Status)) {
    return EFI_UNSUPPORTED;
  }

  //
  // Try to open Boot Logo Protocol.
  //
  BootLogo = NULL;
  gBS->LocateProtocol (&gEfiBootLogoProtocolGuid, NULL, (VOID **) &BootLogo);

  //
  // Erase Cursor from screen
  //
  gST->ConOut->EnableCursor (gST->ConOut, FALSE);

  Badging = NULL;
  Status  = gBS->LocateProtocol (&gEfiOEMBadgingProtocolGuid, NULL, (VOID **) &Badging);

  if (GraphicsOutput != NULL) {
    SizeOfX = GraphicsOutput->Mode->Info->HorizontalResolution;
    SizeOfY = GraphicsOutput->Mode->Info->VerticalResolution;

  } else if (UgaDraw != NULL && FeaturePcdGet (PcdUgaConsumeSupport)) {
    Status = UgaDraw->GetMode (UgaDraw, &SizeOfX, &SizeOfY, &ColorDepth, &RefreshRate);
    if (EFI_ERROR (Status)) {
      return EFI_UNSUPPORTED;
    }
  } else {
    return EFI_UNSUPPORTED;
  }

  Blt = NULL;
  NumberOfLogos = 0;
  LogoDestX = 0;
  LogoDestY = 0;
  LogoHeight = 0;
  LogoWidth = 0;
  NewDestX = 0;
  NewDestY = 0;
  NewHeight = 0;
  NewWidth = 0;
  Instance = 0;
  while (1) {
    ImageData = NULL;
    ImageSize = 0;

    if (Badging != NULL) {
      //
      // Get image from OEMBadging protocol.
      //
      Status = Badging->GetImage (
                          Badging,
                          &Instance,
                          &Format,
                          &ImageData,
                          &ImageSize,
                          &Attribute,
                          &CoordinateX,
                          &CoordinateY
                          );
      if (EFI_ERROR (Status)) {
        goto Done;
      }

      //
      // Currently only support BMP format.
      //
      if (Format != EfiBadgingFormatBMP) {
        if (ImageData != NULL) {
          FreePool (ImageData);
        }
        continue;
      }
    } else {
      //
      // Get the specified image from FV.
      //
      Status = GetSectionFromAnyFv (LogoFile, EFI_SECTION_RAW, 0, (VOID **) &ImageData, &ImageSize);
      if (EFI_ERROR (Status)) {
        return EFI_UNSUPPORTED;
      }

      CoordinateX = 0;
      CoordinateY = 0;
      if (!FeaturePcdGet(PcdBootlogoOnlyEnable)) {
        Attribute   = EfiBadgingDisplayAttributeCenter;
      } else {
        Attribute   = EfiBadgingDisplayAttributeCustomized;
      } 
    }

    if (Blt != NULL) {
      FreePool (Blt);
    }
    Blt = NULL;
    Status = TranslateBmpToGopBlt (
              ImageData,
              ImageSize,
              &Blt,
              &BltSize,
              &Height,
              &Width
              );
    if (EFI_ERROR (Status)) {
      FreePool (ImageData);

      if (Badging == NULL) {
        return Status;
      } else {
        continue;
      }
    }

    //
    // Calculate the display position according to Attribute.
    //
    switch (Attribute) {
    case EfiBadgingDisplayAttributeLeftTop:
      DestX = CoordinateX;
      DestY = CoordinateY;
      break;

    case EfiBadgingDisplayAttributeCenterTop:
      DestX = (SizeOfX - Width) / 2;
      DestY = CoordinateY;
      break;

    case EfiBadgingDisplayAttributeRightTop:
      DestX = (SizeOfX - Width - CoordinateX);
      DestY = CoordinateY;;
      break;

    case EfiBadgingDisplayAttributeCenterRight:
      DestX = (SizeOfX - Width - CoordinateX);
      DestY = (SizeOfY - Height) / 2;
      break;

    case EfiBadgingDisplayAttributeRightBottom:
      DestX = (SizeOfX - Width - CoordinateX);
      DestY = (SizeOfY - Height - CoordinateY);
      break;

    case EfiBadgingDisplayAttributeCenterBottom:
      DestX = (SizeOfX - Width) / 2;
      DestY = (SizeOfY - Height - CoordinateY);
      break;

    case EfiBadgingDisplayAttributeLeftBottom:
      DestX = CoordinateX;
      DestY = (SizeOfY - Height - CoordinateY);
      break;

    case EfiBadgingDisplayAttributeCenterLeft:
      DestX = CoordinateX;
      DestY = (SizeOfY - Height) / 2;
      break;

    case EfiBadgingDisplayAttributeCenter:
      DestX = (SizeOfX - Width) / 2;
      DestY = (SizeOfY - Height) / 2;
      break;

    case EfiBadgingDisplayAttributeCustomized:
      DestX = (SizeOfX - Width) / 2;
      DestY = ((SizeOfY * 382) / 1000) - Height / 2;
      break;

    default:
      DestX = CoordinateX;
      DestY = CoordinateY;
      break;
    }

    if ((DestX >= 0) && (DestY >= 0)) {
      if (GraphicsOutput != NULL) {
        Status = GraphicsOutput->Blt (
                            GraphicsOutput,
                            Blt,
                            EfiBltBufferToVideo,
                            0,
                            0,
                            (UINTN) DestX,
                            (UINTN) DestY,
                            Width,
                            Height,
                            Width * sizeof (EFI_GRAPHICS_OUTPUT_BLT_PIXEL)
                            );
      } else if (UgaDraw != NULL && FeaturePcdGet (PcdUgaConsumeSupport)) {
        Status = UgaDraw->Blt (
                            UgaDraw,
                            (EFI_UGA_PIXEL *) Blt,
                            EfiUgaBltBufferToVideo,
                            0,
                            0,
                            (UINTN) DestX,
                            (UINTN) DestY,
                            Width,
                            Height,
                            Width * sizeof (EFI_UGA_PIXEL)
                            );
      } else {
        Status = EFI_UNSUPPORTED;
      }

      //
      // Report displayed Logo information.
      //
      if (!EFI_ERROR (Status)) {
        NumberOfLogos++;

        if (LogoWidth == 0) {
          //
          // The first Logo.
          //
          LogoDestX = (UINTN) DestX;
          LogoDestY = (UINTN) DestY;
          LogoWidth = Width;
          LogoHeight = Height;
        } else {
          //
          // Merge new logo with old one.
          //
          NewDestX = MIN ((UINTN) DestX, LogoDestX);
          NewDestY = MIN ((UINTN) DestY, LogoDestY);
          NewWidth = MAX ((UINTN) DestX + Width, LogoDestX + LogoWidth) - NewDestX;
          NewHeight = MAX ((UINTN) DestY + Height, LogoDestY + LogoHeight) - NewDestY;

          LogoDestX = NewDestX;
          LogoDestY = NewDestY;
          LogoWidth = NewWidth;
          LogoHeight = NewHeight;
        }
      }
    }

    FreePool (ImageData);

    if (Badging == NULL) {
      break;
    }
  }

Done:
  if (BootLogo == NULL || NumberOfLogos == 0) {
    //
    // No logo displayed.
    //
    if (Blt != NULL) {
      FreePool (Blt);
    }

    return Status;
  }

  //
  // Advertise displayed Logo information.
  //
  if (NumberOfLogos == 1) {
    //
    // Only one logo displayed, use its Blt buffer directly for BootLogo protocol.
    //
    LogoBlt = Blt;
    Status = EFI_SUCCESS;
  } else {
    //
    // More than one Logo displayed, get merged BltBuffer using VideoToBuffer operation. 
    //
    if (Blt != NULL) {
      FreePool (Blt);
    }

    //
    // Ensure the LogoHeight * LogoWidth doesn't overflow
    //
    if (LogoHeight > DivU64x64Remainder ((UINTN) ~0, LogoWidth, NULL)) {
      return EFI_UNSUPPORTED;
    }
    BufferSize = MultU64x64 (LogoWidth, LogoHeight);

    //
    // Ensure the BufferSize * sizeof (EFI_GRAPHICS_OUTPUT_BLT_PIXEL) doesn't overflow
    //
    if (BufferSize > DivU64x32 ((UINTN) ~0, sizeof (EFI_GRAPHICS_OUTPUT_BLT_PIXEL))) {
      return EFI_UNSUPPORTED;
    }

    LogoBlt = AllocateZeroPool ((UINTN)BufferSize * sizeof (EFI_GRAPHICS_OUTPUT_BLT_PIXEL));
    if (LogoBlt == NULL) {
      return EFI_OUT_OF_RESOURCES;
    }

    if (GraphicsOutput != NULL) {
      Status = GraphicsOutput->Blt (
                          GraphicsOutput,
                          LogoBlt,
                          EfiBltVideoToBltBuffer,
                          LogoDestX,
                          LogoDestY,
                          0,
                          0,
                          LogoWidth,
                          LogoHeight,
                          LogoWidth * sizeof (EFI_GRAPHICS_OUTPUT_BLT_PIXEL)
                          );
    } else if (UgaDraw != NULL && FeaturePcdGet (PcdUgaConsumeSupport)) {
      Status = UgaDraw->Blt (
                          UgaDraw,
                          (EFI_UGA_PIXEL *) LogoBlt,
                          EfiUgaVideoToBltBuffer,
                          LogoDestX,
                          LogoDestY,
                          0,
                          0,
                          LogoWidth,
                          LogoHeight,
                          LogoWidth * sizeof (EFI_UGA_PIXEL)
                          );
    } else {
      Status = EFI_UNSUPPORTED;
    }
  }

  if (!EFI_ERROR (Status)) {
    BootLogo->SetBootLogo (BootLogo, LogoBlt, LogoDestX, LogoDestY, LogoWidth, LogoHeight);
  }
  FreePool (LogoBlt);

  return Status;
}
示例#17
0
/**
  Returns the size and type of the requested recovery capsule.

  This function gets the size and type of the capsule specified by CapsuleInstance.

  @param[in]  PeiServices       General-purpose services that are available to every PEIM
  @param[in]  This              Indicates the EFI_PEI_DEVICE_RECOVERY_MODULE_PPI
                                instance.
  @param[in]  CapsuleInstance   Specifies for which capsule instance to retrieve
                                the information.  This parameter must be between
                                one and the value returned by GetNumberRecoveryCapsules()
                                in NumberRecoveryCapsules.
  @param[out] Size              A pointer to a caller-allocated UINTN in which
                                the size of the requested recovery module is
                                returned.
  @param[out] CapsuleType       A pointer to a caller-allocated EFI_GUID in which
                                the type of the requested recovery capsule is
                                returned.  The semantic meaning of the value
                                returned is defined by the implementation.

  @retval EFI_SUCCESS        One or more capsules were discovered.
  @retval EFI_DEVICE_ERROR   A device error occurred.
  @retval EFI_NOT_FOUND      A recovery DXE capsule cannot be found.

**/
EFI_STATUS
EFIAPI
GetRecoveryCapsuleInfo (
    IN  EFI_PEI_SERVICES                              **PeiServices,
    IN  EFI_PEI_DEVICE_RECOVERY_MODULE_PPI            *This,
    IN  UINTN                                         CapsuleInstance,
    OUT UINTN                                         *Size,
    OUT EFI_GUID                                      *CapsuleType
)
{
    EFI_STATUS            Status;
    PEI_FAT_PRIVATE_DATA  *PrivateData;
    UINTN                 Index;
    UINTN                 BlockDeviceNo;
    UINTN                 RecoveryCapsuleCount;
    PEI_FILE_HANDLE       Handle;
    UINTN                 NumberRecoveryCapsules;

    Status = GetNumberRecoveryCapsules (PeiServices, This, &NumberRecoveryCapsules);

    if (EFI_ERROR (Status)) {
        return Status;
    }

    if (FeaturePcdGet (PcdFrameworkCompatibilitySupport)) {
        CapsuleInstance = CapsuleInstance + 1;
    }

    if ((CapsuleInstance == 0) || (CapsuleInstance > NumberRecoveryCapsules)) {
        return EFI_NOT_FOUND;
    }

    PrivateData = PEI_FAT_PRIVATE_DATA_FROM_THIS (This);

    //
    // Search each volume in the root directory for the Recovery capsule
    //
    RecoveryCapsuleCount = 0;
    for (Index = 0; Index < PrivateData->VolumeCount; Index++) {
        Status = FindRecoveryFile (PrivateData, Index, PEI_FAT_RECOVERY_CAPSULE_WITHOUT_NT_EMULATOR, &Handle);

        if (EFI_ERROR (Status)) {
            continue;
        }

        if (CapsuleInstance - 1 == RecoveryCapsuleCount) {
            //
            // Get file size
            //
            *Size = (UINTN) (((PEI_FAT_FILE *) Handle)->FileSize);

            //
            // Find corresponding physical block device
            //
            BlockDeviceNo = PrivateData->Volume[Index].BlockDeviceNo;
            while (PrivateData->BlockDevice[BlockDeviceNo].Logical && BlockDeviceNo < PrivateData->BlockDeviceCount) {
                BlockDeviceNo = PrivateData->BlockDevice[BlockDeviceNo].ParentDevNo;
            }
            //
            // Fill in the Capsule Type GUID according to the block device type
            //
            if (BlockDeviceNo < PrivateData->BlockDeviceCount) {
                if (PrivateData->BlockDevice[BlockDeviceNo].BlockIo2 != NULL) {
                    switch (PrivateData->BlockDevice[BlockDeviceNo].InterfaceType) {
                    case MSG_ATAPI_DP:
                        CopyGuid (CapsuleType, &gRecoveryOnFatIdeDiskGuid);
                        break;

                    case MSG_USB_DP:
                        CopyGuid (CapsuleType, &gRecoveryOnFatUsbDiskGuid);
                        break;

                    default:
                        break;
                    }
                }
                if (PrivateData->BlockDevice[BlockDeviceNo].BlockIo != NULL) {
                    switch (PrivateData->BlockDevice[BlockDeviceNo].DevType) {
                    case LegacyFloppy:
                        CopyGuid (CapsuleType, &gRecoveryOnFatFloppyDiskGuid);
                        break;

                    case IdeCDROM:
                    case IdeLS120:
                        CopyGuid (CapsuleType, &gRecoveryOnFatIdeDiskGuid);
                        break;

                    case UsbMassStorage:
                        CopyGuid (CapsuleType, &gRecoveryOnFatUsbDiskGuid);
                        break;

                    default:
                        break;
                    }
                }
            }

            return EFI_SUCCESS;
        }

        RecoveryCapsuleCount++;
    }

    return EFI_NOT_FOUND;
}
示例#18
0
VOID
EFIAPI
PlatformConfigOnSmmConfigurationProtocol (
  IN  EFI_EVENT Event,
  IN  VOID      *Context
  )
/*++

Routine Description:

  Function runs in PI-DXE to perform platform specific config when
  SmmConfigurationProtocol is installed.

Arguments:
  Event       - The event that occured.
  Context     - For EFI compatiblity.  Not used.

Returns:
  None.
--*/

{
  EFI_STATUS            Status;
  UINT32                NewValue;
  UINT64                BaseAddress;
  UINT64                SmramLength;
  EFI_CPU_ARCH_PROTOCOL *CpuArchProtocol;   // RTC:28208 - System hang/crash when entering probe mode(ITP) when relocating SMBASE
  VOID                  *SmmCfgProt;

  Status = gBS->LocateProtocol (&gEfiSmmConfigurationProtocolGuid, NULL, &SmmCfgProt);
  if (Status != EFI_SUCCESS){
    DEBUG ((DEBUG_INFO, "gEfiSmmConfigurationProtocolGuid triggered but not valid.\n"));
    return;
  }
  if (mMemCfgDone) {
    DEBUG ((DEBUG_INFO, "Platform DXE Mem config already done.\n"));
    return;
  }

  //
  // Disable eSram block (this will also clear/zero eSRAM)
  // We only use eSRAM in the PEI phase. Disable now that we are in the DXE phase
  //
  NewValue = QNCPortRead (QUARK_NC_MEMORY_MANAGER_SB_PORT_ID, QUARK_NC_MEMORY_MANAGER_ESRAMPGCTRL_BLOCK);
  NewValue |= BLOCK_DISABLE_PG;
  QNCPortWrite (QUARK_NC_MEMORY_MANAGER_SB_PORT_ID, QUARK_NC_MEMORY_MANAGER_ESRAMPGCTRL_BLOCK, NewValue);

  //
  // Update HMBOUND to top of DDR3 memory and LOCK
  // We disabled eSRAM so now we move HMBOUND down to top of DDR3
  //
  QNCGetTSEGMemoryRange (&BaseAddress, &SmramLength);
  NewValue = (UINT32)(BaseAddress + SmramLength);
  DEBUG ((EFI_D_INFO,"Locking HMBOUND at: = 0x%8x\n",NewValue));
  QNCPortWrite (QUARK_NC_HOST_BRIDGE_SB_PORT_ID, QUARK_NC_HOST_BRIDGE_HMBOUND_REG, (NewValue | HMBOUND_LOCK));

  if(FeaturePcdGet (PcdEnableSecureLock)) {
    //
    // Lock IMR5 now that HMBOUND is locked (legacy S3 region)
    //
    NewValue = QNCPortRead (QUARK_NC_MEMORY_MANAGER_SB_PORT_ID, QUARK_NC_MEMORY_MANAGER_IMR5+QUARK_NC_MEMORY_MANAGER_IMRXL);
    NewValue |= IMR_LOCK;
    QNCPortWrite (QUARK_NC_MEMORY_MANAGER_SB_PORT_ID, QUARK_NC_MEMORY_MANAGER_IMR5+QUARK_NC_MEMORY_MANAGER_IMRXL, NewValue);

    //
    // Lock IMR6 now that HMBOUND is locked (ACPI Reclaim/ACPI/Runtime services/Reserved)
    //
    NewValue = QNCPortRead (QUARK_NC_MEMORY_MANAGER_SB_PORT_ID, QUARK_NC_MEMORY_MANAGER_IMR6+QUARK_NC_MEMORY_MANAGER_IMRXL);
    NewValue |= IMR_LOCK;
    QNCPortWrite (QUARK_NC_MEMORY_MANAGER_SB_PORT_ID, QUARK_NC_MEMORY_MANAGER_IMR6+QUARK_NC_MEMORY_MANAGER_IMRXL, NewValue);

    //
    // Disable IMR2 memory protection (RMU Main Binary)
    //
    QncImrWrite (
              QUARK_NC_MEMORY_MANAGER_IMR2,
              (UINT32)(IMRL_RESET & ~IMR_EN),
              (UINT32)IMRH_RESET,
              (UINT32)IMRX_ALL_ACCESS,
              (UINT32)IMRX_ALL_ACCESS
          );

    //
    // Disable IMR3 memory protection (Default SMRAM)
    //
    QncImrWrite (
              QUARK_NC_MEMORY_MANAGER_IMR3,
              (UINT32)(IMRL_RESET & ~IMR_EN),
              (UINT32)IMRH_RESET,
              (UINT32)IMRX_ALL_ACCESS,
              (UINT32)IMRX_ALL_ACCESS
          );

    //
    // Disable IMR4 memory protection (eSRAM).
    //
    QncImrWrite (
              QUARK_NC_MEMORY_MANAGER_IMR4,
              (UINT32)(IMRL_RESET & ~IMR_EN),
              (UINT32)IMRH_RESET,
              (UINT32)IMRX_ALL_ACCESS,
              (UINT32)IMRX_ALL_ACCESS
          );
  }

  //
  // RTC:28208 - System hang/crash when entering probe mode(ITP) when relocating SMBASE
  //             Workaround to make default SMRAM UnCachable
  //
  Status = gBS->LocateProtocol (&gEfiCpuArchProtocolGuid, NULL, (VOID **) &CpuArchProtocol);
  ASSERT_EFI_ERROR (Status);

  CpuArchProtocol->SetMemoryAttributes (
                     CpuArchProtocol,
                     (EFI_PHYSICAL_ADDRESS) SMM_DEFAULT_SMBASE,
                     SMM_DEFAULT_SMBASE_SIZE_BYTES,
                     EFI_MEMORY_WB
                     );

  mMemCfgDone = TRUE;
}
示例#19
0
/**
  Starts a target block update. This records information about the write
  in fault tolerant storage and will complete the write in a recoverable
  manner, ensuring at all times that either the original contents or
  the modified contents are available.

  @param This            The pointer to this protocol instance. 
  @param CallerId        The GUID identifying the last write.
  @param Lba             The logical block address of the last write.
  @param Offset          The offset within the block of the last write.
  @param Length          The length of the last write.
  @param PrivateDataSize bytes from the private data
                         stored for this write.
  @param PrivateData     A pointer to a buffer. The function will copy
  @param Complete        A Boolean value with TRUE indicating
                         that the write was completed.

  @retval EFI_SUCCESS           The function completed successfully
  @retval EFI_ABORTED           The function could not complete successfully
  @retval EFI_NOT_FOUND         No allocated writes exist
  @retval EFI_BUFFER_TOO_SMALL  Input buffer is not larget enough

**/
EFI_STATUS
EFIAPI
FtwGetLastWrite (
  IN EFI_FAULT_TOLERANT_WRITE_PROTOCOL     *This,
  OUT EFI_GUID                             *CallerId,
  OUT EFI_LBA                              *Lba,
  OUT UINTN                                *Offset,
  OUT UINTN                                *Length,
  IN OUT UINTN                             *PrivateDataSize,
  OUT VOID                                 *PrivateData,
  OUT BOOLEAN                              *Complete
  )
{
  EFI_STATUS                      Status;
  EFI_FTW_DEVICE                  *FtwDevice;
  EFI_FAULT_TOLERANT_WRITE_HEADER *Header;
  EFI_FAULT_TOLERANT_WRITE_RECORD *Record;

  if (!FeaturePcdGet(PcdFullFtwServiceEnable)) {
    return EFI_UNSUPPORTED;
  }

  FtwDevice = FTW_CONTEXT_FROM_THIS (This);

  Status    = WorkSpaceRefresh (FtwDevice);
  if (EFI_ERROR (Status)) {
    return EFI_ABORTED;
  }

  Header  = FtwDevice->FtwLastWriteHeader;
  Record  = FtwDevice->FtwLastWriteRecord;

  //
  // If Header is incompleted and the last record has completed, then
  // call Abort() to set the Header->Complete FLAG.
  //
  if ((Header->Complete != FTW_VALID_STATE) &&
      (Record->DestinationComplete == FTW_VALID_STATE) &&
      IsLastRecordOfWrites (Header, Record)
        ) {

    Status    = FtwAbort (This);
    *Complete = TRUE;
    return EFI_NOT_FOUND;
  }
  //
  // If there is no write header/record, return not found.
  //
  if (Header->HeaderAllocated != FTW_VALID_STATE) {
    *Complete = TRUE;
    return EFI_NOT_FOUND;
  }
  //
  // If this record SpareComplete has not set, then it can not restart.
  //
  if (Record->SpareComplete != FTW_VALID_STATE) {
    Status = GetPreviousRecordOfWrites (Header, &Record);
    if (EFI_ERROR (Status)) {
      FtwAbort (This);
      *Complete = TRUE;
      return EFI_NOT_FOUND;
    }
    ASSERT (Record != NULL);
  }

  //
  // Fill all the requested values
  //
  CopyMem (CallerId, &Header->CallerId, sizeof (EFI_GUID));
  *Lba      = Record->Lba;
  *Offset   = Record->Offset;
  *Length   = Record->Length;
  *Complete = (BOOLEAN) (Record->DestinationComplete == FTW_VALID_STATE);

  if (*PrivateDataSize < Header->PrivateDataSize) {
    *PrivateDataSize  = Header->PrivateDataSize;
    PrivateData       = NULL;
    Status            = EFI_BUFFER_TOO_SMALL;
  } else {
    *PrivateDataSize = Header->PrivateDataSize;
    CopyMem (PrivateData, Record + 1, *PrivateDataSize);
    Status = EFI_SUCCESS;
  }

  DEBUG ((EFI_D_ERROR, "Ftw: GetLasetWrite() success\n"));

  return Status;
}
示例#20
0
/*++

Routine Description:



Arguments:

  FileHandle  - Handle of the file being invoked.
  PeiServices - Describes the list of possible PEI Services.

Returns:

  Status -  EFI_SUCCESS if the boot mode could be set

--*/
EFI_STATUS
EFIAPI
MemoryPeim (
  IN EFI_PHYSICAL_ADDRESS               UefiMemoryBase,
  IN UINT64                             UefiMemorySize
  )
{
  EFI_RESOURCE_ATTRIBUTE_TYPE ResourceAttributes;
  UINT64                      ResourceLength;
  EFI_PEI_HOB_POINTERS        NextHob;
  EFI_PHYSICAL_ADDRESS        FdTop;
  EFI_PHYSICAL_ADDRESS        SystemMemoryTop;
  EFI_PHYSICAL_ADDRESS        ResourceTop;
  BOOLEAN                     Found;

  // Ensure PcdSystemMemorySize has been set
  ASSERT (PcdGet32 (PcdSystemMemorySize) != 0);

  //
  // Now, the permanent memory has been installed, we can call AllocatePages()
  //
  ResourceAttributes = (
      EFI_RESOURCE_ATTRIBUTE_PRESENT |
      EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
      EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
      EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
      EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
      EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE |
      EFI_RESOURCE_ATTRIBUTE_TESTED
  );

  // Reserved the memory space occupied by the firmware volume
  BuildResourceDescriptorHob (
      EFI_RESOURCE_SYSTEM_MEMORY,
      ResourceAttributes,
      PcdGet32 (PcdSystemMemoryBase),
      PcdGet32 (PcdSystemMemorySize)
  );

  SystemMemoryTop = PcdGet32 (PcdSystemMemoryBase) + PcdGet32 (PcdSystemMemorySize);
  FdTop = PcdGet32(PcdFdBaseAddress) + PcdGet32(PcdFdSize);

  // EDK2 does not have the concept of boot firmware copied into DRAM. To avoid the DXE
  // core to overwrite this area we must mark the region with the attribute non-present
  if ((PcdGet32 (PcdFdBaseAddress) >= PcdGet32 (PcdSystemMemoryBase)) && (FdTop <= SystemMemoryTop)) {
    Found = FALSE;

    // Search for System Memory Hob that contains the firmware
    NextHob.Raw = GetHobList ();
    while ((NextHob.Raw = GetNextHob (EFI_HOB_TYPE_RESOURCE_DESCRIPTOR, NextHob.Raw)) != NULL) {
      if ((NextHob.ResourceDescriptor->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY) &&
          (PcdGet32(PcdFdBaseAddress) >= NextHob.ResourceDescriptor->PhysicalStart) &&
          (FdTop <= NextHob.ResourceDescriptor->PhysicalStart + NextHob.ResourceDescriptor->ResourceLength))
      {
        ResourceAttributes = NextHob.ResourceDescriptor->ResourceAttribute;
        ResourceLength = NextHob.ResourceDescriptor->ResourceLength;
        ResourceTop = NextHob.ResourceDescriptor->PhysicalStart + ResourceLength;

        if (PcdGet32(PcdFdBaseAddress) == NextHob.ResourceDescriptor->PhysicalStart) {
          if (SystemMemoryTop == FdTop) {
            NextHob.ResourceDescriptor->ResourceAttribute = ResourceAttributes & ~EFI_RESOURCE_ATTRIBUTE_PRESENT;
          } else {
            // Create the System Memory HOB for the firmware with the non-present attribute
            BuildResourceDescriptorHob (EFI_RESOURCE_SYSTEM_MEMORY,
                                        ResourceAttributes & ~EFI_RESOURCE_ATTRIBUTE_PRESENT,
                                        PcdGet32(PcdFdBaseAddress),
                                        PcdGet32(PcdFdSize));

            // Top of the FD is system memory available for UEFI
            NextHob.ResourceDescriptor->PhysicalStart += PcdGet32(PcdFdSize);
            NextHob.ResourceDescriptor->ResourceLength -= PcdGet32(PcdFdSize);
          }
        } else {
          // Create the System Memory HOB for the firmware with the non-present attribute
          BuildResourceDescriptorHob (EFI_RESOURCE_SYSTEM_MEMORY,
                                      ResourceAttributes & ~EFI_RESOURCE_ATTRIBUTE_PRESENT,
                                      PcdGet32(PcdFdBaseAddress),
                                      PcdGet32(PcdFdSize));

          // Update the HOB
          NextHob.ResourceDescriptor->ResourceLength = PcdGet32(PcdFdBaseAddress) - NextHob.ResourceDescriptor->PhysicalStart;

          // If there is some memory available on the top of the FD then create a HOB
          if (FdTop < NextHob.ResourceDescriptor->PhysicalStart + ResourceLength) {
            // Create the System Memory HOB for the remaining region (top of the FD)
            BuildResourceDescriptorHob (EFI_RESOURCE_SYSTEM_MEMORY,
                                        ResourceAttributes,
                                        FdTop,
                                        ResourceTop - FdTop);
          }
        }
        Found = TRUE;
        break;
      }
      NextHob.Raw = GET_NEXT_HOB (NextHob);
    }

    ASSERT(Found);
  }

  // Build Memory Allocation Hob
  InitMmu ();

  if (FeaturePcdGet (PcdPrePiProduceMemoryTypeInformationHob)) {
    // Optional feature that helps prevent EFI memory map fragmentation.
    BuildMemoryTypeInformationHob ();
  }

  return EFI_SUCCESS;
}
示例#21
0
文件: LinkedList.c 项目: B-Rich/edk2
/**
  Worker function that locates the Node in the List.

  By searching the List, finds the location of the Node in List. At the same time,
  verifies the validity of this list.

  If List is NULL, then ASSERT().
  If List->ForwardLink is NULL, then ASSERT().
  If List->backLink is NULL, then ASSERT().
  If Node is NULL, then ASSERT().
  If PcdVerifyNodeInList is TRUE and DoMembershipCheck is TRUE and Node
  is in not a member of List, then return FALSE
  If PcdMaximumLinkedListLength is not zero, and List contains more than
  PcdMaximumLinkedListLength nodes, then ASSERT().

  @param  List              A pointer to a node in a linked list.
  @param  Node              A pointer to a node in a linked list.
  @param  VerifyNodeInList  TRUE if a check should be made to see if Node is a
                            member of List.  FALSE if no membership test should
                            be performed.

  @retval   TRUE if PcdVerifyNodeInList is FALSE
  @retval   TRUE if DoMembershipCheck is FALSE
  @retval   TRUE if PcdVerifyNodeInList is TRUE and DoMembershipCheck is TRUE
            and Node is a member of List.
  @retval   FALSE if PcdVerifyNodeInList is TRUE and DoMembershipCheck is TRUE
            and Node is in not a member of List.

**/
BOOLEAN
EFIAPI
InternalBaseLibIsNodeInList (
    IN CONST LIST_ENTRY  *List,
    IN CONST LIST_ENTRY  *Node,
    IN BOOLEAN           VerifyNodeInList
)
{
    UINTN             Count;
    CONST LIST_ENTRY  *Ptr;

    //
    // Test the validity of List and Node
    //
    ASSERT (List != NULL);
    ASSERT (List->ForwardLink != NULL);
    ASSERT (List->BackLink != NULL);
    ASSERT (Node != NULL);

    Count = 0;
    Ptr   = List;

    if (FeaturePcdGet (PcdVerifyNodeInList) && VerifyNodeInList) {
        //
        // Check to see if Node is a member of List.
        // Exit early if the number of nodes in List >= PcdMaximumLinkedListLength
        //
        do {
            Ptr = Ptr->ForwardLink;
            if (PcdGet32 (PcdMaximumLinkedListLength) > 0) {
                Count++;
                //
                // ASSERT() if the linked list is too long
                //
                ASSERT (Count < PcdGet32 (PcdMaximumLinkedListLength));

                //
                // Return if the linked list is too long
                //
                if (Count >= PcdGet32 (PcdMaximumLinkedListLength)) {
                    return (BOOLEAN)(Ptr == Node);
                }
            }
        } while ((Ptr != List) && (Ptr != Node));

        if (Ptr != Node) {
            return FALSE;
        }
    }

    if (PcdGet32 (PcdMaximumLinkedListLength) > 0) {
        //
        // Count the total number of nodes in List.
        // Exit early if the number of nodes in List >= PcdMaximumLinkedListLength
        //
        do {
            Ptr = Ptr->ForwardLink;
            Count++;
        } while ((Ptr != List) && (Count < PcdGet32 (PcdMaximumLinkedListLength)));

        //
        // ASSERT() if the linked list is too long
        //
        ASSERT (Count < PcdGet32 (PcdMaximumLinkedListLength));
    }

    return TRUE;
}
示例#22
0
/**
  The module Entry Point of the Firmware Performance Data Table DXE driver.

  @param[in]  ImageHandle    The firmware allocated handle for the EFI image.
  @param[in]  SystemTable    A pointer to the EFI System Table.

  @retval EFI_SUCCESS    The entry point is executed successfully.
  @retval Other          Some error occurs when executing this entry point.

**/
EFI_STATUS
EFIAPI
FirmwarePerformanceDxeEntryPoint (
  IN EFI_HANDLE          ImageHandle,
  IN EFI_SYSTEM_TABLE    *SystemTable
  )
{
  EFI_STATUS               Status;
  EFI_HOB_GUID_TYPE        *GuidHob;
  FIRMWARE_SEC_PERFORMANCE *Performance;
  VOID                     *Registration;

  //
  // Get Report Status Code Handler Protocol.
  //
  Status = gBS->LocateProtocol (&gEfiRscHandlerProtocolGuid, NULL, (VOID **) &mRscHandlerProtocol);
  ASSERT_EFI_ERROR (Status);

  //
  // Register report status code listener for OS Loader load and start.
  //
  Status = mRscHandlerProtocol->Register (FpdtStatusCodeListenerDxe, TPL_HIGH_LEVEL);
  ASSERT_EFI_ERROR (Status);

  //
  // Register the notify function to update FPDT on ExitBootServices Event.
  //
  Status = gBS->CreateEventEx (
                  EVT_NOTIFY_SIGNAL,
                  TPL_NOTIFY,
                  FpdtExitBootServicesEventNotify,
                  NULL,
                  &gEfiEventExitBootServicesGuid,
                  &mExitBootServicesEvent
                  );
  ASSERT_EFI_ERROR (Status);

  //
  // Create ready to boot event to install ACPI FPDT table.
  //
  Status = gBS->CreateEventEx (
                  EVT_NOTIFY_SIGNAL,
                  TPL_NOTIFY,
                  FpdtReadyToBootEventNotify,
                  NULL,
                  &gEfiEventReadyToBootGuid,
                  &mReadyToBootEvent
                  );
  ASSERT_EFI_ERROR (Status);

  //
  // Create legacy boot event to log OsLoaderStartImageStart for legacy boot.
  //
  Status = gBS->CreateEventEx (
                  EVT_NOTIFY_SIGNAL,
                  TPL_NOTIFY,
                  FpdtLegacyBootEventNotify,
                  NULL,
                  &gEfiEventLegacyBootGuid,
                  &mLegacyBootEvent
                  );
  ASSERT_EFI_ERROR (Status);

  //
  // Retrieve GUID HOB data that contains the ResetEnd.
  //
  GuidHob = GetFirstGuidHob (&gEfiFirmwarePerformanceGuid);
  if (GuidHob != NULL) {
    Performance = (FIRMWARE_SEC_PERFORMANCE *) GET_GUID_HOB_DATA (GuidHob);
    mBootPerformanceTableTemplate.BasicBoot.ResetEnd = Performance->ResetEnd;
  } else {
    //
    // SEC Performance Data Hob not found, ResetEnd in ACPI FPDT table will be 0.
    //
    DEBUG ((EFI_D_ERROR, "FPDT: WARNING: SEC Performance Data Hob not found, ResetEnd will be set to 0!\n"));
  }

  if (FeaturePcdGet (PcdFirmwarePerformanceDataTableS3Support)) {
    //
    // Register callback function upon VariableArchProtocol and LockBoxProtocol
    // to allocate S3 performance table memory and save the pointer to LockBox.
    //
    EfiCreateProtocolNotifyEvent (
      &gEfiVariableArchProtocolGuid,
      TPL_CALLBACK,
      FpdtAllocateS3PerformanceTableMemory,
      NULL,
      &Registration
      );
    EfiCreateProtocolNotifyEvent (
      &gEfiLockBoxProtocolGuid,
      TPL_CALLBACK,
      FpdtAllocateS3PerformanceTableMemory,
      NULL,
      &Registration
      );
  } else {
    //
    // Exclude S3 Performance Table Pointer from FPDT table template.
    //
    mFirmwarePerformanceTableTemplate.Header.Length -= sizeof (EFI_ACPI_5_0_FPDT_S3_PERFORMANCE_TABLE_POINTER_RECORD);
  }

  return EFI_SUCCESS;
}
示例#23
0
文件: FrontPage.c 项目: OznOg/edk2
/**
  This function is the main entry of the platform setup entry.
  The function will present the main menu of the system setup,
  this is the platform reference part and can be customize.


  @param TimeoutDefault     The fault time out value before the system
                            continue to boot.
  @param ConnectAllHappened The indicater to check if the connect all have
                            already happened.

**/
VOID
PlatformBdsEnterFrontPage (
  IN UINT16                       TimeoutDefault,
  IN BOOLEAN                      ConnectAllHappened
  )
{
  EFI_STATUS                         Status;
  EFI_STATUS                         StatusHotkey; 
  EFI_BOOT_LOGO_PROTOCOL             *BootLogo;
  EFI_GRAPHICS_OUTPUT_PROTOCOL       *GraphicsOutput;
  EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL    *SimpleTextOut;
  UINTN                              BootTextColumn;
  UINTN                              BootTextRow;
  UINT64                             OsIndication;
  UINTN                              DataSize;
  EFI_INPUT_KEY                      Key;

  GraphicsOutput = NULL;
  SimpleTextOut = NULL;

  PERF_START (NULL, "BdsTimeOut", "BDS", 0);
  //
  // Indicate if we need connect all in the platform setup
  //
  if (ConnectAllHappened) {
    gConnectAllHappened = TRUE;
  }

  if (!mModeInitialized) {
    //
    // After the console is ready, get current video resolution 
    // and text mode before launching setup at first time.
    //
    Status = gBS->HandleProtocol (
                    gST->ConsoleOutHandle,
                    &gEfiGraphicsOutputProtocolGuid,
                    (VOID**)&GraphicsOutput
                    );
    if (EFI_ERROR (Status)) {
      GraphicsOutput = NULL;
    }
    
    Status = gBS->HandleProtocol (
                    gST->ConsoleOutHandle,
                    &gEfiSimpleTextOutProtocolGuid,
                    (VOID**)&SimpleTextOut
                    );
    if (EFI_ERROR (Status)) {
      SimpleTextOut = NULL;
    }  

    if (GraphicsOutput != NULL) {
      //
      // Get current video resolution and text mode.
      //
      mBootHorizontalResolution = GraphicsOutput->Mode->Info->HorizontalResolution;
      mBootVerticalResolution   = GraphicsOutput->Mode->Info->VerticalResolution;
    }

    if (SimpleTextOut != NULL) {
      Status = SimpleTextOut->QueryMode (
                                SimpleTextOut,
                                SimpleTextOut->Mode->Mode,
                                &BootTextColumn,
                                &BootTextRow
                                );
      mBootTextModeColumn = (UINT32)BootTextColumn;
      mBootTextModeRow    = (UINT32)BootTextRow;
    }

    //
    // Get user defined text mode for setup.
    //  
    mSetupHorizontalResolution = PcdGet32 (PcdSetupVideoHorizontalResolution);
    mSetupVerticalResolution   = PcdGet32 (PcdSetupVideoVerticalResolution);      
    mSetupTextModeColumn       = PcdGet32 (PcdSetupConOutColumn);
    mSetupTextModeRow          = PcdGet32 (PcdSetupConOutRow);

    mModeInitialized           = TRUE;
  }


  //
  // goto FrontPage directly when EFI_OS_INDICATIONS_BOOT_TO_FW_UI is set
  //
  OsIndication = 0;
  DataSize = sizeof(UINT64);
  Status = gRT->GetVariable (
                  L"OsIndications",
                  &gEfiGlobalVariableGuid,
                  NULL,
                  &DataSize,
                  &OsIndication
                  );

  //
  // goto FrontPage directly when EFI_OS_INDICATIONS_BOOT_TO_FW_UI is set. Skip HotkeyBoot
  //
  if (!EFI_ERROR(Status) && ((OsIndication & EFI_OS_INDICATIONS_BOOT_TO_FW_UI) != 0)) {
    //
    // Clear EFI_OS_INDICATIONS_BOOT_TO_FW_UI to acknowledge OS
    // 
    OsIndication &= ~((UINT64)EFI_OS_INDICATIONS_BOOT_TO_FW_UI);
    Status = gRT->SetVariable (
                    L"OsIndications",
                    &gEfiGlobalVariableGuid,
                    EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_NON_VOLATILE,
                    sizeof(UINT64),
                    &OsIndication
                    );
    //
    // Changing the content without increasing its size with current variable implementation shouldn't fail.
    //
    ASSERT_EFI_ERROR (Status);

    //
    // Follow generic rule, Call ReadKeyStroke to connect ConIn before enter UI
    //
    if (PcdGetBool (PcdConInConnectOnDemand)) {
      gST->ConIn->ReadKeyStroke(gST->ConIn, &Key);
    }

    //
    // Ensure screen is clear when switch Console from Graphics mode to Text mode
    //
    gST->ConOut->EnableCursor (gST->ConOut, TRUE);
    gST->ConOut->ClearScreen (gST->ConOut);

  } else {

    HotkeyBoot ();
    if (TimeoutDefault != 0xffff) {
      Status = ShowProgress (TimeoutDefault);
      StatusHotkey = HotkeyBoot ();

      if (!FeaturePcdGet(PcdBootlogoOnlyEnable) || !EFI_ERROR(Status) || !EFI_ERROR(StatusHotkey)){
        //
        // Ensure screen is clear when switch Console from Graphics mode to Text mode
        // Skip it in normal boot 
        //
        gST->ConOut->EnableCursor (gST->ConOut, TRUE);
        gST->ConOut->ClearScreen (gST->ConOut);
      }

      if (EFI_ERROR (Status)) {
        //
        // Timeout or user press enter to continue
        //
        goto Exit;
      }
    }
  }

  //
  // Boot Logo is corrupted, report it using Boot Logo protocol.
  //
  Status = gBS->LocateProtocol (&gEfiBootLogoProtocolGuid, NULL, (VOID **) &BootLogo);
  if (!EFI_ERROR (Status) && (BootLogo != NULL)) {
    BootLogo->SetBootLogo (BootLogo, NULL, 0, 0, 0, 0);
  }

  //
  // Install BM HiiPackages. 
  // Keep BootMaint HiiPackage, so that it can be covered by global setting. 
  //
  InitBMPackage ();

  Status = EFI_SUCCESS;
  do {
    //
    // Set proper video resolution and text mode for setup
    //
    BdsSetConsoleMode (TRUE);
    
    InitializeFrontPage (FALSE);

    //
    // Update Front Page strings
    //
    UpdateFrontPageStrings ();

    gCallbackKey = 0;
    CallFrontPage ();

    //
    // If gCallbackKey is greater than 1 and less or equal to 5,
    // it will launch configuration utilities.
    // 2 = set language
    // 3 = boot manager
    // 4 = device manager
    // 5 = boot maintenance manager
    //
    if (gCallbackKey != 0) {
      REPORT_STATUS_CODE (
        EFI_PROGRESS_CODE,
        (EFI_SOFTWARE_DXE_BS_DRIVER | EFI_SW_PC_USER_SETUP)
        );
    }
    //
    // Based on the key that was set, we can determine what to do
    //
    switch (gCallbackKey) {
    //
    // The first 4 entries in the Front Page are to be GUARANTEED to remain constant so IHV's can
    // describe to their customers in documentation how to find their setup information (namely
    // under the device manager and specific buckets)
    //
    // These entries consist of the Continue, Select language, Boot Manager, and Device Manager
    //
    case FRONT_PAGE_KEY_CONTINUE:
      //
      // User hit continue
      //
      break;

    case FRONT_PAGE_KEY_LANGUAGE:
      //
      // User made a language setting change - display front page again
      //
      break;

    case FRONT_PAGE_KEY_BOOT_MANAGER:
      //
      // Remove the installed BootMaint HiiPackages when exit.
      //
      FreeBMPackage ();

      //
      // User chose to run the Boot Manager
      //
      CallBootManager ();

      //
      // Reinstall BootMaint HiiPackages after exiting from Boot Manager.
      //
      InitBMPackage ();
      break;

    case FRONT_PAGE_KEY_DEVICE_MANAGER:
      //
      // Display the Device Manager
      //
      do {
        CallDeviceManager ();
      } while (gCallbackKey == FRONT_PAGE_KEY_DEVICE_MANAGER);
      break;

    case FRONT_PAGE_KEY_BOOT_MAINTAIN:
      //
      // Display the Boot Maintenance Manager
      //
      BdsStartBootMaint ();
      break;
    }

  } while ((Status == EFI_SUCCESS) && (gCallbackKey != FRONT_PAGE_KEY_CONTINUE));

  if (mLanguageString != NULL) {
    FreePool (mLanguageString);
    mLanguageString = NULL;
  }
  //
  //Will leave browser, check any reset required change is applied? if yes, reset system
  //
  SetupResetReminder ();

  //
  // Remove the installed BootMaint HiiPackages when exit.
  //
  FreeBMPackage ();

Exit:
  //
  // Automatically load current entry
  // Note: The following lines of code only execute when Auto boot
  // takes affect
  //
  PERF_END (NULL, "BdsTimeOut", "BDS", 0);
}
示例#24
0
/**
  Return the Virtual Memory Map of your platform

  This Virtual Memory Map is used by MemoryInitPei Module to initialize the MMU on your platform.

  @param[out]   VirtualMemoryMap    Array of ARM_MEMORY_REGION_DESCRIPTOR describing a Physical-to-
                                    Virtual Memory mapping. This array must be ended by a zero-filled
                                    entry

**/
VOID
ArmPlatformGetVirtualMemoryMap (
  IN ARM_MEMORY_REGION_DESCRIPTOR** VirtualMemoryMap
  )
{
  ARM_MEMORY_REGION_ATTRIBUTES  CacheAttributes;
  EFI_RESOURCE_ATTRIBUTE_TYPE   ResourceAttributes;
  UINTN                         Index = 0;
  ARM_MEMORY_REGION_DESCRIPTOR  *VirtualMemoryTable;
  UINT32                        SysId;
  BOOLEAN                       HasSparseMemory;
  EFI_VIRTUAL_ADDRESS           SparseMemoryBase;
  UINT64                        SparseMemorySize;

  ASSERT (VirtualMemoryMap != NULL);

  // The FVP model has Sparse memory
  SysId = MmioRead32 (ARM_VE_SYS_ID_REG);
  if (SysId != ARM_RTSM_SYS_ID) {
    HasSparseMemory = TRUE;

    ResourceAttributes =
        EFI_RESOURCE_ATTRIBUTE_PRESENT |
        EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
        EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
        EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
        EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
        EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE |
        EFI_RESOURCE_ATTRIBUTE_TESTED;

    // Declared the additional DRAM from 2GB to 4GB
    SparseMemoryBase = 0x0880000000;
    SparseMemorySize = SIZE_2GB;

    BuildResourceDescriptorHob (
        EFI_RESOURCE_SYSTEM_MEMORY,
        ResourceAttributes,
        SparseMemoryBase,
        SparseMemorySize);
  } else {
    HasSparseMemory = FALSE;
    SparseMemoryBase = 0x0;
    SparseMemorySize = 0x0;
  }

  VirtualMemoryTable = (ARM_MEMORY_REGION_DESCRIPTOR*)AllocatePages(EFI_SIZE_TO_PAGES (sizeof(ARM_MEMORY_REGION_DESCRIPTOR) * MAX_VIRTUAL_MEMORY_MAP_DESCRIPTORS));
  if (VirtualMemoryTable == NULL) {
      return;
  }

  if (FeaturePcdGet(PcdCacheEnable) == TRUE) {
      CacheAttributes = DDR_ATTRIBUTES_CACHED;
  } else {
      CacheAttributes = DDR_ATTRIBUTES_UNCACHED;
  }

  // ReMap (Either NOR Flash or DRAM)
  VirtualMemoryTable[Index].PhysicalBase = ARM_VE_REMAP_BASE;
  VirtualMemoryTable[Index].VirtualBase  = ARM_VE_REMAP_BASE;
  VirtualMemoryTable[Index].Length       = ARM_VE_REMAP_SZ;

  if (FeaturePcdGet(PcdNorFlashRemapping) == FALSE) {
    // Map the NOR Flash as Secure Memory
    if (FeaturePcdGet(PcdCacheEnable) == TRUE) {
      VirtualMemoryTable[Index].Attributes   = DDR_ATTRIBUTES_CACHED;
    } else {
      VirtualMemoryTable[Index].Attributes   = DDR_ATTRIBUTES_UNCACHED;
    }
  } else {
    // DRAM mapping
    VirtualMemoryTable[Index].Attributes   = CacheAttributes;
  }

  // DDR
  VirtualMemoryTable[++Index].PhysicalBase = ARM_VE_DRAM_BASE;
  VirtualMemoryTable[Index].VirtualBase  = ARM_VE_DRAM_BASE;
  VirtualMemoryTable[Index].Length       = ARM_VE_DRAM_SZ;
  VirtualMemoryTable[Index].Attributes   = CacheAttributes;

  // CPU peripherals. TRM. Manual says not all of them are implemented.
  VirtualMemoryTable[++Index].PhysicalBase = ARM_VE_ON_CHIP_PERIPH_BASE;
  VirtualMemoryTable[Index].VirtualBase  = ARM_VE_ON_CHIP_PERIPH_BASE;
  VirtualMemoryTable[Index].Length       = ARM_VE_ON_CHIP_PERIPH_SZ;
  VirtualMemoryTable[Index].Attributes   = ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;

  // SMB CS0-CS1 - NOR Flash 1 & 2
  VirtualMemoryTable[++Index].PhysicalBase = ARM_VE_SMB_NOR0_BASE;
  VirtualMemoryTable[Index].VirtualBase  = ARM_VE_SMB_NOR0_BASE;
  VirtualMemoryTable[Index].Length       = ARM_VE_SMB_NOR0_SZ + ARM_VE_SMB_NOR1_SZ;
  VirtualMemoryTable[Index].Attributes   = CacheAttributes;

  // SMB CS2 - SRAM
  VirtualMemoryTable[++Index].PhysicalBase = ARM_VE_SMB_SRAM_BASE;
  VirtualMemoryTable[Index].VirtualBase  = ARM_VE_SMB_SRAM_BASE;
  VirtualMemoryTable[Index].Length       = ARM_VE_SMB_SRAM_SZ;
  VirtualMemoryTable[Index].Attributes   = CacheAttributes;

  // Peripheral CS2 and CS3
  VirtualMemoryTable[++Index].PhysicalBase = ARM_VE_SMB_PERIPH_BASE;
  VirtualMemoryTable[Index].VirtualBase  = ARM_VE_SMB_PERIPH_BASE;
  VirtualMemoryTable[Index].Length       = 2 * ARM_VE_SMB_PERIPH_SZ;
  VirtualMemoryTable[Index].Attributes   = ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;

  // Map sparse memory region if present
  if (HasSparseMemory) {
    VirtualMemoryTable[++Index].PhysicalBase = SparseMemoryBase;
    VirtualMemoryTable[Index].VirtualBase    = SparseMemoryBase;
    VirtualMemoryTable[Index].Length         = SparseMemorySize;
    VirtualMemoryTable[Index].Attributes     = CacheAttributes;
  }

  // End of Table
  VirtualMemoryTable[++Index].PhysicalBase = 0;
  VirtualMemoryTable[Index].VirtualBase  = 0;
  VirtualMemoryTable[Index].Length       = 0;
  VirtualMemoryTable[Index].Attributes   = (ARM_MEMORY_REGION_ATTRIBUTES)0;

  *VirtualMemoryMap = VirtualMemoryTable;
}
示例#25
0
/**
  Create KEYBOARD_CONSOLE_IN_DEV instance on controller.

  @param This         Pointer of EFI_DRIVER_BINDING_PROTOCOL
  @param Controller   driver controller handle
  @param RemainingDevicePath Children's device path

  @retval whether success to create floppy control instance.
**/
EFI_STATUS
EFIAPI
KbdControllerDriverStart (
  IN EFI_DRIVER_BINDING_PROTOCOL    *This,
  IN EFI_HANDLE                     Controller,
  IN EFI_DEVICE_PATH_PROTOCOL       *RemainingDevicePath
  )
{
  EFI_STATUS                                Status;
  EFI_STATUS                                Status1;
  EFI_ISA_IO_PROTOCOL                       *IsaIo;
  KEYBOARD_CONSOLE_IN_DEV                   *ConsoleIn;
  UINT8                                     Data;
  EFI_STATUS_CODE_VALUE                     StatusCode;
  EFI_DEVICE_PATH_PROTOCOL                  *ParentDevicePath;

  StatusCode = 0;

  Status = gBS->OpenProtocol (
                  Controller,
                  &gEfiDevicePathProtocolGuid,
                  (VOID **) &ParentDevicePath,
                  This->DriverBindingHandle,
                  Controller,
                  EFI_OPEN_PROTOCOL_BY_DRIVER
                  );
  if (EFI_ERROR (Status)) {
    return Status;
  }
  //
  // Report that the keyboard is being enabled
  //
  REPORT_STATUS_CODE_WITH_DEVICE_PATH (
    EFI_PROGRESS_CODE,
    EFI_PERIPHERAL_KEYBOARD | EFI_P_PC_ENABLE,
    ParentDevicePath
    );

  //
  // Get the ISA I/O Protocol on Controller's handle
  //
  Status = gBS->OpenProtocol (
                  Controller,
                  &gEfiIsaIoProtocolGuid,
                  (VOID **) &IsaIo,
                  This->DriverBindingHandle,
                  Controller,
                  EFI_OPEN_PROTOCOL_BY_DRIVER
                  );
  if (EFI_ERROR (Status)) {
    gBS->CloseProtocol (
           Controller,
           &gEfiDevicePathProtocolGuid,
           This->DriverBindingHandle,
           Controller
           );
    return EFI_INVALID_PARAMETER;
  }
  //
  // Allocate private data
  //
  ConsoleIn = AllocateZeroPool (sizeof (KEYBOARD_CONSOLE_IN_DEV));
  if (ConsoleIn == NULL) {
    Status      = EFI_OUT_OF_RESOURCES;
    StatusCode  = EFI_PERIPHERAL_KEYBOARD | EFI_P_EC_CONTROLLER_ERROR;
    goto ErrorExit;
  }
  //
  // Setup the device instance
  //
  ConsoleIn->Signature              = KEYBOARD_CONSOLE_IN_DEV_SIGNATURE;
  ConsoleIn->Handle                 = Controller;
  (ConsoleIn->ConIn).Reset          = KeyboardEfiReset;
  (ConsoleIn->ConIn).ReadKeyStroke  = KeyboardReadKeyStroke;
  ConsoleIn->DataRegisterAddress    = KEYBOARD_8042_DATA_REGISTER;
  ConsoleIn->StatusRegisterAddress  = KEYBOARD_8042_STATUS_REGISTER;
  ConsoleIn->CommandRegisterAddress = KEYBOARD_8042_COMMAND_REGISTER;
  ConsoleIn->IsaIo                  = IsaIo;
  ConsoleIn->DevicePath             = ParentDevicePath;

  ConsoleIn->ConInEx.Reset               = KeyboardEfiResetEx;
  ConsoleIn->ConInEx.ReadKeyStrokeEx     = KeyboardReadKeyStrokeEx;
  ConsoleIn->ConInEx.SetState            = KeyboardSetState;
  ConsoleIn->ConInEx.RegisterKeyNotify   = KeyboardRegisterKeyNotify;
  ConsoleIn->ConInEx.UnregisterKeyNotify = KeyboardUnregisterKeyNotify;

  InitializeListHead (&ConsoleIn->NotifyList);

  //
  // Fix for random hangs in System waiting for the Key if no KBC is present in BIOS.
  // When KBC decode (IO port 0x60/0x64 decode) is not enabled,
  // KeyboardRead will read back as 0xFF and return status is EFI_SUCCESS.
  // So instead we read status register to detect after read if KBC decode is enabled.
  //

  //
  // Return code is ignored on purpose.
  //
  if (!PcdGetBool (PcdFastPS2Detection)) {
    KeyboardRead (ConsoleIn, &Data);
    if ((KeyReadStatusRegister (ConsoleIn) & (KBC_PARE | KBC_TIM)) == (KBC_PARE | KBC_TIM)) {
      //
      // If nobody decodes KBC I/O port, it will read back as 0xFF.
      // Check the Time-Out and Parity bit to see if it has an active KBC in system
      //
      Status      = EFI_DEVICE_ERROR;
      StatusCode  = EFI_PERIPHERAL_KEYBOARD | EFI_P_EC_NOT_DETECTED;
      goto ErrorExit;
    }
  }

  //
  // Setup the WaitForKey event
  //
  Status = gBS->CreateEvent (
                  EVT_NOTIFY_WAIT,
                  TPL_NOTIFY,
                  KeyboardWaitForKey,
                  ConsoleIn,
                  &((ConsoleIn->ConIn).WaitForKey)
                  );
  if (EFI_ERROR (Status)) {
    Status      = EFI_OUT_OF_RESOURCES;
    StatusCode  = EFI_PERIPHERAL_KEYBOARD | EFI_P_EC_CONTROLLER_ERROR;
    goto ErrorExit;
  }
  //
  // Setup the WaitForKeyEx event
  //
  Status = gBS->CreateEvent (
                  EVT_NOTIFY_WAIT,
                  TPL_NOTIFY,
                  KeyboardWaitForKeyEx,
                  ConsoleIn,
                  &(ConsoleIn->ConInEx.WaitForKeyEx)
                  );
  if (EFI_ERROR (Status)) {
    Status      = EFI_OUT_OF_RESOURCES;
    StatusCode  = EFI_PERIPHERAL_KEYBOARD | EFI_P_EC_CONTROLLER_ERROR;
    goto ErrorExit;
  }
  // Setup a periodic timer, used for reading keystrokes at a fixed interval
  //
  Status = gBS->CreateEvent (
                  EVT_TIMER | EVT_NOTIFY_SIGNAL,
                  TPL_NOTIFY,
                  KeyboardTimerHandler,
                  ConsoleIn,
                  &ConsoleIn->TimerEvent
                  );
  if (EFI_ERROR (Status)) {
    Status      = EFI_OUT_OF_RESOURCES;
    StatusCode  = EFI_PERIPHERAL_KEYBOARD | EFI_P_EC_CONTROLLER_ERROR;
    goto ErrorExit;
  }

  Status = gBS->SetTimer (
                  ConsoleIn->TimerEvent,
                  TimerPeriodic,
                  KEYBOARD_TIMER_INTERVAL
                  );
  if (EFI_ERROR (Status)) {
    Status      = EFI_OUT_OF_RESOURCES;
    StatusCode  = EFI_PERIPHERAL_KEYBOARD | EFI_P_EC_CONTROLLER_ERROR;
    goto ErrorExit;
  }

  REPORT_STATUS_CODE_WITH_DEVICE_PATH (
    EFI_PROGRESS_CODE,
    EFI_PERIPHERAL_KEYBOARD | EFI_P_PC_PRESENCE_DETECT,
    ParentDevicePath
    );

  //
  // Reset the keyboard device
  //
  Status = ConsoleIn->ConInEx.Reset (&ConsoleIn->ConInEx, FeaturePcdGet (PcdPs2KbdExtendedVerification));
  if (EFI_ERROR (Status)) {
    Status      = EFI_DEVICE_ERROR;
    StatusCode  = EFI_PERIPHERAL_KEYBOARD | EFI_P_EC_NOT_DETECTED;
    goto ErrorExit;
  }

  REPORT_STATUS_CODE_WITH_DEVICE_PATH (
    EFI_PROGRESS_CODE,
    EFI_PERIPHERAL_KEYBOARD | EFI_P_PC_DETECTED,
    ParentDevicePath
    );

  ConsoleIn->ControllerNameTable = NULL;
  AddUnicodeString2 (
    "eng",
    gPs2KeyboardComponentName.SupportedLanguages,
    &ConsoleIn->ControllerNameTable,
    L"PS/2 Keyboard Device",
    TRUE
    );
  AddUnicodeString2 (
    "en",
    gPs2KeyboardComponentName2.SupportedLanguages,
    &ConsoleIn->ControllerNameTable,
    L"PS/2 Keyboard Device",
    FALSE
    );


  //
  // Install protocol interfaces for the keyboard device.
  //
  Status = gBS->InstallMultipleProtocolInterfaces (
                  &Controller,
                  &gEfiSimpleTextInProtocolGuid,
                  &ConsoleIn->ConIn,
                  &gEfiSimpleTextInputExProtocolGuid,
                  &ConsoleIn->ConInEx,
                  NULL
                  );
  if (EFI_ERROR (Status)) {
    StatusCode = EFI_PERIPHERAL_KEYBOARD | EFI_P_EC_CONTROLLER_ERROR;
    goto ErrorExit;
  }

  return Status;

ErrorExit:
  //
  // Report error code
  //
  if (StatusCode != 0) {
    REPORT_STATUS_CODE_WITH_DEVICE_PATH (
      EFI_ERROR_CODE | EFI_ERROR_MINOR,
      StatusCode,
      ParentDevicePath
      );
  }

  if ((ConsoleIn != NULL) && (ConsoleIn->ConIn.WaitForKey != NULL)) {
    gBS->CloseEvent (ConsoleIn->ConIn.WaitForKey);
  }

  if ((ConsoleIn != NULL) && (ConsoleIn->TimerEvent != NULL)) {
    gBS->CloseEvent (ConsoleIn->TimerEvent);
  }
  if ((ConsoleIn != NULL) && (ConsoleIn->ConInEx.WaitForKeyEx != NULL)) {
    gBS->CloseEvent (ConsoleIn->ConInEx.WaitForKeyEx);
  }
  KbdFreeNotifyList (&ConsoleIn->NotifyList);
  if ((ConsoleIn != NULL) && (ConsoleIn->ControllerNameTable != NULL)) {
    FreeUnicodeStringTable (ConsoleIn->ControllerNameTable);
  }
  //
  // Since there will be no timer handler for keyboard input any more,
  // exhaust input data just in case there is still keyboard data left
  //
  if (ConsoleIn != NULL) {
    Status1 = EFI_SUCCESS;
    while (!EFI_ERROR (Status1) && (Status != EFI_DEVICE_ERROR)) {
      Status1 = KeyboardRead (ConsoleIn, &Data);;
    }
  }

  if (ConsoleIn != NULL) {
    gBS->FreePool (ConsoleIn);
  }

  gBS->CloseProtocol (
         Controller,
         &gEfiDevicePathProtocolGuid,
         This->DriverBindingHandle,
         Controller
         );

  gBS->CloseProtocol (
         Controller,
         &gEfiIsaIoProtocolGuid,
         This->DriverBindingHandle,
         Controller
         );

  return Status;
}
示例#26
0
/**
  Return the Virtual Memory Map of your platform

  This Virtual Memory Map is used by MemoryInitPei Module to initialize the MMU on your platform.

  @param[out]   VirtualMemoryMap    Array of ARM_MEMORY_REGION_DESCRIPTOR describing a Physical-to-
                                    Virtual Memory mapping. This array must be ended by a zero-filled
                                    entry

**/
VOID
ArmPlatformGetVirtualMemoryMap (
  IN ARM_MEMORY_REGION_DESCRIPTOR** VirtualMemoryMap
  )
{
  ARM_MEMORY_REGION_ATTRIBUTES  CacheAttributes;
  //EFI_RESOURCE_ATTRIBUTE_TYPE   ResourceAttributes;
  UINTN                         Index;
  ARM_MEMORY_REGION_DESCRIPTOR  *VirtualMemoryTable;
  //UINT32                        SysId;
  //BOOLEAN                       HasSparseMemory;
  //EFI_VIRTUAL_ADDRESS           SparseMemoryBase;
  //UINT64                        SparseMemorySize;
  EFI_PEI_HOB_POINTERS          NextHob;

  ASSERT (VirtualMemoryMap != NULL);

  VirtualMemoryTable = (ARM_MEMORY_REGION_DESCRIPTOR*)AllocatePages(EFI_SIZE_TO_PAGES (sizeof(ARM_MEMORY_REGION_DESCRIPTOR) * MAX_VIRTUAL_MEMORY_MAP_DESCRIPTORS));
  if (VirtualMemoryTable == NULL) {
      return;
  }

  if (FeaturePcdGet(PcdCacheEnable) == TRUE) {
      CacheAttributes = DDR_ATTRIBUTES_CACHED;
  } else {
      CacheAttributes = DDR_ATTRIBUTES_UNCACHED;
  }
/*
  // ReMap (Either NOR Flash or DRAM)
  VirtualMemoryTable[Index].PhysicalBase = ARM_VE_REMAP_BASE;
  VirtualMemoryTable[Index].VirtualBase  = ARM_VE_REMAP_BASE;
  VirtualMemoryTable[Index].Length       = ARM_VE_REMAP_SZ;

  if (FeaturePcdGet(PcdNorFlashRemapping) == FALSE) {
    // Map the NOR Flash as Secure Memory
    if (FeaturePcdGet(PcdCacheEnable) == TRUE) {
      VirtualMemoryTable[Index].Attributes   = DDR_ATTRIBUTES_CACHED;
    } else {
      VirtualMemoryTable[Index].Attributes   = DDR_ATTRIBUTES_UNCACHED;
    }
  } else {
    // DRAM mapping
    VirtualMemoryTable[Index].Attributes   = CacheAttributes;
  }
*/

  Index = OemSetVirtualMapDesc(VirtualMemoryTable, CacheAttributes);

  // Search for System Memory Hob that contains the EFI resource system memory  s00296804
  NextHob.Raw = GetHobList ();
  while ((NextHob.Raw = GetNextHob (EFI_HOB_TYPE_RESOURCE_DESCRIPTOR, NextHob.Raw)) != NULL)
  {
    if (NextHob.ResourceDescriptor->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY)
    {
        if (NextHob.ResourceDescriptor->PhysicalStart > BASE_4GB)
        {
            VirtualMemoryTable[++Index].PhysicalBase = NextHob.ResourceDescriptor->PhysicalStart;
            VirtualMemoryTable[Index].VirtualBase  = NextHob.ResourceDescriptor->PhysicalStart;
            VirtualMemoryTable[Index].Length       =NextHob.ResourceDescriptor->ResourceLength;
            VirtualMemoryTable[Index].Attributes   =  CacheAttributes;
        }
    }

    NextHob.Raw = GET_NEXT_HOB (NextHob);
  }
  
  // End of Table
  VirtualMemoryTable[++Index].PhysicalBase = 0;
  VirtualMemoryTable[Index].VirtualBase  = 0;
  VirtualMemoryTable[Index].Length       = 0;
  VirtualMemoryTable[Index].Attributes   = (ARM_MEMORY_REGION_ATTRIBUTES)0;
  
  ASSERT((Index + 1) <= MAX_VIRTUAL_MEMORY_MAP_DESCRIPTORS);
  DEBUG((EFI_D_ERROR, "[%a]:[%dL] discriptor count=%d\n", __FUNCTION__, __LINE__, Index+1));

  *VirtualMemoryMap = VirtualMemoryTable;
}
示例#27
0
/**
  Passes capsules to the firmware with both virtual and physical mapping. Depending on the intended
  consumption, the firmware may process the capsule immediately. If the payload should persist
  across a system reset, the reset value returned from EFI_QueryCapsuleCapabilities must
  be passed into ResetSystem() and will cause the capsule to be processed by the firmware as
  part of the reset process.

  @param  CapsuleHeaderArray    Virtual pointer to an array of virtual pointers to the capsules
                                being passed into update capsule.
  @param  CapsuleCount          Number of pointers to EFI_CAPSULE_HEADER in
                                CaspuleHeaderArray.
  @param  ScatterGatherList     Physical pointer to a set of
                                EFI_CAPSULE_BLOCK_DESCRIPTOR that describes the
                                location in physical memory of a set of capsules.

  @retval EFI_SUCCESS           Valid capsule was passed. If
                                CAPSULE_FLAGS_PERSIT_ACROSS_RESET is not set, the
                                capsule has been successfully processed by the firmware.
  @retval EFI_DEVICE_ERROR      The capsule update was started, but failed due to a device error.
  @retval EFI_INVALID_PARAMETER CapsuleSize is NULL, or an incompatible set of flags were
                                set in the capsule header.
  @retval EFI_INVALID_PARAMETER CapsuleCount is Zero.
  @retval EFI_INVALID_PARAMETER For across reset capsule image, ScatterGatherList is NULL.
  @retval EFI_UNSUPPORTED       CapsuleImage is not recognized by the firmware.
  @retval EFI_OUT_OF_RESOURCES  When ExitBootServices() has been previously called this error indicates the capsule 
                                is compatible with this platform but is not capable of being submitted or processed 
                                in runtime. The caller may resubmit the capsule prior to ExitBootServices().
  @retval EFI_OUT_OF_RESOURCES  When ExitBootServices() has not been previously called then this error indicates 
                                the capsule is compatible with this platform but there are insufficient resources to process.

**/
EFI_STATUS
EFIAPI
UpdateCapsule (
  IN EFI_CAPSULE_HEADER      **CapsuleHeaderArray,
  IN UINTN                   CapsuleCount,
  IN EFI_PHYSICAL_ADDRESS    ScatterGatherList OPTIONAL
  )
{
  UINTN                     ArrayNumber;
  EFI_STATUS                Status;
  EFI_CAPSULE_HEADER        *CapsuleHeader;
  BOOLEAN                   NeedReset;
  BOOLEAN                   InitiateReset;
  CHAR16                    CapsuleVarName[30];
  CHAR16                    *TempVarName;  
  
  //
  // Capsule Count can't be less than one.
  //
  if (CapsuleCount < 1) {
    return EFI_INVALID_PARAMETER;
  }

  NeedReset         = FALSE;
  InitiateReset     = FALSE;
  CapsuleHeader     = NULL;
  CapsuleVarName[0] = 0;

  for (ArrayNumber = 0; ArrayNumber < CapsuleCount; ArrayNumber++) {
    //
    // A capsule which has the CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE flag must have
    // CAPSULE_FLAGS_PERSIST_ACROSS_RESET set in its header as well.
    //
    CapsuleHeader = CapsuleHeaderArray[ArrayNumber];
    if ((CapsuleHeader->Flags & (CAPSULE_FLAGS_PERSIST_ACROSS_RESET | CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE)) == CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE) {
      return EFI_INVALID_PARAMETER;
    }
    //
    // A capsule which has the CAPSULE_FLAGS_INITIATE_RESET flag must have
    // CAPSULE_FLAGS_PERSIST_ACROSS_RESET set in its header as well.
    //
    if ((CapsuleHeader->Flags & (CAPSULE_FLAGS_PERSIST_ACROSS_RESET | CAPSULE_FLAGS_INITIATE_RESET)) == CAPSULE_FLAGS_INITIATE_RESET) {
      return EFI_INVALID_PARAMETER;
    }

    //
    // Check FMP capsule flag 
    //
    if (CompareGuid(&CapsuleHeader->CapsuleGuid, &gEfiFmpCapsuleGuid)
     && (CapsuleHeader->Flags & CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE) != 0 ) {
       return EFI_INVALID_PARAMETER;
    }

    //
    // Check Capsule image without populate flag by firmware support capsule function  
    //
    if ((CapsuleHeader->Flags & CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE) == 0) {
      Status = SupportCapsuleImage (CapsuleHeader);
      if (EFI_ERROR(Status)) {
        return Status;
      }
    }
  }

  //
  // Walk through all capsules, record whether there is a capsule needs reset
  // or initiate reset. And then process capsules which has no reset flag directly.
  //
  for (ArrayNumber = 0; ArrayNumber < CapsuleCount ; ArrayNumber++) {
    CapsuleHeader = CapsuleHeaderArray[ArrayNumber];
    //
    // Here should be in the boot-time for non-reset capsule image
    // Platform specific update for the non-reset capsule image.
    //
    if ((CapsuleHeader->Flags & CAPSULE_FLAGS_PERSIST_ACROSS_RESET) == 0) {
      if (EfiAtRuntime ()) { 
        Status = EFI_OUT_OF_RESOURCES;
      } else {
        Status = ProcessCapsuleImage(CapsuleHeader);
      }
      if (EFI_ERROR(Status)) {
        return Status;
      }
    } else {
      NeedReset = TRUE;
      if ((CapsuleHeader->Flags & CAPSULE_FLAGS_INITIATE_RESET) != 0) {
        InitiateReset = TRUE;
      }
    }
  }
  
  //
  // After launching all capsules who has no reset flag, if no more capsules claims
  // for a system reset just return.
  //
  if (!NeedReset) {
    return EFI_SUCCESS;
  }

  //
  // ScatterGatherList is only referenced if the capsules are defined to persist across
  // system reset. 
  //
  if (ScatterGatherList == (EFI_PHYSICAL_ADDRESS) (UINTN) NULL) {
    return EFI_INVALID_PARAMETER;
  }

  //
  // Check if the platform supports update capsule across a system reset
  //
  if (!FeaturePcdGet(PcdSupportUpdateCapsuleReset)) {
    return EFI_UNSUPPORTED;
  }

  //
  // Construct variable name CapsuleUpdateData, CapsuleUpdateData1, CapsuleUpdateData2...
  // if user calls UpdateCapsule multiple times.
  //
  StrCpy (CapsuleVarName, EFI_CAPSULE_VARIABLE_NAME);
  TempVarName = CapsuleVarName + StrLen (CapsuleVarName);
  if (mTimes > 0) {
    UnicodeValueToString (TempVarName, 0, mTimes, 0);
  }

  //
  // ScatterGatherList is only referenced if the capsules are defined to persist across
  // system reset. Set its value into NV storage to let pre-boot driver to pick it up 
  // after coming through a system reset.
  //
  Status = EfiSetVariable (
             CapsuleVarName,
             &gEfiCapsuleVendorGuid,
             EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS,
             sizeof (UINTN),
             (VOID *) &ScatterGatherList
             );
  if (!EFI_ERROR (Status)) {
     //
     // Variable has been set successfully, increase variable index.
     //
     mTimes++;
     if(InitiateReset) {
       //
       // Firmware that encounters a capsule which has the CAPSULE_FLAGS_INITIATE_RESET Flag set in its header
       // will initiate a reset of the platform which is compatible with the passed-in capsule request and will 
       // not return back to the caller.
       //
       EfiResetSystem (EfiResetWarm, EFI_SUCCESS, 0, NULL);
     }
  }
  return Status;
}
示例#28
0
文件: MemoryTest.c 项目: b-man/edk2
/**
  Perform the memory test base on the memory test intensive level,
  and update the memory resource.

  @param  Level         The memory test intensive level.

  @retval EFI_STATUS    Success test all the system memory and update
                        the memory resource

**/
EFI_STATUS
EFIAPI
BdsMemoryTest (
  IN EXTENDMEM_COVERAGE_LEVEL Level
  )
{
  EFI_STATUS                        Status;
  EFI_STATUS                        KeyStatus;
  EFI_STATUS                        InitStatus;
  EFI_STATUS                        ReturnStatus;
  BOOLEAN                           RequireSoftECCInit;
  EFI_GENERIC_MEMORY_TEST_PROTOCOL  *GenMemoryTest;
  UINT64                            TestedMemorySize;
  UINT64                            TotalMemorySize;
  UINTN                             TestPercent;
  UINT64                            PreviousValue;
  BOOLEAN                           ErrorOut;
  BOOLEAN                           TestAbort;
  EFI_INPUT_KEY                     Key;
  CHAR16                            StrPercent[80];
  CHAR16                            *StrTotalMemory;
  CHAR16                            *Pos;
  CHAR16                            *TmpStr;
  EFI_GRAPHICS_OUTPUT_BLT_PIXEL     Foreground;
  EFI_GRAPHICS_OUTPUT_BLT_PIXEL     Background;
  EFI_GRAPHICS_OUTPUT_BLT_PIXEL     Color;
  BOOLEAN                           IsFirstBoot;
  UINT32                            TempData;
  UINTN                             StrTotalMemorySize;

  ReturnStatus = EFI_SUCCESS;
  ZeroMem (&Key, sizeof (EFI_INPUT_KEY));

  StrTotalMemorySize = 128;
  Pos = AllocateZeroPool (StrTotalMemorySize);

  if (Pos == NULL) {
    return ReturnStatus;
  }

  StrTotalMemory    = Pos;

  TestedMemorySize  = 0;
  TotalMemorySize   = 0;
  PreviousValue     = 0;
  ErrorOut          = FALSE;
  TestAbort         = FALSE;

  SetMem (&Foreground, sizeof (EFI_GRAPHICS_OUTPUT_BLT_PIXEL), 0xff);
  SetMem (&Background, sizeof (EFI_GRAPHICS_OUTPUT_BLT_PIXEL), 0x0);
  SetMem (&Color, sizeof (EFI_GRAPHICS_OUTPUT_BLT_PIXEL), 0xff);

  RequireSoftECCInit = FALSE;

  Status = gBS->LocateProtocol (
                  &gEfiGenericMemTestProtocolGuid,
                  NULL,
                  (VOID **) &GenMemoryTest
                  );
  if (EFI_ERROR (Status)) {
    FreePool (Pos);
    return EFI_SUCCESS;
  }

  InitStatus = GenMemoryTest->MemoryTestInit (
                                GenMemoryTest,
                                Level,
                                &RequireSoftECCInit
                                );
  if (InitStatus == EFI_NO_MEDIA) {
    //
    // The PEI codes also have the relevant memory test code to check the memory,
    // it can select to test some range of the memory or all of them. If PEI code
    // checks all the memory, this BDS memory test will has no not-test memory to
    // do the test, and then the status of EFI_NO_MEDIA will be returned by
    // "MemoryTestInit". So it does not need to test memory again, just return.
    //
    FreePool (Pos);
    return EFI_SUCCESS;
  }

  if (!FeaturePcdGet(PcdBootlogoOnlyEnable)) {
    TmpStr = GetStringById (STRING_TOKEN (STR_ESC_TO_SKIP_MEM_TEST));

    if (TmpStr != NULL) {
      PrintXY (10, 10, NULL, NULL, TmpStr);
      FreePool (TmpStr);
    }
  } else {
    DEBUG ((EFI_D_INFO, "Enter memory test.\n"));
  }
  do {
    Status = GenMemoryTest->PerformMemoryTest (
                              GenMemoryTest,
                              &TestedMemorySize,
                              &TotalMemorySize,
                              &ErrorOut,
                              TestAbort
                              );
    if (ErrorOut && (Status == EFI_DEVICE_ERROR)) {
      TmpStr = GetStringById (STRING_TOKEN (STR_SYSTEM_MEM_ERROR));
      if (TmpStr != NULL) {
        PrintXY (10, 10, NULL, NULL, TmpStr);
        FreePool (TmpStr);
      }

      ASSERT (0);
    }

    if (!FeaturePcdGet(PcdBootlogoOnlyEnable)) {
      TempData = (UINT32) DivU64x32 (TotalMemorySize, 16);
      TestPercent = (UINTN) DivU64x32 (
                              DivU64x32 (MultU64x32 (TestedMemorySize, 100), 16),
                              TempData
                              );
      if (TestPercent != PreviousValue) {
        UnicodeValueToStringS (StrPercent, sizeof (StrPercent), 0, TestPercent, 0);
        TmpStr = GetStringById (STRING_TOKEN (STR_MEMORY_TEST_PERCENT));
        if (TmpStr != NULL) {
          //
          // TmpStr size is 64, StrPercent is reserved to 16.
          //
          StrnCatS (
            StrPercent,
            sizeof (StrPercent) / sizeof (CHAR16),
            TmpStr,
            sizeof (StrPercent) / sizeof (CHAR16) - StrLen (StrPercent) - 1
            );
          PrintXY (10, 10, NULL, NULL, StrPercent);
          FreePool (TmpStr);
        }

        TmpStr = GetStringById (STRING_TOKEN (STR_PERFORM_MEM_TEST));
        if (TmpStr != NULL) {
          PlatformBdsShowProgress (
            Foreground,
            Background,
            TmpStr,
            Color,
            TestPercent,
            (UINTN) PreviousValue
            );
          FreePool (TmpStr);
        }
      }

      PreviousValue = TestPercent;
    } else {
      DEBUG ((EFI_D_INFO, "Perform memory test (ESC to skip).\n"));
    }

    if (!PcdGetBool (PcdConInConnectOnDemand)) {
      KeyStatus     = gST->ConIn->ReadKeyStroke (gST->ConIn, &Key);
      if (!EFI_ERROR (KeyStatus) && (Key.ScanCode == SCAN_ESC)) {
        if (!RequireSoftECCInit) {
          if (!FeaturePcdGet(PcdBootlogoOnlyEnable)) {
            TmpStr = GetStringById (STRING_TOKEN (STR_PERFORM_MEM_TEST));
            if (TmpStr != NULL) {
              PlatformBdsShowProgress (
                Foreground,
                Background,
                TmpStr,
                Color,
                100,
                (UINTN) PreviousValue
                );
              FreePool (TmpStr);
            }

            PrintXY (10, 10, NULL, NULL, L"100");
          }
          Status = GenMemoryTest->Finished (GenMemoryTest);
          goto Done;
        }

        TestAbort = TRUE;
      }
    }
  } while (Status != EFI_NOT_FOUND);

  Status = GenMemoryTest->Finished (GenMemoryTest);

Done:
  if (!FeaturePcdGet(PcdBootlogoOnlyEnable)) {
    UnicodeValueToStringS (StrTotalMemory, StrTotalMemorySize, COMMA_TYPE, TotalMemorySize, 0);
    if (StrTotalMemory[0] == L',') {
      StrTotalMemory++;
      StrTotalMemorySize -= sizeof (CHAR16);
    }

    TmpStr = GetStringById (STRING_TOKEN (STR_MEM_TEST_COMPLETED));
    if (TmpStr != NULL) {
      StrnCatS (
        StrTotalMemory,
        StrTotalMemorySize / sizeof (CHAR16),
        TmpStr,
        StrTotalMemorySize / sizeof (CHAR16) - StrLen (StrTotalMemory) - 1
        );
      FreePool (TmpStr);
    }

    PrintXY (10, 10, NULL, NULL, StrTotalMemory);
    PlatformBdsShowProgress (
      Foreground,
      Background,
      StrTotalMemory,
      Color,
      100,
      (UINTN) PreviousValue
      );

  } else {
    DEBUG ((EFI_D_INFO, "%d bytes of system memory tested OK\r\n", TotalMemorySize));
  }

  FreePool (Pos);


  //
  // Use a DynamicHii type pcd to save the boot status, which is used to
  // control configuration mode, such as FULL/MINIMAL/NO_CHANGES configuration.
  //
  IsFirstBoot = PcdGetBool(PcdBootState);
  if (IsFirstBoot) {
    Status = PcdSetBoolS(PcdBootState, FALSE);
    if (EFI_ERROR (Status)) {
      DEBUG ((EFI_D_ERROR, "Set PcdBootState to FALSE failed.\n"));
    }
  }

  return ReturnStatus;
}
示例#29
0
/**
  Prepares all information that is needed in the S3 resume boot path.
  
  Allocate the resources or prepare informations and save in ACPI variable set for S3 resume boot path  
  
  @param This                 A pointer to the EFI_ACPI_S3_SAVE_PROTOCOL instance.
  @param LegacyMemoryAddress  The base address of legacy memory.

  @retval EFI_NOT_FOUND         Some necessary information cannot be found.
  @retval EFI_SUCCESS           All information was saved successfully.
  @retval EFI_OUT_OF_RESOURCES  Resources were insufficient to save all the information.
  @retval EFI_INVALID_PARAMETER The memory range is not located below 1 MB.

**/
EFI_STATUS
EFIAPI
S3Ready (
  IN EFI_ACPI_S3_SAVE_PROTOCOL    *This,
  IN VOID                         *LegacyMemoryAddress
  )
{
  EFI_STATUS                                    Status;
  EFI_PHYSICAL_ADDRESS                          AcpiS3ContextBuffer;
  ACPI_S3_CONTEXT                               *AcpiS3Context;
  STATIC BOOLEAN                                AlreadyEntered;
  IA32_DESCRIPTOR                               *Idtr;
  IA32_IDT_GATE_DESCRIPTOR                      *IdtGate;

  DEBUG ((EFI_D_INFO, "S3Ready!\n"));

  //
  // Platform may invoke AcpiS3Save->S3Save() before ExitPmAuth, because we need save S3 information there, while BDS ReadyToBoot may invoke it again.
  // So if 2nd S3Save() is triggered later, we need ignore it.
  //
  if (AlreadyEntered) {
    return EFI_SUCCESS;
  }
  AlreadyEntered = TRUE;

  AcpiS3Context = AllocateMemoryBelow4G (EfiReservedMemoryType, sizeof(*AcpiS3Context));
  ASSERT (AcpiS3Context != NULL);
  AcpiS3ContextBuffer = (EFI_PHYSICAL_ADDRESS)(UINTN)AcpiS3Context;

  //
  // Get ACPI Table because we will save its position to variable
  //
  AcpiS3Context->AcpiFacsTable = (EFI_PHYSICAL_ADDRESS)(UINTN)FindAcpiFacsTable ();
  ASSERT (AcpiS3Context->AcpiFacsTable != 0);

  IdtGate = AllocateMemoryBelow4G (EfiReservedMemoryType, sizeof(IA32_IDT_GATE_DESCRIPTOR) * 0x100 + sizeof(IA32_DESCRIPTOR));
  Idtr = (IA32_DESCRIPTOR *)(IdtGate + 0x100);
  Idtr->Base  = (UINTN)IdtGate;
  Idtr->Limit = (UINT16)(sizeof(IA32_IDT_GATE_DESCRIPTOR) * 0x100 - 1);
  AcpiS3Context->IdtrProfile = (EFI_PHYSICAL_ADDRESS)(UINTN)Idtr;

  Status = SaveLockBox (
             &mAcpiS3IdtrProfileGuid,
             (VOID *)(UINTN)Idtr,
             (UINTN)sizeof(IA32_DESCRIPTOR)
             );
  ASSERT_EFI_ERROR (Status);

  Status = SetLockBoxAttributes (&mAcpiS3IdtrProfileGuid, LOCK_BOX_ATTRIBUTE_RESTORE_IN_PLACE);
  ASSERT_EFI_ERROR (Status);

  //
  // Allocate page table
  //
  AcpiS3Context->S3NvsPageTableAddress = S3CreateIdentityMappingPageTables ();

  //
  // Allocate stack
  //
  AcpiS3Context->BootScriptStackSize = PcdGet32 (PcdS3BootScriptStackSize);
  AcpiS3Context->BootScriptStackBase = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocateMemoryBelow4G (EfiReservedMemoryType, PcdGet32 (PcdS3BootScriptStackSize));
  ASSERT (AcpiS3Context->BootScriptStackBase != 0);

  //
  // Allocate a code buffer < 4G for S3 debug to load external code
  //
  AcpiS3Context->S3DebugBufferAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocateMemoryBelow4G (EfiReservedMemoryType, EFI_PAGE_SIZE);

  DEBUG((EFI_D_INFO, "AcpiS3Context: AcpiFacsTable is 0x%8x\n", AcpiS3Context->AcpiFacsTable));
  DEBUG((EFI_D_INFO, "AcpiS3Context: IdtrProfile is 0x%8x\n", AcpiS3Context->IdtrProfile));
  DEBUG((EFI_D_INFO, "AcpiS3Context: S3NvsPageTableAddress is 0x%8x\n", AcpiS3Context->S3NvsPageTableAddress));
  DEBUG((EFI_D_INFO, "AcpiS3Context: S3DebugBufferAddress is 0x%8x\n", AcpiS3Context->S3DebugBufferAddress));

  Status = SaveLockBox (
             &gEfiAcpiVariableGuid,
             &AcpiS3ContextBuffer,
             sizeof(AcpiS3ContextBuffer)
             );
  ASSERT_EFI_ERROR (Status);

  Status = SaveLockBox (
             &gEfiAcpiS3ContextGuid,
             (VOID *)(UINTN)AcpiS3Context,
             (UINTN)sizeof(*AcpiS3Context)
             );
  ASSERT_EFI_ERROR (Status);

  Status = SetLockBoxAttributes (&gEfiAcpiS3ContextGuid, LOCK_BOX_ATTRIBUTE_RESTORE_IN_PLACE);
  ASSERT_EFI_ERROR (Status);

  if (FeaturePcdGet(PcdFrameworkCompatibilitySupport)) {
    S3ReadyThunkPlatform (AcpiS3Context);
  }

  return EFI_SUCCESS;
}
示例#30
0
/**
  The user Entry Point for English module.

  This function initializes unicode character mapping and then installs Unicode
  Collation & Unicode Collation 2 Protocols based on the feature flags.

  @param  ImageHandle    The firmware allocated handle for the EFI image.
  @param  SystemTable    A pointer to the EFI System Table.

  @retval EFI_SUCCESS    The entry point is executed successfully.
  @retval other          Some error occurs when executing this entry point.

**/
EFI_STATUS
EFIAPI
InitializeUnicodeCollationEng (
  IN EFI_HANDLE       ImageHandle,
  IN EFI_SYSTEM_TABLE *SystemTable
  )
{
  EFI_STATUS  Status;
  UINTN       Index;
  UINTN       Index2;

  //
  // Initialize mapping tables for the supported languages
  //
  for (Index = 0; Index < MAP_TABLE_SIZE; Index++) {
    mEngUpperMap[Index] = (CHAR8) Index;
    mEngLowerMap[Index] = (CHAR8) Index;
    mEngInfoMap[Index]  = 0;

    if ((Index >= 'a' && Index <= 'z') || (Index >= 0xe0 && Index <= 0xf6) || (Index >= 0xf8 && Index <= 0xfe)) {

      Index2                = Index - 0x20;
      mEngUpperMap[Index]   = (CHAR8) Index2;
      mEngLowerMap[Index2]  = (CHAR8) Index;

      mEngInfoMap[Index] |= CHAR_FAT_VALID;
      mEngInfoMap[Index2] |= CHAR_FAT_VALID;
    }
  }

  for (Index = 0; mOtherChars[Index] != 0; Index++) {
    Index2 = mOtherChars[Index];
    mEngInfoMap[Index2] |= CHAR_FAT_VALID;
  }

  if (FeaturePcdGet (PcdUnicodeCollation2Support)) {
    if (FeaturePcdGet (PcdUnicodeCollationSupport)) {
      Status = gBS->InstallMultipleProtocolInterfaces (
                      &mHandle,
                      &gEfiUnicodeCollationProtocolGuid,
                      &UnicodeEng,
                      &gEfiUnicodeCollation2ProtocolGuid,
                      &Unicode2Eng,
                      NULL
                      );
      ASSERT_EFI_ERROR (Status);
    } else {
      Status = gBS->InstallMultipleProtocolInterfaces (
                      &mHandle,
                      &gEfiUnicodeCollation2ProtocolGuid,
                      &Unicode2Eng,
                      NULL
                      );
      ASSERT_EFI_ERROR (Status);
    }
  } else {
    if (FeaturePcdGet (PcdUnicodeCollationSupport)) {
      Status = gBS->InstallMultipleProtocolInterfaces (
                      &mHandle,
                      &gEfiUnicodeCollationProtocolGuid,
                      &UnicodeEng,
                      NULL
                      );
      ASSERT_EFI_ERROR (Status);
    } else {
      //
      // This module must support to produce at least one of Unicode Collation Protocol
      // and Unicode Collation 2 Protocol.
      //
      ASSERT (FALSE);
      Status = EFI_UNSUPPORTED;
    }
  }

  return Status;
}