示例#1
0
/* Create a keypoint at a peak near scale space location (s,r,c), where
   s is scale (index of DOGs image), and (r,c) is (row, col) location.
   Add to the list of keys with any new keys added.
*/
void InterpKeyPoint(
    const flimage* dogs, int s, int r, int c,
	const flimage& grad, LWImage<bool>& map,
	float octSize, keypointslist& keys, int movesRemain,siftPar &par)
{
	
	/* Fit quadratic to determine offset and peak value. */
  std::vector<float> offset(3);
	float peakval = FitQuadratic(offset, dogs, r, c);
	if (DEBUG) printf("peakval: %f, of[0]: %f  of[1]: %f  of[2]: %f\n", peakval, offset[0], offset[1], offset[2]);

	/* Move to an adjacent (row,col) location if quadratic interpolation
	   is larger than 0.6 units in some direction (we use 0.6 instead of
	   0.5 to avoid jumping back and forth near boundary).  We do not
	   perform move to adjacent scales, as it is seldom useful and we
	   do not have easy access to adjacent scale structures.  The
	   movesRemain counter allows only a fixed number of moves to
	   prevent possibility of infinite loops.
	*/
	int newr = r, newc = c;
	if (offset[1] > 0.6 && r < dogs[0].h - 3)
		newr++;
	else if (offset[1] < -0.6 && r > 3)
		newr--;

	if (offset[2] > 0.6 && c < dogs[0].w - 3)
		newc++;
	else if (offset[2] < -0.6 && c > 3)
		newc--;

	if (movesRemain > 0  &&  (newr != r || newc != c)) {
		InterpKeyPoint(dogs, s, newr, newc, grad, map,
                       octSize, keys,movesRemain - 1,par);
		return;
	}

	/* Do not create a keypoint if interpolation still remains far
	   outside expected limits, or if magnitude of peak value is below
	   threshold (i.e., contrast is too low). */
	if (fabs(offset[0]) > 1.5 || fabs(offset[1]) > 1.5 ||
		fabs(offset[2]) > 1.5 || fabs(peakval) < par.PeakThresh)		
		{
			if (DEBUG) printf("Point not well localized by FitQuadratic\n"); 	
			par.noncorrectlylocalized++;
			return;
		}
	
	/* Check that no keypoint has been created at this location (to avoid
	   duplicates).  Otherwise, mark this map location.
	*/
	if (*map.pixel(c,r)) return;
	*map.pixel(c,r) = true;

	/* The scale relative to this octave is given by octScale.  The scale
	   units are in terms of sigma for the smallest of the Gaussians in the
	   DOG used to identify that scale.
	*/
	float octScale = par.InitSigma * pow(2.0f, (s + offset[0]) / (float) par.Scales);

	/// always use histogram of orientations
	//if (UseHistogramOri)
    AssignOriHist(grad, octSize, octScale,
                  r + offset[1], c + offset[2], keys, par);
	//else
	//	AssignOriAvg(
	//		grad, ori, octSize, octScale,
	//		r + offset[1], c + offset[2], keys);
}
示例#2
0
文件: key.c 项目: BOTSlab/bupimo_src
/* Create a keypoint at a peak near scale space location (s,r,c), where
   s is scale (index of DOGs image), and (r,c) is (row, col) location.
   Return the list of keys with any new keys added.
*/
KKeypoint InterpKeyPoint(Image *dogs, int s, int r, int c, Image grad,
   Image ori, Image map, float octSize, KKeypoint keys, int movesRemain)
{
    int newr = r, newc = c;
    float offset[3], octScale, peakval;

    /* The SkipInterp flag means that no interpolation will be performed
       and the peak will simply be assigned to the given integer sampling
       locations.
    */
    if (SkipInterp) {
      assert(UseHistogramOri);    /* Only needs testing for this case. */
      if (fabs(dogs[s]->pixels[r][c]) < PeakThresh)
	return keys;
      else
	return AssignOriHist(grad, ori, octSize,
			    InitSigma * pow(2.0, s / (float) Scales),
			    (float) r, (float) c, keys);
    }

    /* Fit quadratic to determine offset and peak value. */
    peakval = FitQuadratic(offset, dogs, s, r, c);

    /* Move to an adjacent (row,col) location if quadratic interpolation
       is larger than 0.6 units in some direction (we use 0.6 instead of
       0.5 to avoid jumping back and forth near boundary).  We do not
       perform move to adjacent scales, as it is seldom useful and we
       do not have easy access to adjacent scale structures.  The
       movesRemain counter allows only a fixed number of moves to
       prevent possibility of infinite loops.
    */
    if (offset[1] > 0.6 && r < dogs[0]->rows - 3)
      newr++;
    if (offset[1] < -0.6 && r > 3)
      newr--;
    if (offset[2] > 0.6 && c < dogs[0]->cols - 3)
      newc++;
    if (offset[2] < -0.6 && c > 3)
      newc--;
    if (movesRemain > 0  &&  (newr != r || newc != c))
      return InterpKeyPoint(dogs, s, newr, newc, grad, ori, map, octSize,
			    keys, movesRemain - 1);

    /* Do not create a keypoint if interpolation still remains far
       outside expected limits, or if magnitude of peak value is below
       threshold (i.e., contrast is too low).
    */
    if (fabs(offset[0]) > 1.5  || fabs(offset[1]) > 1.5  ||
	fabs(offset[2]) > 1.5 || fabs(peakval) < PeakThresh)
      return keys;

    /* Check that no keypoint has been created at this location (to avoid
       duplicates).  Otherwise, mark this map location.
    */
    if (map->pixels[r][c] > 0.0)
      return keys;
    map->pixels[r][c] = 1.0;

    /* The scale relative to this octave is given by octScale.  The scale
       units are in terms of sigma for the smallest of the Gaussians in the
       DOG used to identify that scale.
    */
    octScale = InitSigma * pow(2.0, (s + offset[0]) / (float) Scales);

    if (UseHistogramOri)
      return AssignOriHist(grad, ori, octSize, octScale, r + offset[1],
			   c + offset[2], keys);
    else
      return AssignOriAvg(grad, ori, octSize, octScale, r + offset[1],
			  c + offset[2], keys);
}