/* g in Z[X] potentially defines a subfield of Q[X]/f. It is a subfield iff A * (cf subfield) was a block system; then there * exists h in Q[X] such that f | g o h. listdelta determines h s.t f | g o h * in Fp[X] (cf chinese_retrieve_pol). Try to lift it; den is a * multiplicative bound for denominator of lift. */ static GEN embedding(GEN g, GEN DATA, primedata *S, GEN den, GEN listdelta) { GEN TR, w0_Q, w0, w1_Q, w1, wpow, h0, gp, T, q2, q, maxp, a, p = S->p; long rt; pari_sp av; T = gel(DATA,1); rt = brent_kung_optpow(degpol(T), 2); maxp= gel(DATA,7); gp = derivpol(g); av = avma; w0 = chinese_retrieve_pol(DATA, S, listdelta); w0_Q = centermod(gmul(w0,den), p); h0 = FpXQ_inv(FpX_FpXQ_compo(gp,w0, T,p), T,p); /* = 1/g'(w0) mod (T,p) */ wpow = NULL; q = sqri(p); for(;;) {/* Given g,w0,h0 in Z[x], s.t. h0.g'(w0) = 1 and g(w0) = 0 mod (T,p), find * [w1,h1] satisfying the same conditions mod p^2, [w1,h1] = [w0,h0] (mod p) * (cf. Dixon: J. Austral. Math. Soc., Series A, vol.49, 1990, p.445) */ if (DEBUGLEVEL>1) fprintferr("lifting embedding mod p^k = %Z^%ld\n",p, Z_pval(q,p)); /* w1 := w0 - h0 g(w0) mod (T,q) */ if (wpow) a = FpX_FpXQV_compo(g,wpow, T,q); else a = FpX_FpXQ_compo(g,w0, T,q); /* first time */ /* now, a = 0 (p) */ a = gmul(gneg(h0), gdivexact(a, p)); w1 = gadd(w0, gmul(p, FpX_rem(a, T,p))); w1_Q = centermod(gmul(w1, remii(den,q)), q); if (gequal(w1_Q, w0_Q) || cmpii(q,maxp) > 0) { GEN G = gcmp1(den)? g: RgX_rescale(g,den); if (gcmp0(RgX_RgXQ_compo(G, w1_Q, T))) break; } if (cmpii(q, maxp) > 0) { if (DEBUGLEVEL) fprintferr("coeff too big for embedding\n"); return NULL; } gerepileall(av, 5, &w1,&h0,&w1_Q,&q,&p); q2 = sqri(q); wpow = FpXQ_powers(w1, rt, T, q2); /* h0 := h0 * (2 - h0 g'(w1)) mod (T,q) * = h0 + h0 * (1 - h0 g'(w1)) */ a = gmul(gneg(h0), FpX_FpXQV_compo(gp, FpXV_red(wpow,q),T,q)); a = ZX_Z_add(FpX_rem(a, T,q), gen_1); /* 1 - h0 g'(w1) = 0 (p) */ a = gmul(h0, gdivexact(a, p)); h0 = gadd(h0, gmul(p, FpX_rem(a, T,p))); w0 = w1; w0_Q = w1_Q; p = q; q = q2; } TR = gel(DATA,5); if (!gcmp0(TR)) w1_Q = translate_pol(w1_Q, TR); return gdiv(w1_Q,den); }
static GEN _lift_iter(void *E, GEN x2, GEN q) { struct _frob_lift *F = (struct _frob_lift*) E; long N = expi(q); GEN TN = ZXT_remi2n(F->T, N); GEN y2 = Z2XQ_frob(x2, TN, q); GEN x2y2 = FpX_rem(ZX_remi2n(ZX_mul(x2, y2), N), TN, q); GEN s = ZX_add(ZX_add(x2, ZX_shifti(y2, 1)), ZX_shifti(x2y2, 3)); GEN V = ZX_add(ZX_add(ZX_sqr(s), y2), ZX_shifti(x2y2, 2)); return mkvec4(FpX_rem(ZX_remi2n(V, N), TN, q),x2,y2,s); }
static GEN _lift_invd(void *E, GEN V, GEN v, GEN qM, long M) { struct _frob_lift *F = (struct _frob_lift*) E; GEN TM = ZXT_remi2n(F->T, M); GEN x2 = gel(v,2), y2 = gel(v,3), s = gel(v,4), r; GEN Dx = ZX_add(ZX_mul(ZX_Z_add(ZX_shifti(y2, 4), gen_2), s), ZX_shifti(y2, 2)); GEN Dy = ZX_add(ZX_Z_add(ZX_mul(ZX_Z_add(ZX_shifti(x2, 4), utoi(4)), s), gen_1), ZX_shifti(x2, 2)); Dx = FpX_rem(ZX_remi2n(Dx, M), TM, qM); Dy = FpX_rem(ZX_remi2n(Dy, M), TM, qM); r = mkvec3(Dy, Dx, TM); return gen_Z2X_Dixon(r, V, M, E, _frob_lin, _frob_lins, _frob_invls); }
static GEN _frob_lin(void *E, GEN F, GEN x2, long N) { GEN T = gel(F,3); GEN q = int2n(N); GEN y2 = Z2XQ_frob(x2, T, q); GEN lin = ZX_add(ZX_mul(gel(F,1), y2), ZX_mul(gel(F,2), x2)); (void) E; return FpX_rem(ZX_remi2n(lin, N), T, q); }
static GEN nf_to_Zq(GEN x, GEN T, GEN pk, GEN pks2, GEN proj) { GEN y; if (typ(x) != t_COL) return centermodii(x, pk, pks2); y = gmul(proj, x); if (!T) return centermodii(y, pk, pks2); y = RgV_to_RgX(y, varn(T)); return centermod_i(FpX_rem(y, T, pk), pk, pks2); }
/* Find h in Fp[X] such that h(a[i]) = listdelta[i] for all modular factors * ff[i], where a[i] is a fixed root of ff[i] in Fq = Z[Y]/(p,T) [namely the * first one in FpX_factorff_irred output]. Let f = ff[i], A the given root, * then h mod f is Tr_Fq/Fp ( h(A) f(X)/(X-A)f'(A) ), most of the expression * being precomputed. The complete h is recovered via chinese remaindering */ static GEN chinese_retrieve_pol(GEN DATA, primedata *S, GEN listdelta) { GEN interp, bezoutC, h, pol = FpX_red(gel(DATA,1), S->p); long i, l; interp = gel(DATA,9); bezoutC= gel(DATA,6); h = NULL; l = lg(interp); for (i=1; i<l; i++) { /* h(firstroot[i]) = listdelta[i] */ GEN t = FqX_Fq_mul(gel(interp,i), gel(listdelta,i), S->T,S->p); t = poltrace(t, (GEN)S->Trk[i], S->p); t = gmul(t, gel(bezoutC,i)); h = h? gadd(h,t): t; } return FpX_rem(FpX_red(h, S->p), pol, S->p); }
static GEN Z2XQ_frob(GEN x, GEN T, GEN q) { return FpX_rem(RgX_inflate(x, 2), T, q); }
/* Naive recombination of modular factors: combine up to maxK modular * factors, degree <= klim and divisible by hint * * target = polynomial we want to factor * famod = array of modular factors. Product should be congruent to * target/lc(target) modulo p^a * For true factors: S1,S2 <= p^b, with b <= a and p^(b-a) < 2^31 */ static GEN nfcmbf(nfcmbf_t *T, GEN p, long a, long maxK, long klim) { GEN pol = T->pol, nf = T->nf, famod = T->fact, dn = T->dn; GEN bound = T->bound; GEN nfpol = gel(nf,1); long K = 1, cnt = 1, i,j,k, curdeg, lfamod = lg(famod)-1, dnf = degpol(nfpol); GEN res = cgetg(3, t_VEC); pari_sp av0 = avma; GEN pk = gpowgs(p,a), pks2 = shifti(pk,-1); GEN ind = cgetg(lfamod+1, t_VECSMALL); GEN degpol = cgetg(lfamod+1, t_VECSMALL); GEN degsofar = cgetg(lfamod+1, t_VECSMALL); GEN listmod = cgetg(lfamod+1, t_COL); GEN fa = cgetg(lfamod+1, t_COL); GEN lc = absi(leading_term(pol)), lt = is_pm1(lc)? NULL: lc; GEN C2ltpol, C = T->L->topowden, Tpk = T->L->Tpk; GEN Clt = mul_content(C, lt); GEN C2lt = mul_content(C,Clt); const double Bhigh = get_Bhigh(lfamod, dnf); trace_data _T1, _T2, *T1, *T2; pari_timer ti; TIMERstart(&ti); if (maxK < 0) maxK = lfamod-1; C2ltpol = C2lt? gmul(C2lt,pol): pol; { GEN q = ceil_safe(sqrtr(T->BS_2)); GEN t1,t2, ltdn, lt2dn; GEN trace1 = cgetg(lfamod+1, t_MAT); GEN trace2 = cgetg(lfamod+1, t_MAT); ltdn = mul_content(lt, dn); lt2dn= mul_content(ltdn, lt); for (i=1; i <= lfamod; i++) { pari_sp av = avma; GEN P = gel(famod,i); long d = degpol(P); degpol[i] = d; P += 2; t1 = gel(P,d-1);/* = - S_1 */ t2 = gsqr(t1); if (d > 1) t2 = gsub(t2, gmul2n(gel(P,d-2), 1)); /* t2 = S_2 Newton sum */ t2 = typ(t2)!=t_INT? FpX_rem(t2, Tpk, pk): modii(t2, pk); if (lt) { if (typ(t2)!=t_INT) { t1 = FpX_red(gmul(ltdn, t1), pk); t2 = FpX_red(gmul(lt2dn,t2), pk); } else { t1 = remii(mulii(ltdn, t1), pk); t2 = remii(mulii(lt2dn,t2), pk); } } gel(trace1,i) = gclone( nf_bestlift(t1, NULL, T->L) ); gel(trace2,i) = gclone( nf_bestlift(t2, NULL, T->L) ); avma = av; } T1 = init_trace(&_T1, trace1, T->L, q); T2 = init_trace(&_T2, trace2, T->L, q); for (i=1; i <= lfamod; i++) { gunclone(gel(trace1,i)); gunclone(gel(trace2,i)); } } degsofar[0] = 0; /* sentinel */ /* ind runs through strictly increasing sequences of length K, * 1 <= ind[i] <= lfamod */ nextK: if (K > maxK || 2*K > lfamod) goto END; if (DEBUGLEVEL > 3) fprintferr("\n### K = %d, %Z combinations\n", K,binomial(utoipos(lfamod), K)); setlg(ind, K+1); ind[1] = 1; i = 1; curdeg = degpol[ind[1]]; for(;;) { /* try all combinations of K factors */ for (j = i; j < K; j++) { degsofar[j] = curdeg; ind[j+1] = ind[j]+1; curdeg += degpol[ind[j+1]]; } if (curdeg <= klim && curdeg % T->hint == 0) /* trial divide */ { GEN t, y, q, list; pari_sp av; av = avma; /* d - 1 test */ if (T1) { t = get_trace(ind, T1); if (rtodbl(QuickNormL2(t,DEFAULTPREC)) > Bhigh) { if (DEBUGLEVEL>6) fprintferr("."); avma = av; goto NEXT; } } /* d - 2 test */ if (T2) { t = get_trace(ind, T2); if (rtodbl(QuickNormL2(t,DEFAULTPREC)) > Bhigh) { if (DEBUGLEVEL>3) fprintferr("|"); avma = av; goto NEXT; } } avma = av; y = lt; /* full computation */ for (i=1; i<=K; i++) { GEN q = gel(famod, ind[i]); if (y) q = gmul(y, q); y = FqX_centermod(q, Tpk, pk, pks2); } y = nf_pol_lift(y, bound, T); if (!y) { if (DEBUGLEVEL>3) fprintferr("@"); avma = av; goto NEXT; } /* try out the new combination: y is the candidate factor */ q = RgXQX_divrem(C2ltpol, y, nfpol, ONLY_DIVIDES); if (!q) { if (DEBUGLEVEL>3) fprintferr("*"); avma = av; goto NEXT; } /* found a factor */ list = cgetg(K+1, t_VEC); gel(listmod,cnt) = list; for (i=1; i<=K; i++) list[i] = famod[ind[i]]; y = Q_primpart(y); gel(fa,cnt++) = QXQX_normalize(y, nfpol); /* fix up pol */ pol = q; for (i=j=k=1; i <= lfamod; i++) { /* remove used factors */ if (j <= K && i == ind[j]) j++; else { famod[k] = famod[i]; update_trace(T1, k, i); update_trace(T2, k, i); degpol[k] = degpol[i]; k++; } } lfamod -= K; if (lfamod < 2*K) goto END; i = 1; curdeg = degpol[ind[1]]; if (C2lt) pol = Q_primpart(pol); if (lt) lt = absi(leading_term(pol)); Clt = mul_content(C, lt); C2lt = mul_content(C,Clt); C2ltpol = C2lt? gmul(C2lt,pol): pol; if (DEBUGLEVEL > 2) { fprintferr("\n"); msgTIMER(&ti, "to find factor %Z",y); fprintferr("remaining modular factor(s): %ld\n", lfamod); } continue; } NEXT: for (i = K+1;;) { if (--i == 0) { K++; goto nextK; } if (++ind[i] <= lfamod - K + i) { curdeg = degsofar[i-1] + degpol[ind[i]]; if (curdeg <= klim) break; } } } END: if (degpol(pol) > 0) { /* leftover factor */ if (signe(leading_term(pol)) < 0) pol = gneg_i(pol); if (C2lt && lfamod < 2*K) pol = QXQX_normalize(Q_primpart(pol), nfpol); setlg(famod, lfamod+1); gel(listmod,cnt) = shallowcopy(famod); gel(fa,cnt++) = pol; } if (DEBUGLEVEL>6) fprintferr("\n"); if (cnt == 2) { avma = av0; gel(res,1) = mkvec(T->pol); gel(res,2) = mkvec(T->fact); } else { setlg(listmod, cnt); setlg(fa, cnt); gel(res,1) = fa; gel(res,2) = listmod; res = gerepilecopy(av0, res); } return res; }