/**Function************************************************************* Synopsis [Returns 1 if the miter is unsat; 0 if sat; -1 if undecided.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Fraig_ManCheckMiter( Fraig_Man_t * p ) { Fraig_Node_t * pNode; int i; FREE( p->pModel ); for ( i = 0; i < p->vOutputs->nSize; i++ ) { // get the output node (it can be complemented!) pNode = p->vOutputs->pArray[i]; // if the miter is constant 0, the problem is UNSAT if ( pNode == Fraig_Not(p->pConst1) ) continue; // consider the special case when the miter is constant 1 if ( pNode == p->pConst1 ) { // in this case, any counter example will do to distinquish it from constant 0 // here we pick the counter example composed of all zeros p->pModel = Fraig_ManAllocCounterExample( p ); return 0; } // save the counter example p->pModel = Fraig_ManSaveCounterExample( p, pNode ); // if the model is not found, return undecided if ( p->pModel == NULL ) return -1; else return 0; } return 1; }
/**Function************************************************************* Synopsis [Tries to prove the final miter.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Fraig_ManProveMiter( Fraig_Man_t * p ) { Fraig_Node_t * pNode; int i, clk; if ( !p->fTryProve ) return; clk = clock(); // consider all outputs of the multi-output miter for ( i = 0; i < p->vOutputs->nSize; i++ ) { pNode = Fraig_Regular(p->vOutputs->pArray[i]); // skip already constant nodes if ( pNode == p->pConst1 ) continue; // skip nodes that are different according to simulation if ( !Fraig_CompareSimInfo( pNode, p->pConst1, p->nWordsRand, 1 ) ) continue; if ( Fraig_NodeIsEquivalent( p, p->pConst1, pNode, -1, p->nSeconds ) ) { if ( Fraig_IsComplement(p->vOutputs->pArray[i]) ^ Fraig_NodeComparePhase(p->pConst1, pNode) ) p->vOutputs->pArray[i] = Fraig_Not(p->pConst1); else p->vOutputs->pArray[i] = p->pConst1; } } if ( p->fVerboseP ) { // PRT( "Final miter proof time", clock() - clk ); } }
/**Function************************************************************* Synopsis [Checks equivalence of two nodes.] Description [Returns 1 iff the nodes are equivalent.] SideEffects [] SeeAlso [] ***********************************************************************/ int Fraig_NodesAreEqual( Fraig_Man_t * p, Fraig_Node_t * pNode1, Fraig_Node_t * pNode2, int nBTLimit, int nTimeLimit ) { if ( pNode1 == pNode2 ) return 1; if ( pNode1 == Fraig_Not(pNode2) ) return 0; return Fraig_NodeIsEquivalent( p, Fraig_Regular(pNode1), Fraig_Regular(pNode2), nBTLimit, nTimeLimit ); }
/**Function************************************************************* Synopsis [Perfoms the MUX operation with functional hashing.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Fraig_Node_t * Fraig_NodeMux( Fraig_Man_t * p, Fraig_Node_t * pC, Fraig_Node_t * pT, Fraig_Node_t * pE ) { Fraig_Node_t * pAnd1, * pAnd2, * pRes; pAnd1 = Fraig_NodeAndCanon( p, pC, pT ); Fraig_Ref( pAnd1 ); pAnd2 = Fraig_NodeAndCanon( p, Fraig_Not(pC), pE ); Fraig_Ref( pAnd2 ); pRes = Fraig_NodeOr( p, pAnd1, pAnd2 ); Fraig_RecursiveDeref( p, pAnd1 ); Fraig_RecursiveDeref( p, pAnd2 ); Fraig_Deref( pRes ); return pRes; }
/**Function************************************************************* Synopsis [Returns 1 if the node is the root of EXOR/NEXOR gate.] Description [The node can be complemented.] SideEffects [] SeeAlso [] ***********************************************************************/ int Fraig_NodeIsExorType( Fraig_Node_t * pNode ) { Fraig_Node_t * pNode1, * pNode2; // make the node regular (it does not matter for EXOR/NEXOR) pNode = Fraig_Regular(pNode); // if the node or its children are not ANDs or not compl, this cannot be EXOR type if ( !Fraig_NodeIsAnd(pNode) ) return 0; if ( !Fraig_NodeIsAnd(pNode->p1) || !Fraig_IsComplement(pNode->p1) ) return 0; if ( !Fraig_NodeIsAnd(pNode->p2) || !Fraig_IsComplement(pNode->p2) ) return 0; // get children pNode1 = Fraig_Regular(pNode->p1); pNode2 = Fraig_Regular(pNode->p2); assert( pNode1->Num < pNode2->Num ); // compare grandchildren return pNode1->p1 == Fraig_Not(pNode2->p1) && pNode1->p2 == Fraig_Not(pNode2->p2); }
/**Function************************************************************* Synopsis [Returns 1 if the node is the root of MUX or EXOR/NEXOR.] Description [The node can be complemented.] SideEffects [] SeeAlso [] ***********************************************************************/ int Fraig_NodeIsMuxType( Fraig_Node_t * pNode ) { Fraig_Node_t * pNode1, * pNode2; // make the node regular (it does not matter for EXOR/NEXOR) pNode = Fraig_Regular(pNode); // if the node or its children are not ANDs or not compl, this cannot be EXOR type if ( !Fraig_NodeIsAnd(pNode) ) return 0; if ( !Fraig_NodeIsAnd(pNode->p1) || !Fraig_IsComplement(pNode->p1) ) return 0; if ( !Fraig_NodeIsAnd(pNode->p2) || !Fraig_IsComplement(pNode->p2) ) return 0; // get children pNode1 = Fraig_Regular(pNode->p1); pNode2 = Fraig_Regular(pNode->p2); assert( pNode1->Num < pNode2->Num ); // compare grandchildren // node is an EXOR/NEXOR if ( pNode1->p1 == Fraig_Not(pNode2->p1) && pNode1->p2 == Fraig_Not(pNode2->p2) ) return 1; // otherwise the node is MUX iff it has a pair of equal grandchildren return pNode1->p1 == Fraig_Not(pNode2->p1) || pNode1->p1 == Fraig_Not(pNode2->p2) || pNode1->p2 == Fraig_Not(pNode2->p1) || pNode1->p2 == Fraig_Not(pNode2->p2); }
/**Function************************************************************* Synopsis [Recognizes what nodes are control and data inputs of a MUX.] Description [If the node is a MUX, returns the control variable C. Assigns nodes T and E to be the then and else variables of the MUX. Node C is never complemented. Nodes T and E can be complemented. This function also recognizes EXOR/NEXOR gates as MUXes.] SideEffects [] SeeAlso [] ***********************************************************************/ Fraig_Node_t * Fraig_NodeRecognizeMux( Fraig_Node_t * pNode, Fraig_Node_t ** ppNodeT, Fraig_Node_t ** ppNodeE ) { Fraig_Node_t * pNode1, * pNode2; assert( !Fraig_IsComplement(pNode) ); assert( Fraig_NodeIsMuxType(pNode) ); // get children pNode1 = Fraig_Regular(pNode->p1); pNode2 = Fraig_Regular(pNode->p2); // find the control variable if ( pNode1->p1 == Fraig_Not(pNode2->p1) ) { if ( Fraig_IsComplement(pNode1->p1) ) { // pNode2->p1 is positive phase of C *ppNodeT = Fraig_Not(pNode2->p2); *ppNodeE = Fraig_Not(pNode1->p2); return pNode2->p1; } else { // pNode1->p1 is positive phase of C *ppNodeT = Fraig_Not(pNode1->p2); *ppNodeE = Fraig_Not(pNode2->p2); return pNode1->p1; } } else if ( pNode1->p1 == Fraig_Not(pNode2->p2) ) { if ( Fraig_IsComplement(pNode1->p1) ) { // pNode2->p2 is positive phase of C *ppNodeT = Fraig_Not(pNode2->p1); *ppNodeE = Fraig_Not(pNode1->p2); return pNode2->p2; } else { // pNode1->p1 is positive phase of C *ppNodeT = Fraig_Not(pNode1->p2); *ppNodeE = Fraig_Not(pNode2->p1); return pNode1->p1; } } else if ( pNode1->p2 == Fraig_Not(pNode2->p1) ) { if ( Fraig_IsComplement(pNode1->p2) ) { // pNode2->p1 is positive phase of C *ppNodeT = Fraig_Not(pNode2->p2); *ppNodeE = Fraig_Not(pNode1->p1); return pNode2->p1; } else { // pNode1->p2 is positive phase of C *ppNodeT = Fraig_Not(pNode1->p1); *ppNodeE = Fraig_Not(pNode2->p2); return pNode1->p2; } } else if ( pNode1->p2 == Fraig_Not(pNode2->p2) ) { if ( Fraig_IsComplement(pNode1->p2) ) { // pNode2->p2 is positive phase of C *ppNodeT = Fraig_Not(pNode2->p1); *ppNodeE = Fraig_Not(pNode1->p1); return pNode2->p2; } else { // pNode1->p2 is positive phase of C *ppNodeT = Fraig_Not(pNode1->p1); *ppNodeE = Fraig_Not(pNode2->p1); return pNode1->p2; } } assert( 0 ); // this is not MUX return NULL; }
/**Function************************************************************* Synopsis [The internal AND operation for the two FRAIG nodes.] Description [This procedure is the core of the FRAIG package, because it performs the two-step canonicization of FRAIG nodes. The first step involves the lookup in the structural hash table (which hashes two ANDs into a node that has them as fanins, if such a node exists). If the node is not found in the structural hash table, an attempt is made to find a functionally equivalent node in another hash table (which hashes the simulation info into the nodes, which has this simulation info). Some tricks used on the way are described in the comments to the code and in the paper "FRAIGs: Functionally reduced AND-INV graphs".] SideEffects [] SeeAlso [] ***********************************************************************/ Fraig_Node_t * Fraig_NodeAndCanon( Fraig_Man_t * pMan, Fraig_Node_t * p1, Fraig_Node_t * p2 ) { Fraig_Node_t * pNodeNew, * pNodeOld, * pNodeRepr; int fUseSatCheck; // int RetValue; // check for trivial cases if ( p1 == p2 ) return p1; if ( p1 == Fraig_Not(p2) ) return Fraig_Not(pMan->pConst1); if ( Fraig_NodeIsConst(p1) ) { if ( p1 == pMan->pConst1 ) return p2; return Fraig_Not(pMan->pConst1); } if ( Fraig_NodeIsConst(p2) ) { if ( p2 == pMan->pConst1 ) return p1; return Fraig_Not(pMan->pConst1); } /* // check for less trivial cases if ( Fraig_IsComplement(p1) ) { if ( RetValue = Fraig_NodeIsInSupergate( Fraig_Regular(p1), p2 ) ) { if ( RetValue == -1 ) pMan->nImplies0++; else pMan->nImplies1++; if ( RetValue == -1 ) return p2; } } else { if ( RetValue = Fraig_NodeIsInSupergate( p1, p2 ) ) { if ( RetValue == 1 ) pMan->nSimplifies1++; else pMan->nSimplifies0++; if ( RetValue == 1 ) return p1; return Fraig_Not(pMan->pConst1); } } if ( Fraig_IsComplement(p2) ) { if ( RetValue = Fraig_NodeIsInSupergate( Fraig_Regular(p2), p1 ) ) { if ( RetValue == -1 ) pMan->nImplies0++; else pMan->nImplies1++; if ( RetValue == -1 ) return p1; } } else { if ( RetValue = Fraig_NodeIsInSupergate( p2, p1 ) ) { if ( RetValue == 1 ) pMan->nSimplifies1++; else pMan->nSimplifies0++; if ( RetValue == 1 ) return p2; return Fraig_Not(pMan->pConst1); } } */ // perform level-one structural hashing if ( Fraig_HashTableLookupS( pMan, p1, p2, &pNodeNew ) ) // the node with these children is found { // if the existent node is part of the cone of unused logic // (that is logic feeding the node which is equivalent to the given node) // return the canonical representative of this node // determine the phase of the given node, with respect to its canonical form pNodeRepr = Fraig_Regular(pNodeNew)->pRepr; if ( pMan->fFuncRed && pNodeRepr ) return Fraig_NotCond( pNodeRepr, Fraig_IsComplement(pNodeNew) ^ Fraig_NodeComparePhase(Fraig_Regular(pNodeNew), pNodeRepr) ); // otherwise, the node is itself a canonical representative, return it return pNodeNew; } // the same node is not found, but the new one is created // if one level hashing is requested (without functionality hashing), return if ( !pMan->fFuncRed ) return pNodeNew; // check if the new node is unique using the simulation info if ( pNodeNew->nOnes == 0 || pNodeNew->nOnes == (unsigned)pMan->nWordsRand * 32 ) { pMan->nSatZeros++; if ( !pMan->fDoSparse ) // if we do not do sparse functions, skip return pNodeNew; // check the sparse function simulation hash table pNodeOld = Fraig_HashTableLookupF0( pMan, pNodeNew ); if ( pNodeOld == NULL ) // the node is unique (it is added to the table) return pNodeNew; } else { // check the simulation hash table pNodeOld = Fraig_HashTableLookupF( pMan, pNodeNew ); if ( pNodeOld == NULL ) // the node is unique return pNodeNew; } assert( pNodeOld->pRepr == 0 ); // there is another node which looks the same according to simulation // use SAT to resolve the ambiguity fUseSatCheck = (pMan->nInspLimit == 0 || Fraig_ManReadInspects(pMan) < pMan->nInspLimit); if ( fUseSatCheck && Fraig_NodeIsEquivalent( pMan, pNodeOld, pNodeNew, pMan->nBTLimit, 1000000 ) ) { // set the node to be equivalent with this node // to prevent loops, only set if the old node is not in the TFI of the new node // the loop may happen in the following case: suppose // NodeC = AND(NodeA, NodeB) and at the same time NodeA => NodeB // in this case, NodeA and NodeC are functionally equivalent // however, NodeA is a fanin of node NodeC (this leads to the loop) // add the node to the list of equivalent nodes or dereference it if ( pMan->fChoicing && !Fraig_CheckTfi( pMan, pNodeOld, pNodeNew ) ) { // if the old node is not in the TFI of the new node and choicing // is enabled, add the new node to the list of equivalent ones pNodeNew->pNextE = pNodeOld->pNextE; pNodeOld->pNextE = pNodeNew; } // set the canonical representative of this node pNodeNew->pRepr = pNodeOld; // return the equivalent node return Fraig_NotCond( pNodeOld, Fraig_NodeComparePhase(pNodeOld, pNodeNew) ); } // now we add another member to this simulation class if ( pNodeNew->nOnes == 0 || pNodeNew->nOnes == (unsigned)pMan->nWordsRand * 32 ) { Fraig_Node_t * pNodeTemp; assert( pMan->fDoSparse ); pNodeTemp = Fraig_HashTableLookupF0( pMan, pNodeNew ); // assert( pNodeTemp == NULL ); // Fraig_HashTableInsertF0( pMan, pNodeNew ); } else { pNodeNew->pNextD = pNodeOld->pNextD; pNodeOld->pNextD = pNodeNew; } // return the new node assert( pNodeNew->pRepr == 0 ); return pNodeNew; }
/**Function************************************************************* Synopsis [Perfoms the EXOR operation with functional hashing.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Fraig_Node_t * Fraig_NodeExor( Fraig_Man_t * p, Fraig_Node_t * p1, Fraig_Node_t * p2 ) { return Fraig_NodeMux( p, p1, Fraig_Not(p2), p2 ); }
/**Function************************************************************* Synopsis [Perfoms the OR operation with functional hashing.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Fraig_Node_t * Fraig_NodeOr( Fraig_Man_t * p, Fraig_Node_t * p1, Fraig_Node_t * p2 ) { return Fraig_Not( Fraig_NodeAndCanon( p, Fraig_Not(p1), Fraig_Not(p2) ) ); }