示例#1
0
/*
 * Add as much environmentally-derived random noise as possible
 * to the randPool.  Typically, this involves reading the most
 * accurate system clocks available.
 *
 * Returns the number of ticks that have passed since the last call,
 * for entropy estimation purposes.
 */
PGPUInt32
ranGetEntropy(PGPRandomContext const *rc)
{
	PGPUInt32 delta;
	PGPUInt32 d1;	/* MSW of difference */
	PGPUInt32 t[2];	/* little-endian 64-bit timer */
	static PGPUInt32 prevt[2];

	SYS$GETTIM(t);	/* VMS hardware clock increments by 100000 per tick */
	pgpRandomAddBytes(rc, (PGPByte const *)t, sizeof(t));
	/* Get difference in d1 and delta, and old time in prevt */
	d1 = t[1] - prevt[1] + (t[0] < prevt[0]);
	prevt[1] = t[1];
	delta = t[0] - prevt[0];
	prevt[0] = t[0];
	
	/* Now, divide the 64-bit value by 100000 = 2^5 * 5^5 = 32 * 3125 */
	/* Divide value, MSW in d1 and LSW in delta, by 32 */
	delta >>= 5;
	delta |= d1 << (32-5);
	d1 >>= 5;
	/*
	 * Divide by 3125.  This fits into 16 bits, so the following
	 * code is possible.  2^32 = 3125 * 1374389 + 1671.
	 *
	 * This code has confused people reading it, so here's a detailed
	 * explanation.  First, since we only want a 32-bit result,
	 * reduce the input mod 3125 * 2^32 before starting.  This
	 * amounts to reducing the most significant word mod 3125 and
	 * leaving the least-significant word alone.
	 *
	 * Then, using / for mathematical (real, not integer) division, we
	 * want to compute floor((d1 * 2^32 + d0) / 3125), which I'll denote
	 * using the old [ ] syntax for floor, so it's
	 *   [ (d1 * 2^32 + d0) / 3125 ]
	 * = [ (d1 * (3125 * 1374389 + 1671) + d0) / 3125 ]
	 * = [ d1 * 1374389 + (d1 * 1671 + d0) / 3125 ]
	 * = d1 * 137438 + [ (d1 * 1671 + d0) / 3125 ]
	 * = d1 * 137438 + [ d0 / 3125 ] + [ (d1 * 1671 + d0 % 3125) / 3125 ]
	 *
	 * The C / operator, applied to integers, performs [ a / b ], so
	 * this can be implemented in C, and since d1 < 3125 (by the first
	 * modulo operation), d1 * 1671 + d0 % 3125 < 3125 * 1672, which
	 * is 5225000, less than 2^32, so it all fits into 32 bits.
	 */
	d1 %= 3125;	/* Ignore overflow past 32 bits */
	delta = delta/3125 + d1*1374389 + (delta%3125 + d1*1671) / 3125;

	return delta;
}
示例#2
0
/*
 * Add as much environmentally-derived random noise as possible
 * to the randPool.  Typically, this involves reading the most
 * accurate system clocks available.
 *
 * Returns the number of ticks that have passed since the last call,
 * for entropy estimation purposes.
 */
word32
noise(void)
{
	word32 delta;

#if defined(MSDOS)
	static unsigned deltamask = 0;
	static unsigned prevt;
	unsigned t;
	time_t tnow;
	clock_t cnow;

	if (deltamask == 0)
		deltamask = has8254() ? 0xffff : 0x7fff;
	t = (deltamask & 0x8000) ? read8254() : read8253();
	randPoolAddBytes((byte const *)&t, sizeof(t));
	delta = deltamask & (t - prevt);
	prevt = t;

	/* Add more-significant time components. */
	cnow = clock();
	randPoolAddBytes((byte *)&cnow, sizeof(cnow));
	tnow = time((time_t *)0);
	randPoolAddBytes((byte *)&tnow, sizeof(tnow));
/* END OF DOS */
#elif defined(VMS)
	word32 t[2];	/* little-endian 64-bit timer */
	word32 d1;	/* MSW of difference */
	static word32 prevt[2];

	SYS$GETTIM(t);	/* VMS hardware clock increments by 100000 per tick */
	randPoolAddBytes((byte const *)t, sizeof(t));
	/* Get difference in d1 and delta, and old time in prevt */
	d1 = t[1] - prevt[1] + (t[0] < prevt[0]);
	prevt[1] = t[1];
	delta = t[0] - prevt[0];
	prevt[0] = t[0];
	
	/* Now, divide the 64-bit value by 100000 = 2^5 * 5^5 = 32 * 3125 */
	/* Divide value, MSW in d1 and LSW in delta, by 32 */
	delta >>= 5;
	delta |= d1 << (32-5);
	d1 >>= 5;
	/*
	 * Divide by 3125.  This fits into 16 bits, so the following
	 * code is possible.  2^32 = 3125 * 1374389 + 1671.
	 *
	 * This code has confused people reading it, so here's a detailed
	 * explanation.  First, since we only want a 32-bit result,
	 * reduce the input mod 3125 * 2^32 before starting.  This
	 * amounts to reducing the most significant word mod 3125 and
	 * leaving the least-significant word alone.
	 *
	 * Then, using / for mathematical (real, not integer) division, we
	 * want to compute floor(d1 * 2^32 + d0) / 3125), which I'll denote
	 * using the old [ ] syntax for floor, so it's
	 *   [ (d1 * 2^32 + d0) / 3125 ]
	 * = [ (d1 * (3125 * 1374389 + 1671) + d0) / 3125 ]
	 * = [ d1 * 1374389 + (d1 * 1671 + d0) / 3125 ]
	 * = d1 * 137438 + [ (d1 * 1671 + d0) / 3125 ]
	 * = d1 * 137438 + [ d0 / 3125 ] + [ (d1 * 1671 + d0 % 3125) / 3125 ]
	 *
	 * The C / operator, applied to integers, performs [ a / b ], so
	 * this can be implemented in C, and since d1 < 3125 (by the first
	 * modulo operation), d1 * 1671 + d0 % 3125 < 3125 * 1672, which
	 * is 5225000, less than 2^32, so it all fits into 32 bits.
	 */
	d1 %= 3125;	/* Ignore overflow past 32 bits */
	delta = delta/3125 + d1*1374389 + (delta%3125 + d1*1671) / 3125;
/* END OF VMS */
#elif defined(UNIX)
	timetype t;
	static unsigned ticksize = 0;
	static timetype prevt;

	gettime(&t);
#if CHOICE_GETITIMER
	/* If itimer isn't started, start it */
	if (t.it_value.tv_sec == 0 && t.it_value.tv_usec == 0) {
		/*
		 * start the timer - assume that PGP won't be running for
		 * more than 11 days, 13 hours, 46 minutes and 40 seconds.
		 */
		t.it_value.tv_sec = 1000000;
		t.it_interval.tv_sec = 1000000;
		t.it_interval.tv_usec = 0;
		signal(SIGALRM, SIG_IGN);	/* just in case.. */
		setitimer(ITIMER_REAL, &t, NULL);
		t.it_value.tv_sec = 0;
	}
	randPoolAddBytes((byte const *)&t.it_value, sizeof(t.it_value));
#else
	randPoolAddBytes((byte const *)&t, sizeof(t));
#endif

	if (!ticksize)
		ticksize = noiseTickSize();
	delta = (word32)(tickdiff(t, prevt) / ticksize);
	prevt = t;
/* END OF UNIX */
#else
#error Unknown OS - define UNIX or MSDOS or add code for high-resolution timers
#endif

	return delta;
}