void unpack0 (gfc_array_char *ret, const gfc_array_char *vector, const gfc_array_l1 *mask, char *field) { gfc_array_char tmp; index_type type_size; index_type size; type_size = GFC_DTYPE_TYPE_SIZE (vector); size = GFC_DESCRIPTOR_SIZE (vector); switch(type_size) { case GFC_DTYPE_LOGICAL_1: case GFC_DTYPE_INTEGER_1: case GFC_DTYPE_DERIVED_1: unpack0_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) vector, mask, (GFC_INTEGER_1 *) field); return; case GFC_DTYPE_LOGICAL_2: case GFC_DTYPE_INTEGER_2: unpack0_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector, mask, (GFC_INTEGER_2 *) field); return; case GFC_DTYPE_LOGICAL_4: case GFC_DTYPE_INTEGER_4: unpack0_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector, mask, (GFC_INTEGER_4 *) field); return; case GFC_DTYPE_LOGICAL_8: case GFC_DTYPE_INTEGER_8: unpack0_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector, mask, (GFC_INTEGER_8 *) field); return; #ifdef HAVE_GFC_INTEGER_16 case GFC_DTYPE_LOGICAL_16: case GFC_DTYPE_INTEGER_16: unpack0_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector, mask, (GFC_INTEGER_16 *) field); return; #endif case GFC_DTYPE_REAL_4: unpack0_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) vector, mask, (GFC_REAL_4 *) field); return; case GFC_DTYPE_REAL_8: unpack0_r8 ((gfc_array_r8 *) ret, (gfc_array_r8*) vector, mask, (GFC_REAL_8 *) field); return; #ifdef HAVE_GFC_REAL_10 case GFC_DTYPE_REAL_10: unpack0_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) vector, mask, (GFC_REAL_10 *) field); return; #endif #ifdef HAVE_GFC_REAL_16 case GFC_DTYPE_REAL_16: unpack0_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) vector, mask, (GFC_REAL_16 *) field); return; #endif case GFC_DTYPE_COMPLEX_4: unpack0_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) vector, mask, (GFC_COMPLEX_4 *) field); return; case GFC_DTYPE_COMPLEX_8: unpack0_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) vector, mask, (GFC_COMPLEX_8 *) field); return; #ifdef HAVE_GFC_COMPLEX_10 case GFC_DTYPE_COMPLEX_10: unpack0_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) vector, mask, (GFC_COMPLEX_10 *) field); return; #endif #ifdef HAVE_GFC_COMPLEX_16 case GFC_DTYPE_COMPLEX_16: unpack0_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) vector, mask, (GFC_COMPLEX_16 *) field); return; #endif case GFC_DTYPE_DERIVED_2: if (GFC_UNALIGNED_2(ret->data) || GFC_UNALIGNED_2(vector->data) || GFC_UNALIGNED_2(field)) break; else { unpack0_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector, mask, (GFC_INTEGER_2 *) field); return; } case GFC_DTYPE_DERIVED_4: if (GFC_UNALIGNED_4(ret->data) || GFC_UNALIGNED_4(vector->data) || GFC_UNALIGNED_4(field)) break; else { unpack0_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector, mask, (GFC_INTEGER_4 *) field); return; } case GFC_DTYPE_DERIVED_8: if (GFC_UNALIGNED_8(ret->data) || GFC_UNALIGNED_8(vector->data) || GFC_UNALIGNED_8(field)) break; else { unpack0_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector, mask, (GFC_INTEGER_8 *) field); return; } #ifdef HAVE_GFC_INTEGER_16 case GFC_DTYPE_DERIVED_16: if (GFC_UNALIGNED_16(ret->data) || GFC_UNALIGNED_16(vector->data) || GFC_UNALIGNED_16(field)) break; else { unpack0_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector, mask, (GFC_INTEGER_16 *) field); return; } #endif } memset (&tmp, 0, sizeof (tmp)); tmp.dtype = 0; tmp.data = field; unpack_internal (ret, vector, mask, &tmp, GFC_DESCRIPTOR_SIZE (vector), 0); }
static void cshift0 (gfc_array_char * ret, const gfc_array_char * array, ptrdiff_t shift, int which, index_type size) { /* r.* indicates the return array. */ index_type rstride[GFC_MAX_DIMENSIONS]; index_type rstride0; index_type roffset; char *rptr; /* s.* indicates the source array. */ index_type sstride[GFC_MAX_DIMENSIONS]; index_type sstride0; index_type soffset; const char *sptr; index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type dim; index_type len; index_type n; index_type arraysize; index_type type_size; if (which < 1 || which > GFC_DESCRIPTOR_RANK (array)) runtime_error ("Argument 'DIM' is out of range in call to 'CSHIFT'"); arraysize = size0 ((array_t *) array); if (ret->base_addr == NULL) { int i; ret->offset = 0; GFC_DTYPE_COPY(ret,array); for (i = 0; i < GFC_DESCRIPTOR_RANK (array); i++) { index_type ub, str; ub = GFC_DESCRIPTOR_EXTENT(array,i) - 1; if (i == 0) str = 1; else str = GFC_DESCRIPTOR_EXTENT(ret,i-1) * GFC_DESCRIPTOR_STRIDE(ret,i-1); GFC_DIMENSION_SET(ret->dim[i], 0, ub, str); } /* xmallocarray allocates a single byte for zero size. */ ret->base_addr = xmallocarray (arraysize, size); } else if (unlikely (compile_options.bounds_check)) { bounds_equal_extents ((array_t *) ret, (array_t *) array, "return value", "CSHIFT"); } if (arraysize == 0) return; type_size = GFC_DTYPE_TYPE_SIZE (array); switch(type_size) { case GFC_DTYPE_LOGICAL_1: case GFC_DTYPE_INTEGER_1: cshift0_i1 ((gfc_array_i1 *)ret, (gfc_array_i1 *) array, shift, which); return; case GFC_DTYPE_LOGICAL_2: case GFC_DTYPE_INTEGER_2: cshift0_i2 ((gfc_array_i2 *)ret, (gfc_array_i2 *) array, shift, which); return; case GFC_DTYPE_LOGICAL_4: case GFC_DTYPE_INTEGER_4: cshift0_i4 ((gfc_array_i4 *)ret, (gfc_array_i4 *) array, shift, which); return; case GFC_DTYPE_LOGICAL_8: case GFC_DTYPE_INTEGER_8: cshift0_i8 ((gfc_array_i8 *)ret, (gfc_array_i8 *) array, shift, which); return; #ifdef HAVE_GFC_INTEGER_16 case GFC_DTYPE_LOGICAL_16: case GFC_DTYPE_INTEGER_16: cshift0_i16 ((gfc_array_i16 *)ret, (gfc_array_i16 *) array, shift, which); return; #endif case GFC_DTYPE_REAL_4: cshift0_r4 ((gfc_array_r4 *)ret, (gfc_array_r4 *) array, shift, which); return; case GFC_DTYPE_REAL_8: cshift0_r8 ((gfc_array_r8 *)ret, (gfc_array_r8 *) array, shift, which); return; /* FIXME: This here is a hack, which will have to be removed when the array descriptor is reworked. Currently, we don't store the kind value for the type, but only the size. Because on targets with __float128, we have sizeof(logn double) == sizeof(__float128), we cannot discriminate here and have to fall back to the generic handling (which is suboptimal). */ #if !defined(GFC_REAL_16_IS_FLOAT128) # ifdef HAVE_GFC_REAL_10 case GFC_DTYPE_REAL_10: cshift0_r10 ((gfc_array_r10 *)ret, (gfc_array_r10 *) array, shift, which); return; # endif # ifdef HAVE_GFC_REAL_16 case GFC_DTYPE_REAL_16: cshift0_r16 ((gfc_array_r16 *)ret, (gfc_array_r16 *) array, shift, which); return; # endif #endif case GFC_DTYPE_COMPLEX_4: cshift0_c4 ((gfc_array_c4 *)ret, (gfc_array_c4 *) array, shift, which); return; case GFC_DTYPE_COMPLEX_8: cshift0_c8 ((gfc_array_c8 *)ret, (gfc_array_c8 *) array, shift, which); return; /* FIXME: This here is a hack, which will have to be removed when the array descriptor is reworked. Currently, we don't store the kind value for the type, but only the size. Because on targets with __float128, we have sizeof(logn double) == sizeof(__float128), we cannot discriminate here and have to fall back to the generic handling (which is suboptimal). */ #if !defined(GFC_REAL_16_IS_FLOAT128) # ifdef HAVE_GFC_COMPLEX_10 case GFC_DTYPE_COMPLEX_10: cshift0_c10 ((gfc_array_c10 *)ret, (gfc_array_c10 *) array, shift, which); return; # endif # ifdef HAVE_GFC_COMPLEX_16 case GFC_DTYPE_COMPLEX_16: cshift0_c16 ((gfc_array_c16 *)ret, (gfc_array_c16 *) array, shift, which); return; # endif #endif default: break; } switch (size) { /* Let's check the actual alignment of the data pointers. If they are suitably aligned, we can safely call the unpack functions. */ case sizeof (GFC_INTEGER_1): cshift0_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) array, shift, which); break; case sizeof (GFC_INTEGER_2): if (GFC_UNALIGNED_2(ret->base_addr) || GFC_UNALIGNED_2(array->base_addr)) break; else { cshift0_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) array, shift, which); return; } case sizeof (GFC_INTEGER_4): if (GFC_UNALIGNED_4(ret->base_addr) || GFC_UNALIGNED_4(array->base_addr)) break; else { cshift0_i4 ((gfc_array_i4 *)ret, (gfc_array_i4 *) array, shift, which); return; } case sizeof (GFC_INTEGER_8): if (GFC_UNALIGNED_8(ret->base_addr) || GFC_UNALIGNED_8(array->base_addr)) { /* Let's try to use the complex routines. First, a sanity check that the sizes match; this should be optimized to a no-op. */ if (sizeof(GFC_INTEGER_8) != sizeof(GFC_COMPLEX_4)) break; if (GFC_UNALIGNED_C4(ret->base_addr) || GFC_UNALIGNED_C4(array->base_addr)) break; cshift0_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) array, shift, which); return; } else { cshift0_i8 ((gfc_array_i8 *)ret, (gfc_array_i8 *) array, shift, which); return; } #ifdef HAVE_GFC_INTEGER_16 case sizeof (GFC_INTEGER_16): if (GFC_UNALIGNED_16(ret->base_addr) || GFC_UNALIGNED_16(array->base_addr)) { /* Let's try to use the complex routines. First, a sanity check that the sizes match; this should be optimized to a no-op. */ if (sizeof(GFC_INTEGER_16) != sizeof(GFC_COMPLEX_8)) break; if (GFC_UNALIGNED_C8(ret->base_addr) || GFC_UNALIGNED_C8(array->base_addr)) break; cshift0_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) array, shift, which); return; } else { cshift0_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) array, shift, which); return; } #else case sizeof (GFC_COMPLEX_8): if (GFC_UNALIGNED_C8(ret->base_addr) || GFC_UNALIGNED_C8(array->base_addr)) break; else { cshift0_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) array, shift, which); return; } #endif default: break; } which = which - 1; sstride[0] = 0; rstride[0] = 0; extent[0] = 1; count[0] = 0; n = 0; /* Initialized for avoiding compiler warnings. */ roffset = size; soffset = size; len = 0; for (dim = 0; dim < GFC_DESCRIPTOR_RANK (array); dim++) { if (dim == which) { roffset = GFC_DESCRIPTOR_STRIDE_BYTES(ret,dim); if (roffset == 0) roffset = size; soffset = GFC_DESCRIPTOR_STRIDE_BYTES(array,dim); if (soffset == 0) soffset = size; len = GFC_DESCRIPTOR_EXTENT(array,dim); } else { count[n] = 0; extent[n] = GFC_DESCRIPTOR_EXTENT(array,dim); rstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(ret,dim); sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,dim); n++; } } if (sstride[0] == 0) sstride[0] = size; if (rstride[0] == 0) rstride[0] = size; dim = GFC_DESCRIPTOR_RANK (array); rstride0 = rstride[0]; sstride0 = sstride[0]; rptr = ret->base_addr; sptr = array->base_addr; shift = len == 0 ? 0 : shift % (ptrdiff_t)len; if (shift < 0) shift += len; while (rptr) { /* Do the shift for this dimension. */ /* If elements are contiguous, perform the operation in two block moves. */ if (soffset == size && roffset == size) { size_t len1 = shift * size; size_t len2 = (len - shift) * size; memcpy (rptr, sptr + len1, len2); memcpy (rptr + len2, sptr, len1); } else { /* Otherwise, we'll have to perform the copy one element at a time. */ char *dest = rptr; const char *src = &sptr[shift * soffset]; for (n = 0; n < len - shift; n++) { memcpy (dest, src, size); dest += roffset; src += soffset; } for (src = sptr, n = 0; n < shift; n++) { memcpy (dest, src, size); dest += roffset; src += soffset; } } /* Advance to the next section. */ rptr += rstride0; sptr += sstride0; count[0]++; n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ rptr -= rstride[n] * extent[n]; sptr -= sstride[n] * extent[n]; n++; if (n >= dim - 1) { /* Break out of the loop. */ rptr = NULL; break; } else { count[n]++; rptr += rstride[n]; sptr += sstride[n]; } } } }
void unpack0 (gfc_array_char *ret, const gfc_array_char *vector, const gfc_array_l1 *mask, char *field) { gfc_array_char tmp; index_type type_size; if (unlikely(compile_options.bounds_check)) unpack_bounds (ret, vector, mask, NULL); type_size = GFC_DTYPE_TYPE_SIZE (vector); switch (type_size) { case GFC_DTYPE_LOGICAL_1: case GFC_DTYPE_INTEGER_1: case GFC_DTYPE_DERIVED_1: unpack0_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) vector, mask, (GFC_INTEGER_1 *) field); return; case GFC_DTYPE_LOGICAL_2: case GFC_DTYPE_INTEGER_2: unpack0_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector, mask, (GFC_INTEGER_2 *) field); return; case GFC_DTYPE_LOGICAL_4: case GFC_DTYPE_INTEGER_4: unpack0_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector, mask, (GFC_INTEGER_4 *) field); return; case GFC_DTYPE_LOGICAL_8: case GFC_DTYPE_INTEGER_8: unpack0_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector, mask, (GFC_INTEGER_8 *) field); return; #ifdef HAVE_GFC_INTEGER_16 case GFC_DTYPE_LOGICAL_16: case GFC_DTYPE_INTEGER_16: unpack0_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector, mask, (GFC_INTEGER_16 *) field); return; #endif case GFC_DTYPE_REAL_4: unpack0_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) vector, mask, (GFC_REAL_4 *) field); return; case GFC_DTYPE_REAL_8: unpack0_r8 ((gfc_array_r8 *) ret, (gfc_array_r8*) vector, mask, (GFC_REAL_8 *) field); return; /* FIXME: This here is a hack, which will have to be removed when the array descriptor is reworked. Currently, we don't store the kind value for the type, but only the size. Because on targets with __float128, we have sizeof(logn double) == sizeof(__float128), we cannot discriminate here and have to fall back to the generic handling (which is suboptimal). */ #if !defined(GFC_REAL_16_IS_FLOAT128) # ifdef HAVE_GFC_REAL_10 case GFC_DTYPE_REAL_10: unpack0_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) vector, mask, (GFC_REAL_10 *) field); return; # endif # ifdef HAVE_GFC_REAL_16 case GFC_DTYPE_REAL_16: unpack0_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) vector, mask, (GFC_REAL_16 *) field); return; # endif #endif case GFC_DTYPE_COMPLEX_4: unpack0_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) vector, mask, (GFC_COMPLEX_4 *) field); return; case GFC_DTYPE_COMPLEX_8: unpack0_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) vector, mask, (GFC_COMPLEX_8 *) field); return; /* FIXME: This here is a hack, which will have to be removed when the array descriptor is reworked. Currently, we don't store the kind value for the type, but only the size. Because on targets with __float128, we have sizeof(logn double) == sizeof(__float128), we cannot discriminate here and have to fall back to the generic handling (which is suboptimal). */ #if !defined(GFC_REAL_16_IS_FLOAT128) # ifdef HAVE_GFC_COMPLEX_10 case GFC_DTYPE_COMPLEX_10: unpack0_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) vector, mask, (GFC_COMPLEX_10 *) field); return; # endif # ifdef HAVE_GFC_COMPLEX_16 case GFC_DTYPE_COMPLEX_16: unpack0_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) vector, mask, (GFC_COMPLEX_16 *) field); return; # endif #endif case GFC_DTYPE_DERIVED_2: if (GFC_UNALIGNED_2(ret->base_addr) || GFC_UNALIGNED_2(vector->base_addr) || GFC_UNALIGNED_2(field)) break; else { unpack0_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector, mask, (GFC_INTEGER_2 *) field); return; } case GFC_DTYPE_DERIVED_4: if (GFC_UNALIGNED_4(ret->base_addr) || GFC_UNALIGNED_4(vector->base_addr) || GFC_UNALIGNED_4(field)) break; else { unpack0_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector, mask, (GFC_INTEGER_4 *) field); return; } case GFC_DTYPE_DERIVED_8: if (GFC_UNALIGNED_8(ret->base_addr) || GFC_UNALIGNED_8(vector->base_addr) || GFC_UNALIGNED_8(field)) break; else { unpack0_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector, mask, (GFC_INTEGER_8 *) field); return; } #ifdef HAVE_GFC_INTEGER_16 case GFC_DTYPE_DERIVED_16: if (GFC_UNALIGNED_16(ret->base_addr) || GFC_UNALIGNED_16(vector->base_addr) || GFC_UNALIGNED_16(field)) break; else { unpack0_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector, mask, (GFC_INTEGER_16 *) field); return; } #endif } memset (&tmp, 0, sizeof (tmp)); tmp.dtype = 0; tmp.base_addr = field; unpack_internal (ret, vector, mask, &tmp, GFC_DESCRIPTOR_SIZE (vector)); }
void spread_scalar (gfc_array_char *ret, const char *source, const index_type *along, const index_type *pncopies) { index_type type_size; if (!ret->dtype) runtime_error ("return array missing descriptor in spread()"); type_size = GFC_DTYPE_TYPE_SIZE(ret); switch(type_size) { case GFC_DTYPE_DERIVED_1: case GFC_DTYPE_LOGICAL_1: case GFC_DTYPE_INTEGER_1: spread_scalar_i1 ((gfc_array_i1 *) ret, (GFC_INTEGER_1 *) source, *along, *pncopies); return; case GFC_DTYPE_LOGICAL_2: case GFC_DTYPE_INTEGER_2: spread_scalar_i2 ((gfc_array_i2 *) ret, (GFC_INTEGER_2 *) source, *along, *pncopies); return; case GFC_DTYPE_LOGICAL_4: case GFC_DTYPE_INTEGER_4: spread_scalar_i4 ((gfc_array_i4 *) ret, (GFC_INTEGER_4 *) source, *along, *pncopies); return; case GFC_DTYPE_LOGICAL_8: case GFC_DTYPE_INTEGER_8: spread_scalar_i8 ((gfc_array_i8 *) ret, (GFC_INTEGER_8 *) source, *along, *pncopies); return; #ifdef HAVE_GFC_INTEGER_16 case GFC_DTYPE_LOGICAL_16: case GFC_DTYPE_INTEGER_16: spread_scalar_i16 ((gfc_array_i16 *) ret, (GFC_INTEGER_16 *) source, *along, *pncopies); return; #endif case GFC_DTYPE_REAL_4: spread_scalar_r4 ((gfc_array_r4 *) ret, (GFC_REAL_4 *) source, *along, *pncopies); return; case GFC_DTYPE_REAL_8: spread_scalar_r8 ((gfc_array_r8 *) ret, (GFC_REAL_8 *) source, *along, *pncopies); return; /* FIXME: This here is a hack, which will have to be removed when the array descriptor is reworked. Currently, we don't store the kind value for the type, but only the size. Because on targets with __float128, we have sizeof(logn double) == sizeof(__float128), we cannot discriminate here and have to fall back to the generic handling (which is suboptimal). */ #if !defined(GFC_REAL_16_IS_FLOAT128) # ifdef HAVE_GFC_REAL_10 case GFC_DTYPE_REAL_10: spread_scalar_r10 ((gfc_array_r10 *) ret, (GFC_REAL_10 *) source, *along, *pncopies); return; # endif # ifdef HAVE_GFC_REAL_16 case GFC_DTYPE_REAL_16: spread_scalar_r16 ((gfc_array_r16 *) ret, (GFC_REAL_16 *) source, *along, *pncopies); return; # endif #endif case GFC_DTYPE_COMPLEX_4: spread_scalar_c4 ((gfc_array_c4 *) ret, (GFC_COMPLEX_4 *) source, *along, *pncopies); return; case GFC_DTYPE_COMPLEX_8: spread_scalar_c8 ((gfc_array_c8 *) ret, (GFC_COMPLEX_8 *) source, *along, *pncopies); return; /* FIXME: This here is a hack, which will have to be removed when the array descriptor is reworked. Currently, we don't store the kind value for the type, but only the size. Because on targets with __float128, we have sizeof(logn double) == sizeof(__float128), we cannot discriminate here and have to fall back to the generic handling (which is suboptimal). */ #if !defined(GFC_REAL_16_IS_FLOAT128) # ifdef HAVE_GFC_COMPLEX_10 case GFC_DTYPE_COMPLEX_10: spread_scalar_c10 ((gfc_array_c10 *) ret, (GFC_COMPLEX_10 *) source, *along, *pncopies); return; # endif # ifdef HAVE_GFC_COMPLEX_16 case GFC_DTYPE_COMPLEX_16: spread_scalar_c16 ((gfc_array_c16 *) ret, (GFC_COMPLEX_16 *) source, *along, *pncopies); return; # endif #endif case GFC_DTYPE_DERIVED_2: if (GFC_UNALIGNED_2(ret->base_addr) || GFC_UNALIGNED_2(source)) break; else { spread_scalar_i2 ((gfc_array_i2 *) ret, (GFC_INTEGER_2 *) source, *along, *pncopies); return; } case GFC_DTYPE_DERIVED_4: if (GFC_UNALIGNED_4(ret->base_addr) || GFC_UNALIGNED_4(source)) break; else { spread_scalar_i4 ((gfc_array_i4 *) ret, (GFC_INTEGER_4 *) source, *along, *pncopies); return; } case GFC_DTYPE_DERIVED_8: if (GFC_UNALIGNED_8(ret->base_addr) || GFC_UNALIGNED_8(source)) break; else { spread_scalar_i8 ((gfc_array_i8 *) ret, (GFC_INTEGER_8 *) source, *along, *pncopies); return; } #ifdef HAVE_GFC_INTEGER_16 case GFC_DTYPE_DERIVED_16: if (GFC_UNALIGNED_16(ret->base_addr) || GFC_UNALIGNED_16(source)) break; else { spread_scalar_i16 ((gfc_array_i16 *) ret, (GFC_INTEGER_16 *) source, *along, *pncopies); return; } #endif } spread_internal_scalar (ret, source, along, pncopies); }
void pack (gfc_array_char *ret, const gfc_array_char *array, const gfc_array_l1 *mask, const gfc_array_char *vector) { index_type type_size; index_type size; type_size = GFC_DTYPE_TYPE_SIZE(array); switch(type_size) { case GFC_DTYPE_LOGICAL_1: case GFC_DTYPE_INTEGER_1: case GFC_DTYPE_DERIVED_1: pack_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) array, (gfc_array_l1 *) mask, (gfc_array_i1 *) vector); return; case GFC_DTYPE_LOGICAL_2: case GFC_DTYPE_INTEGER_2: pack_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) array, (gfc_array_l1 *) mask, (gfc_array_i2 *) vector); return; case GFC_DTYPE_LOGICAL_4: case GFC_DTYPE_INTEGER_4: pack_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) array, (gfc_array_l1 *) mask, (gfc_array_i4 *) vector); return; case GFC_DTYPE_LOGICAL_8: case GFC_DTYPE_INTEGER_8: pack_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) array, (gfc_array_l1 *) mask, (gfc_array_i8 *) vector); return; #ifdef HAVE_GFC_INTEGER_16 case GFC_DTYPE_LOGICAL_16: case GFC_DTYPE_INTEGER_16: pack_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) array, (gfc_array_l1 *) mask, (gfc_array_i16 *) vector); return; #endif case GFC_DTYPE_REAL_4: pack_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) array, (gfc_array_l1 *) mask, (gfc_array_r4 *) vector); return; case GFC_DTYPE_REAL_8: pack_r8 ((gfc_array_r8 *) ret, (gfc_array_r8 *) array, (gfc_array_l1 *) mask, (gfc_array_r8 *) vector); return; /* FIXME: This here is a hack, which will have to be removed when the array descriptor is reworked. Currently, we don't store the kind value for the type, but only the size. Because on targets with __float128, we have sizeof(logn double) == sizeof(__float128), we cannot discriminate here and have to fall back to the generic handling (which is suboptimal). */ #if !defined(GFC_REAL_16_IS_FLOAT128) # ifdef HAVE_GFC_REAL_10 case GFC_DTYPE_REAL_10: pack_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) array, (gfc_array_l1 *) mask, (gfc_array_r10 *) vector); return; # endif # ifdef HAVE_GFC_REAL_16 case GFC_DTYPE_REAL_16: pack_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) array, (gfc_array_l1 *) mask, (gfc_array_r16 *) vector); return; # endif #endif case GFC_DTYPE_COMPLEX_4: pack_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) array, (gfc_array_l1 *) mask, (gfc_array_c4 *) vector); return; case GFC_DTYPE_COMPLEX_8: pack_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) array, (gfc_array_l1 *) mask, (gfc_array_c8 *) vector); return; /* FIXME: This here is a hack, which will have to be removed when the array descriptor is reworked. Currently, we don't store the kind value for the type, but only the size. Because on targets with __float128, we have sizeof(logn double) == sizeof(__float128), we cannot discriminate here and have to fall back to the generic handling (which is suboptimal). */ #if !defined(GFC_REAL_16_IS_FLOAT128) # ifdef HAVE_GFC_COMPLEX_10 case GFC_DTYPE_COMPLEX_10: pack_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) array, (gfc_array_l1 *) mask, (gfc_array_c10 *) vector); return; # endif # ifdef HAVE_GFC_COMPLEX_16 case GFC_DTYPE_COMPLEX_16: pack_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) array, (gfc_array_l1 *) mask, (gfc_array_c16 *) vector); return; # endif #endif /* For derived types, let's check the actual alignment of the data pointers. If they are aligned, we can safely call the unpack functions. */ case GFC_DTYPE_DERIVED_2: if (GFC_UNALIGNED_2(ret->base_addr) || GFC_UNALIGNED_2(array->base_addr) || (vector && GFC_UNALIGNED_2(vector->base_addr))) break; else { pack_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) array, (gfc_array_l1 *) mask, (gfc_array_i2 *) vector); return; } case GFC_DTYPE_DERIVED_4: if (GFC_UNALIGNED_4(ret->base_addr) || GFC_UNALIGNED_4(array->base_addr) || (vector && GFC_UNALIGNED_4(vector->base_addr))) break; else { pack_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) array, (gfc_array_l1 *) mask, (gfc_array_i4 *) vector); return; } case GFC_DTYPE_DERIVED_8: if (GFC_UNALIGNED_8(ret->base_addr) || GFC_UNALIGNED_8(array->base_addr) || (vector && GFC_UNALIGNED_8(vector->base_addr))) break; else { pack_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) array, (gfc_array_l1 *) mask, (gfc_array_i8 *) vector); return; } #ifdef HAVE_GFC_INTEGER_16 case GFC_DTYPE_DERIVED_16: if (GFC_UNALIGNED_16(ret->base_addr) || GFC_UNALIGNED_16(array->base_addr) || (vector && GFC_UNALIGNED_16(vector->base_addr))) break; else { pack_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) array, (gfc_array_l1 *) mask, (gfc_array_i16 *) vector); return; } #endif } size = GFC_DESCRIPTOR_SIZE (array); pack_internal (ret, array, mask, vector, size); }
void * internal_pack (gfc_array_char * source) { index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type stride[GFC_MAX_DIMENSIONS]; index_type stride0; index_type dim; index_type ssize; const char *src; char *dest; void *destptr; int n; int packed; index_type size; index_type type_size; if (source->base_addr == NULL) return NULL; type_size = GFC_DTYPE_TYPE_SIZE(source); size = GFC_DESCRIPTOR_SIZE (source); switch (type_size) { case GFC_DTYPE_INTEGER_1: case GFC_DTYPE_LOGICAL_1: case GFC_DTYPE_DERIVED_1: return internal_pack_1 ((gfc_array_i1 *) source); case GFC_DTYPE_INTEGER_2: case GFC_DTYPE_LOGICAL_2: return internal_pack_2 ((gfc_array_i2 *) source); case GFC_DTYPE_INTEGER_4: case GFC_DTYPE_LOGICAL_4: return internal_pack_4 ((gfc_array_i4 *) source); case GFC_DTYPE_INTEGER_8: case GFC_DTYPE_LOGICAL_8: return internal_pack_8 ((gfc_array_i8 *) source); #if defined(HAVE_GFC_INTEGER_16) case GFC_DTYPE_INTEGER_16: case GFC_DTYPE_LOGICAL_16: return internal_pack_16 ((gfc_array_i16 *) source); #endif case GFC_DTYPE_REAL_4: return internal_pack_r4 ((gfc_array_r4 *) source); case GFC_DTYPE_REAL_8: return internal_pack_r8 ((gfc_array_r8 *) source); /* FIXME: This here is a hack, which will have to be removed when the array descriptor is reworked. Currently, we don't store the kind value for the type, but only the size. Because on targets with __float128, we have sizeof(logn double) == sizeof(__float128), we cannot discriminate here and have to fall back to the generic handling (which is suboptimal). */ #if !defined(GFC_REAL_16_IS_FLOAT128) # if defined (HAVE_GFC_REAL_10) case GFC_DTYPE_REAL_10: return internal_pack_r10 ((gfc_array_r10 *) source); # endif # if defined (HAVE_GFC_REAL_16) case GFC_DTYPE_REAL_16: return internal_pack_r16 ((gfc_array_r16 *) source); # endif #endif case GFC_DTYPE_COMPLEX_4: return internal_pack_c4 ((gfc_array_c4 *) source); case GFC_DTYPE_COMPLEX_8: return internal_pack_c8 ((gfc_array_c8 *) source); /* FIXME: This here is a hack, which will have to be removed when the array descriptor is reworked. Currently, we don't store the kind value for the type, but only the size. Because on targets with __float128, we have sizeof(logn double) == sizeof(__float128), we cannot discriminate here and have to fall back to the generic handling (which is suboptimal). */ #if !defined(GFC_REAL_16_IS_FLOAT128) # if defined (HAVE_GFC_COMPLEX_10) case GFC_DTYPE_COMPLEX_10: return internal_pack_c10 ((gfc_array_c10 *) source); # endif # if defined (HAVE_GFC_COMPLEX_16) case GFC_DTYPE_COMPLEX_16: return internal_pack_c16 ((gfc_array_c16 *) source); # endif #endif case GFC_DTYPE_DERIVED_2: if (GFC_UNALIGNED_2(source->base_addr)) break; else return internal_pack_2 ((gfc_array_i2 *) source); case GFC_DTYPE_DERIVED_4: if (GFC_UNALIGNED_4(source->base_addr)) break; else return internal_pack_4 ((gfc_array_i4 *) source); case GFC_DTYPE_DERIVED_8: if (GFC_UNALIGNED_8(source->base_addr)) break; else return internal_pack_8 ((gfc_array_i8 *) source); #ifdef HAVE_GFC_INTEGER_16 case GFC_DTYPE_DERIVED_16: if (GFC_UNALIGNED_16(source->base_addr)) break; else return internal_pack_16 ((gfc_array_i16 *) source); #endif default: break; } dim = GFC_DESCRIPTOR_RANK (source); ssize = 1; packed = 1; for (n = 0; n < dim; n++) { count[n] = 0; stride[n] = GFC_DESCRIPTOR_STRIDE(source,n); extent[n] = GFC_DESCRIPTOR_EXTENT(source,n); if (extent[n] <= 0) { /* Do nothing. */ packed = 1; break; } if (ssize != stride[n]) packed = 0; ssize *= extent[n]; } if (packed) return source->base_addr; /* Allocate storage for the destination. */ destptr = xmallocarray (ssize, size); dest = (char *)destptr; src = source->base_addr; stride0 = stride[0] * size; while (src) { /* Copy the data. */ memcpy(dest, src, size); /* Advance to the next element. */ dest += size; src += stride0; count[0]++; /* Advance to the next source element. */ n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ src -= stride[n] * extent[n] * size; n++; if (n == dim) { src = NULL; break; } else { count[n]++; src += stride[n] * size; } } } return destptr; }
void internal_unpack (gfc_array_char * d, const void * s) { index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type stride[GFC_MAX_DIMENSIONS]; index_type stride0; index_type dim; index_type dsize; char *dest; const char *src; int n; int size; int type_size; dest = d->base_addr; /* This check may be redundant, but do it anyway. */ if (s == dest || !s) return; type_size = GFC_DTYPE_TYPE_SIZE (d); switch (type_size) { case GFC_DTYPE_INTEGER_1: case GFC_DTYPE_LOGICAL_1: case GFC_DTYPE_DERIVED_1: internal_unpack_1 ((gfc_array_i1 *) d, (const GFC_INTEGER_1 *) s); return; case GFC_DTYPE_INTEGER_2: case GFC_DTYPE_LOGICAL_2: internal_unpack_2 ((gfc_array_i2 *) d, (const GFC_INTEGER_2 *) s); return; case GFC_DTYPE_INTEGER_4: case GFC_DTYPE_LOGICAL_4: internal_unpack_4 ((gfc_array_i4 *) d, (const GFC_INTEGER_4 *) s); return; case GFC_DTYPE_INTEGER_8: case GFC_DTYPE_LOGICAL_8: internal_unpack_8 ((gfc_array_i8 *) d, (const GFC_INTEGER_8 *) s); return; #if defined (HAVE_GFC_INTEGER_16) case GFC_DTYPE_INTEGER_16: case GFC_DTYPE_LOGICAL_16: internal_unpack_16 ((gfc_array_i16 *) d, (const GFC_INTEGER_16 *) s); return; #endif case GFC_DTYPE_REAL_4: internal_unpack_r4 ((gfc_array_r4 *) d, (const GFC_REAL_4 *) s); return; case GFC_DTYPE_REAL_8: internal_unpack_r8 ((gfc_array_r8 *) d, (const GFC_REAL_8 *) s); return; /* FIXME: This here is a hack, which will have to be removed when the array descriptor is reworked. Currently, we don't store the kind value for the type, but only the size. Because on targets with __float128, we have sizeof(logn double) == sizeof(__float128), we cannot discriminate here and have to fall back to the generic handling (which is suboptimal). */ #if !defined(GFC_REAL_16_IS_FLOAT128) # if defined(HAVE_GFC_REAL_10) case GFC_DTYPE_REAL_10: internal_unpack_r10 ((gfc_array_r10 *) d, (const GFC_REAL_10 *) s); return; # endif # if defined(HAVE_GFC_REAL_16) case GFC_DTYPE_REAL_16: internal_unpack_r16 ((gfc_array_r16 *) d, (const GFC_REAL_16 *) s); return; # endif #endif case GFC_DTYPE_COMPLEX_4: internal_unpack_c4 ((gfc_array_c4 *)d, (const GFC_COMPLEX_4 *)s); return; case GFC_DTYPE_COMPLEX_8: internal_unpack_c8 ((gfc_array_c8 *)d, (const GFC_COMPLEX_8 *)s); return; /* FIXME: This here is a hack, which will have to be removed when the array descriptor is reworked. Currently, we don't store the kind value for the type, but only the size. Because on targets with __float128, we have sizeof(logn double) == sizeof(__float128), we cannot discriminate here and have to fall back to the generic handling (which is suboptimal). */ #if !defined(GFC_REAL_16_IS_FLOAT128) # if defined(HAVE_GFC_COMPLEX_10) case GFC_DTYPE_COMPLEX_10: internal_unpack_c10 ((gfc_array_c10 *) d, (const GFC_COMPLEX_10 *) s); return; # endif # if defined(HAVE_GFC_COMPLEX_16) case GFC_DTYPE_COMPLEX_16: internal_unpack_c16 ((gfc_array_c16 *) d, (const GFC_COMPLEX_16 *) s); return; # endif #endif case GFC_DTYPE_DERIVED_2: if (GFC_UNALIGNED_2(d->base_addr) || GFC_UNALIGNED_2(s)) break; else { internal_unpack_2 ((gfc_array_i2 *) d, (const GFC_INTEGER_2 *) s); return; } case GFC_DTYPE_DERIVED_4: if (GFC_UNALIGNED_4(d->base_addr) || GFC_UNALIGNED_4(s)) break; else { internal_unpack_4 ((gfc_array_i4 *) d, (const GFC_INTEGER_4 *) s); return; } case GFC_DTYPE_DERIVED_8: if (GFC_UNALIGNED_8(d->base_addr) || GFC_UNALIGNED_8(s)) break; else { internal_unpack_8 ((gfc_array_i8 *) d, (const GFC_INTEGER_8 *) s); return; } #ifdef HAVE_GFC_INTEGER_16 case GFC_DTYPE_DERIVED_16: if (GFC_UNALIGNED_16(d->base_addr) || GFC_UNALIGNED_16(s)) break; else { internal_unpack_16 ((gfc_array_i16 *) d, (const GFC_INTEGER_16 *) s); return; } #endif default: break; } size = GFC_DESCRIPTOR_SIZE (d); dim = GFC_DESCRIPTOR_RANK (d); dsize = 1; for (n = 0; n < dim; n++) { count[n] = 0; stride[n] = GFC_DESCRIPTOR_STRIDE(d,n); extent[n] = GFC_DESCRIPTOR_EXTENT(d,n); if (extent[n] <= 0) return; if (dsize == stride[n]) dsize *= extent[n]; else dsize = 0; } src = s; if (dsize != 0) { memcpy (dest, src, dsize * size); return; } stride0 = stride[0] * size; while (dest) { /* Copy the data. */ memcpy (dest, src, size); /* Advance to the next element. */ src += size; dest += stride0; count[0]++; /* Advance to the next source element. */ n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ dest -= stride[n] * extent[n] * size; n++; if (n == dim) { dest = NULL; break; } else { count[n]++; dest += stride[n] * size; } } } }
void spread_scalar (gfc_array_char *ret, const char *source, const index_type *along, const index_type *pncopies) { index_type type_size; if (!ret->dtype) runtime_error ("return array missing descriptor in spread()"); type_size = GFC_DTYPE_TYPE_SIZE(ret); switch(type_size) { case GFC_DTYPE_DERIVED_1: case GFC_DTYPE_LOGICAL_1: case GFC_DTYPE_INTEGER_1: spread_scalar_i1 ((gfc_array_i1 *) ret, (GFC_INTEGER_1 *) source, *along, *pncopies); return; case GFC_DTYPE_LOGICAL_2: case GFC_DTYPE_INTEGER_2: spread_scalar_i2 ((gfc_array_i2 *) ret, (GFC_INTEGER_2 *) source, *along, *pncopies); return; case GFC_DTYPE_LOGICAL_4: case GFC_DTYPE_INTEGER_4: spread_scalar_i4 ((gfc_array_i4 *) ret, (GFC_INTEGER_4 *) source, *along, *pncopies); return; case GFC_DTYPE_LOGICAL_8: case GFC_DTYPE_INTEGER_8: spread_scalar_i8 ((gfc_array_i8 *) ret, (GFC_INTEGER_8 *) source, *along, *pncopies); return; #ifdef HAVE_GFC_INTEGER_16 case GFC_DTYPE_LOGICAL_16: case GFC_DTYPE_INTEGER_16: spread_scalar_i16 ((gfc_array_i16 *) ret, (GFC_INTEGER_16 *) source, *along, *pncopies); return; #endif case GFC_DTYPE_REAL_4: spread_scalar_r4 ((gfc_array_r4 *) ret, (GFC_REAL_4 *) source, *along, *pncopies); return; case GFC_DTYPE_REAL_8: spread_scalar_r8 ((gfc_array_r8 *) ret, (GFC_REAL_8 *) source, *along, *pncopies); return; #ifdef HAVE_GFC_REAL_10 case GFC_DTYPE_REAL_10: spread_scalar_r10 ((gfc_array_r10 *) ret, (GFC_REAL_10 *) source, *along, *pncopies); return; #endif #ifdef HAVE_GFC_REAL_16 case GFC_DTYPE_REAL_16: spread_scalar_r16 ((gfc_array_r16 *) ret, (GFC_REAL_16 *) source, *along, *pncopies); return; #endif case GFC_DTYPE_COMPLEX_4: spread_scalar_c4 ((gfc_array_c4 *) ret, (GFC_COMPLEX_4 *) source, *along, *pncopies); return; case GFC_DTYPE_COMPLEX_8: spread_scalar_c8 ((gfc_array_c8 *) ret, (GFC_COMPLEX_8 *) source, *along, *pncopies); return; #ifdef HAVE_GFC_COMPLEX_10 case GFC_DTYPE_COMPLEX_10: spread_scalar_c10 ((gfc_array_c10 *) ret, (GFC_COMPLEX_10 *) source, *along, *pncopies); return; #endif #ifdef HAVE_GFC_COMPLEX_16 case GFC_DTYPE_COMPLEX_16: spread_scalar_c16 ((gfc_array_c16 *) ret, (GFC_COMPLEX_16 *) source, *along, *pncopies); return; #endif case GFC_DTYPE_DERIVED_2: if (GFC_UNALIGNED_2(ret->data) || GFC_UNALIGNED_2(source)) break; else { spread_scalar_i2 ((gfc_array_i2 *) ret, (GFC_INTEGER_2 *) source, *along, *pncopies); return; } case GFC_DTYPE_DERIVED_4: if (GFC_UNALIGNED_4(ret->data) || GFC_UNALIGNED_4(source)) break; else { spread_scalar_i4 ((gfc_array_i4 *) ret, (GFC_INTEGER_4 *) source, *along, *pncopies); return; } case GFC_DTYPE_DERIVED_8: if (GFC_UNALIGNED_8(ret->data) || GFC_UNALIGNED_8(source)) break; else { spread_scalar_i8 ((gfc_array_i8 *) ret, (GFC_INTEGER_8 *) source, *along, *pncopies); return; } #ifdef HAVE_GFC_INTEGER_16 case GFC_DTYPE_DERIVED_16: if (GFC_UNALIGNED_16(ret->data) || GFC_UNALIGNED_16(source)) break; else { spread_scalar_i16 ((gfc_array_i16 *) ret, (GFC_INTEGER_16 *) source, *along, *pncopies); return; } #endif } spread_internal_scalar (ret, source, along, pncopies, GFC_DESCRIPTOR_SIZE (ret)); }
void unpack1 (gfc_array_char *ret, const gfc_array_char *vector, const gfc_array_l1 *mask, const gfc_array_char *field) { index_type type_size; index_type size; if (unlikely(compile_options.bounds_check)) unpack_bounds (ret, vector, mask, field); type_size = GFC_DTYPE_TYPE_SIZE (vector); size = GFC_DESCRIPTOR_SIZE (vector); switch(type_size) { case GFC_DTYPE_LOGICAL_1: case GFC_DTYPE_INTEGER_1: case GFC_DTYPE_DERIVED_1: unpack1_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) vector, mask, (gfc_array_i1 *) field); return; case GFC_DTYPE_LOGICAL_2: case GFC_DTYPE_INTEGER_2: unpack1_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector, mask, (gfc_array_i2 *) field); return; case GFC_DTYPE_LOGICAL_4: case GFC_DTYPE_INTEGER_4: unpack1_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector, mask, (gfc_array_i4 *) field); return; case GFC_DTYPE_LOGICAL_8: case GFC_DTYPE_INTEGER_8: unpack1_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector, mask, (gfc_array_i8 *) field); return; #ifdef HAVE_GFC_INTEGER_16 case GFC_DTYPE_LOGICAL_16: case GFC_DTYPE_INTEGER_16: unpack1_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector, mask, (gfc_array_i16 *) field); return; #endif case GFC_DTYPE_REAL_4: unpack1_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) vector, mask, (gfc_array_r4 *) field); return; case GFC_DTYPE_REAL_8: unpack1_r8 ((gfc_array_r8 *) ret, (gfc_array_r8 *) vector, mask, (gfc_array_r8 *) field); return; #ifdef HAVE_GFC_REAL_10 case GFC_DTYPE_REAL_10: unpack1_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) vector, mask, (gfc_array_r10 *) field); return; #endif #ifdef HAVE_GFC_REAL_16 case GFC_DTYPE_REAL_16: unpack1_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) vector, mask, (gfc_array_r16 *) field); return; #endif case GFC_DTYPE_COMPLEX_4: unpack1_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) vector, mask, (gfc_array_c4 *) field); return; case GFC_DTYPE_COMPLEX_8: unpack1_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) vector, mask, (gfc_array_c8 *) field); return; #ifdef HAVE_GFC_COMPLEX_10 case GFC_DTYPE_COMPLEX_10: unpack1_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) vector, mask, (gfc_array_c10 *) field); return; #endif #ifdef HAVE_GFC_COMPLEX_16 case GFC_DTYPE_COMPLEX_16: unpack1_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) vector, mask, (gfc_array_c16 *) field); return; #endif case GFC_DTYPE_DERIVED_2: if (GFC_UNALIGNED_2(ret->data) || GFC_UNALIGNED_2(vector->data) || GFC_UNALIGNED_2(field->data)) break; else { unpack1_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector, mask, (gfc_array_i2 *) field); return; } case GFC_DTYPE_DERIVED_4: if (GFC_UNALIGNED_4(ret->data) || GFC_UNALIGNED_4(vector->data) || GFC_UNALIGNED_4(field->data)) break; else { unpack1_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector, mask, (gfc_array_i4 *) field); return; } case GFC_DTYPE_DERIVED_8: if (GFC_UNALIGNED_8(ret->data) || GFC_UNALIGNED_8(vector->data) || GFC_UNALIGNED_8(field->data)) break; else { unpack1_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector, mask, (gfc_array_i8 *) field); return; } #ifdef HAVE_GFC_INTEGER_16 case GFC_DTYPE_DERIVED_16: if (GFC_UNALIGNED_16(ret->data) || GFC_UNALIGNED_16(vector->data) || GFC_UNALIGNED_16(field->data)) break; else { unpack1_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector, mask, (gfc_array_i16 *) field); return; } #endif } unpack_internal (ret, vector, mask, field, size); }