/*===========================================================================* * sef_cb_init_fresh * *===========================================================================*/ static int sef_cb_init_fresh(int UNUSED(type), sef_init_info_t *UNUSED(info)) { /* Initialize the reincarnation server. */ struct boot_image *ip; int s,i; int nr_image_srvs, nr_image_priv_srvs, nr_uncaught_init_srvs; struct rproc *rp; struct rprocpub *rpub; struct boot_image image[NR_BOOT_PROCS]; struct boot_image_priv *boot_image_priv; struct boot_image_sys *boot_image_sys; struct boot_image_dev *boot_image_dev; int ipc_to; int *calls; int all_c[] = { ALL_C, NULL_C }; int no_c[] = { NULL_C }; /* See if we run in verbose mode. */ env_parse("rs_verbose", "d", 0, &rs_verbose, 0, 1); if ((s = sys_getinfo(GET_HZ, &system_hz, sizeof(system_hz), 0, 0)) != OK) panic("Cannot get system timer frequency\n"); /* Initialize the global init descriptor. */ rinit.rproctab_gid = cpf_grant_direct(ANY, (vir_bytes) rprocpub, sizeof(rprocpub), CPF_READ); if(!GRANT_VALID(rinit.rproctab_gid)) { panic("unable to create rprocpub table grant: %d", rinit.rproctab_gid); } /* Initialize some global variables. */ rupdate.flags = 0; shutting_down = FALSE; /* Get a copy of the boot image table. */ if ((s = sys_getimage(image)) != OK) { panic("unable to get copy of boot image table: %d", s); } /* Determine the number of system services in the boot image table. */ nr_image_srvs = 0; for(i=0;i<NR_BOOT_PROCS;i++) { ip = &image[i]; /* System services only. */ if(iskerneln(_ENDPOINT_P(ip->endpoint))) { continue; } nr_image_srvs++; } /* Determine the number of entries in the boot image priv table and make sure * it matches the number of system services in the boot image table. */ nr_image_priv_srvs = 0; for (i=0; boot_image_priv_table[i].endpoint != NULL_BOOT_NR; i++) { boot_image_priv = &boot_image_priv_table[i]; /* System services only. */ if(iskerneln(_ENDPOINT_P(boot_image_priv->endpoint))) { continue; } nr_image_priv_srvs++; } if(nr_image_srvs != nr_image_priv_srvs) { panic("boot image table and boot image priv table mismatch"); } /* Reset the system process table. */ for (rp=BEG_RPROC_ADDR; rp<END_RPROC_ADDR; rp++) { rp->r_flags = 0; rp->r_pub = &rprocpub[rp - rproc]; rp->r_pub->in_use = FALSE; } /* Initialize the system process table in 4 steps, each of them following * the appearance of system services in the boot image priv table. * - Step 1: set priviliges, sys properties, and dev properties (if any) * for every system service. */ for (i=0; boot_image_priv_table[i].endpoint != NULL_BOOT_NR; i++) { boot_image_priv = &boot_image_priv_table[i]; /* System services only. */ if(iskerneln(_ENDPOINT_P(boot_image_priv->endpoint))) { continue; } /* Lookup the corresponding entries in other tables. */ boot_image_info_lookup(boot_image_priv->endpoint, image, &ip, NULL, &boot_image_sys, &boot_image_dev); rp = &rproc[boot_image_priv - boot_image_priv_table]; rpub = rp->r_pub; /* * Set privileges. */ /* Get label. */ strcpy(rpub->label, boot_image_priv->label); /* Force a static priv id for system services in the boot image. */ rp->r_priv.s_id = static_priv_id( _ENDPOINT_P(boot_image_priv->endpoint)); /* Initialize privilege bitmaps and signal manager. */ rp->r_priv.s_flags = boot_image_priv->flags; /* priv flags */ rp->r_priv.s_trap_mask= SRV_OR_USR(rp, SRV_T, USR_T); /* traps */ ipc_to = SRV_OR_USR(rp, SRV_M, USR_M); /* targets */ fill_send_mask(&rp->r_priv.s_ipc_to, ipc_to == ALL_M); rp->r_priv.s_sig_mgr= SRV_OR_USR(rp, SRV_SM, USR_SM); /* sig mgr */ rp->r_priv.s_bak_sig_mgr = NONE; /* backup sig mgr */ /* Initialize kernel call mask bitmap. */ calls = SRV_OR_USR(rp, SRV_KC, USR_KC) == ALL_C ? all_c : no_c; fill_call_mask(calls, NR_SYS_CALLS, rp->r_priv.s_k_call_mask, KERNEL_CALL, TRUE); /* Set the privilege structure. RS and VM are exceptions and are already * running. */ if(boot_image_priv->endpoint != RS_PROC_NR && boot_image_priv->endpoint != VM_PROC_NR) { if ((s = sys_privctl(ip->endpoint, SYS_PRIV_SET_SYS, &(rp->r_priv))) != OK) { panic("unable to set privilege structure: %d", s); } } /* Synch the privilege structure with the kernel. */ if ((s = sys_getpriv(&(rp->r_priv), ip->endpoint)) != OK) { panic("unable to synch privilege structure: %d", s); } /* * Set sys properties. */ rpub->sys_flags = boot_image_sys->flags; /* sys flags */ /* * Set dev properties. */ rpub->dev_flags = boot_image_dev->flags; /* device flags */ rpub->dev_nr = boot_image_dev->dev_nr; /* major device number */ rpub->dev_style = boot_image_dev->dev_style; /* device style */ rpub->dev_style2 = boot_image_dev->dev_style2; /* device style 2 */ /* Build command settings. This will also set the process name. */ strlcpy(rp->r_cmd, ip->proc_name, sizeof(rp->r_cmd)); rp->r_script[0]= '\0'; build_cmd_dep(rp); /* Initialize vm call mask bitmap. */ calls = SRV_OR_USR(rp, SRV_VC, USR_VC) == ALL_C ? all_c : no_c; fill_call_mask(calls, NR_VM_CALLS, rpub->vm_call_mask, VM_RQ_BASE, TRUE); /* Scheduling parameters. */ rp->r_scheduler = SRV_OR_USR(rp, SRV_SCH, USR_SCH); rp->r_priority = SRV_OR_USR(rp, SRV_Q, USR_Q); rp->r_quantum = SRV_OR_USR(rp, SRV_QT, USR_QT); /* Get some settings from the boot image table. */ rpub->endpoint = ip->endpoint; /* Set some defaults. */ rp->r_old_rp = NULL; /* no old version yet */ rp->r_new_rp = NULL; /* no new version yet */ rp->r_prev_rp = NULL; /* no prev replica yet */ rp->r_next_rp = NULL; /* no next replica yet */ rp->r_uid = 0; /* root */ rp->r_check_tm = 0; /* not checked yet */ getuptime(&rp->r_alive_tm); /* currently alive */ rp->r_stop_tm = 0; /* not exiting yet */ rp->r_restarts = 0; /* no restarts so far */ rp->r_period = 0; /* no period yet */ rp->r_exec = NULL; /* no in-memory copy yet */ rp->r_exec_len = 0; /* Mark as in use and active. */ rp->r_flags = RS_IN_USE | RS_ACTIVE; rproc_ptr[_ENDPOINT_P(rpub->endpoint)]= rp; rpub->in_use = TRUE; } /* - Step 2: allow every system service in the boot image to run. */ nr_uncaught_init_srvs = 0; for (i=0; boot_image_priv_table[i].endpoint != NULL_BOOT_NR; i++) { boot_image_priv = &boot_image_priv_table[i]; /* System services only. */ if(iskerneln(_ENDPOINT_P(boot_image_priv->endpoint))) { continue; } /* Lookup the corresponding slot in the system process table. */ rp = &rproc[boot_image_priv - boot_image_priv_table]; rpub = rp->r_pub; /* RS/VM are already running as we speak. */ if(boot_image_priv->endpoint == RS_PROC_NR || boot_image_priv->endpoint == VM_PROC_NR) { if ((s = init_service(rp, SEF_INIT_FRESH)) != OK) { panic("unable to initialize %d: %d", boot_image_priv->endpoint, s); } continue; } /* Allow the service to run. */ if ((s = sched_init_proc(rp)) != OK) { panic("unable to initialize scheduling: %d", s); } if ((s = sys_privctl(rpub->endpoint, SYS_PRIV_ALLOW, NULL)) != OK) { panic("unable to initialize privileges: %d", s); } /* Initialize service. We assume every service will always get * back to us here at boot time. */ if(boot_image_priv->flags & SYS_PROC) { if ((s = init_service(rp, SEF_INIT_FRESH)) != OK) { panic("unable to initialize service: %d", s); } if(rpub->sys_flags & SF_SYNCH_BOOT) { /* Catch init ready message now to synchronize. */ catch_boot_init_ready(rpub->endpoint); } else { /* Catch init ready message later. */ nr_uncaught_init_srvs++; } } } /* - Step 3: let every system service complete initialization by * catching all the init ready messages left. */ while(nr_uncaught_init_srvs) { catch_boot_init_ready(ANY); nr_uncaught_init_srvs--; } /* - Step 4: all the system services in the boot image are now running. * Complete the initialization of the system process table in collaboration * with other system services. */ for (i=0; boot_image_priv_table[i].endpoint != NULL_BOOT_NR; i++) { boot_image_priv = &boot_image_priv_table[i]; /* System services only. */ if(iskerneln(_ENDPOINT_P(boot_image_priv->endpoint))) { continue; } /* Lookup the corresponding slot in the system process table. */ rp = &rproc[boot_image_priv - boot_image_priv_table]; rpub = rp->r_pub; /* Get pid from PM. */ rp->r_pid = getnpid(rpub->endpoint); if(rp->r_pid == -1) { panic("unable to get pid"); } } /* Set alarm to periodically check service status. */ if (OK != (s=sys_setalarm(RS_DELTA_T, 0))) panic("couldn't set alarm: %d", s); #if USE_LIVEUPDATE /* Now create a new RS instance and let the current * instance live update into the replica. Clone RS' own slot first. */ rp = rproc_ptr[_ENDPOINT_P(RS_PROC_NR)]; if((s = clone_slot(rp, &replica_rp)) != OK) { panic("unable to clone current RS instance: %d", s); } /* Fork a new RS instance with root:operator. */ pid = srv_fork(0, 0); if(pid == -1) { panic("unable to fork a new RS instance"); } replica_pid = pid ? pid : getpid(); replica_endpoint = getnprocnr(replica_pid); replica_rp->r_pid = replica_pid; replica_rp->r_pub->endpoint = replica_endpoint; if(pid == 0) { /* New RS instance running. */ /* Live update the old instance into the new one. */ s = update_service(&rp, &replica_rp, RS_SWAP); if(s != OK) { panic("unable to live update RS: %d", s); } cpf_reload(); /* Clean up the old RS instance, the new instance will take over. */ cleanup_service(rp); /* Ask VM to pin memory for the new RS instance. */ if((s = vm_memctl(RS_PROC_NR, VM_RS_MEM_PIN)) != OK) { panic("unable to pin memory for the new RS instance: %d", s); } } else { /* Old RS instance running. */ /* Set up privileges for the new instance and let it run. */ s = sys_privctl(replica_endpoint, SYS_PRIV_SET_SYS, &(replica_rp->r_priv)); if(s != OK) { panic("unable to set privileges for the new RS instance: %d", s); } if ((s = sched_init_proc(replica_rp)) != OK) { panic("unable to initialize RS replica scheduling: %d", s); } s = sys_privctl(replica_endpoint, SYS_PRIV_YIELD, NULL); if(s != OK) { panic("unable to yield control to the new RS instance: %d", s); } NOT_REACHABLE; } #endif /* USE_LIVEUPDATE */ return(OK); }
/*===========================================================================* * driver_open * *===========================================================================*/ static int driver_open(int which) { /* Perform an open or close operation on the driver. This is * unfinished code: we should never be doing a blocking sendrec() to * the driver. */ message msg; cp_grant_id_t gid; struct partition part; sector_t sectors; int r; memset(&msg, 0, sizeof(msg)); msg.m_type = BDEV_OPEN; msg.BDEV_MINOR = driver[which].minor; msg.BDEV_ACCESS = R_BIT | W_BIT; msg.BDEV_ID = 0; r = sendrec(driver[which].endpt, &msg); if (r != OK) { /* Should we restart the driver now? */ printf("Filter: driver_open: sendrec returned %d\n", r); return RET_REDO; } if(msg.m_type != BDEV_REPLY || msg.BDEV_STATUS != OK) { printf("Filter: driver_open: sendrec returned %d, %d\n", msg.m_type, msg.BDEV_STATUS); return RET_REDO; } /* Take the opportunity to retrieve the hard disk size. */ gid = cpf_grant_direct(driver[which].endpt, (vir_bytes) &part, sizeof(part), CPF_WRITE); if(!GRANT_VALID(gid)) panic("invalid grant: %d", gid); memset(&msg, 0, sizeof(msg)); msg.m_type = BDEV_IOCTL; msg.BDEV_MINOR = driver[which].minor; msg.BDEV_REQUEST = DIOCGETP; msg.BDEV_GRANT = gid; msg.BDEV_ID = 0; r = sendrec(driver[which].endpt, &msg); cpf_revoke(gid); if (r != OK || msg.m_type != BDEV_REPLY || msg.BDEV_STATUS != OK) { /* Not sure what to do here, either. */ printf("Filter: ioctl(DIOCGETP) returned (%d, %d)\n", r, msg.m_type); return RET_REDO; } if(!size_known) { disk_size = part.size; size_known = 1; sectors = div64u(disk_size, SECTOR_SIZE); if(cmp64(mul64u(sectors, SECTOR_SIZE), disk_size)) { printf("Filter: partition too large\n"); return RET_REDO; } #if DEBUG printf("Filter: partition size: 0x%s / %lu sectors\n", print64(disk_size), sectors); #endif } else { if(cmp64(disk_size, part.size)) { printf("Filter: partition size mismatch (%s != %s)\n", print64(part.size), print64(disk_size)); return RET_REDO; } } return OK; }
/*===========================================================================* * sef_cb_init_fresh * *===========================================================================*/ PRIVATE int sef_cb_init_fresh(int type, sef_init_info_t *info) { /* Initialize the reincarnation server. */ struct sigaction sa; struct boot_image *ip; int s,i,j; int nr_image_srvs, nr_image_priv_srvs, nr_uncaught_init_srvs; struct rproc *rp; struct rprocpub *rpub; struct boot_image image[NR_BOOT_PROCS]; struct mproc mproc[NR_PROCS]; struct exec header; struct boot_image_priv *boot_image_priv; struct boot_image_sys *boot_image_sys; struct boot_image_dev *boot_image_dev; /* See if we run in verbose mode. */ env_parse("rs_verbose", "d", 0, &rs_verbose, 0, 1); /* Initialize the global init descriptor. */ rinit.rproctab_gid = cpf_grant_direct(ANY, (vir_bytes) rprocpub, sizeof(rprocpub), CPF_READ); if(!GRANT_VALID(rinit.rproctab_gid)) { panic("RS", "unable to create rprocpub table grant", rinit.rproctab_gid); } /* Initialize the global update descriptor. */ rupdate.flags = 0; /* Get a copy of the boot image table. */ if ((s = sys_getimage(image)) != OK) { panic("RS", "unable to get copy of boot image table", s); } /* Determine the number of system services in the boot image table and * compute the size required for the boot image buffer. */ nr_image_srvs = 0; boot_image_buffer_size = 0; for(i=0;i<NR_BOOT_PROCS;i++) { ip = &image[i]; /* System services only. */ if(iskerneln(_ENDPOINT_P(ip->endpoint))) { continue; } nr_image_srvs++; /* Lookup the corresponding entry in the boot image sys table. */ boot_image_info_lookup(ip->endpoint, image, NULL, NULL, &boot_image_sys, NULL); /* If we must keep a copy of this system service, read the header * and increase the size of the boot image buffer. */ if(boot_image_sys->flags & SF_USE_COPY) { if((s = sys_getaoutheader(&header, i)) != OK) { panic("RS", "unable to get copy of a.out header", s); } boot_image_buffer_size += header.a_hdrlen + header.a_text + header.a_data; } } /* Determine the number of entries in the boot image priv table and make sure * it matches the number of system services in the boot image table. */ nr_image_priv_srvs = 0; for (i=0; boot_image_priv_table[i].endpoint != NULL_BOOT_NR; i++) { boot_image_priv = &boot_image_priv_table[i]; /* System services only. */ if(iskerneln(_ENDPOINT_P(boot_image_priv->endpoint))) { continue; } nr_image_priv_srvs++; } if(nr_image_srvs != nr_image_priv_srvs) { panic("RS", "boot image table and boot image priv table mismatch", NO_NUM); } /* Allocate boot image buffer. */ if(boot_image_buffer_size > 0) { boot_image_buffer = rs_startup_sbrk(boot_image_buffer_size); if(boot_image_buffer == (char *) -1) { panic("RS", "unable to allocate boot image buffer", NO_NUM); } } /* Reset the system process table. */ for (rp=BEG_RPROC_ADDR; rp<END_RPROC_ADDR; rp++) { rp->r_flags = 0; rp->r_pub = &rprocpub[rp - rproc]; rp->r_pub->in_use = FALSE; } /* Initialize the system process table in 4 steps, each of them following * the appearance of system services in the boot image priv table. * - Step 1: get a copy of the executable image of every system service that * requires it while it is not yet running. * In addition, set priviliges, sys properties, and dev properties (if any) * for every system service. */ for (i=0; boot_image_priv_table[i].endpoint != NULL_BOOT_NR; i++) { boot_image_priv = &boot_image_priv_table[i]; /* System services only. */ if(iskerneln(_ENDPOINT_P(boot_image_priv->endpoint))) { continue; } /* Lookup the corresponding entries in other tables. */ boot_image_info_lookup(boot_image_priv->endpoint, image, &ip, NULL, &boot_image_sys, &boot_image_dev); rp = &rproc[boot_image_priv - boot_image_priv_table]; rpub = rp->r_pub; /* * Get a copy of the executable image if required. */ rp->r_exec_len = 0; rp->r_exec = NULL; if(boot_image_sys->flags & SF_USE_COPY) { exec_image_copy(ip - image, ip, rp); } /* * Set privileges. */ /* Get label. */ strcpy(rpub->label, boot_image_priv->label); if(boot_image_priv->endpoint != RS_PROC_NR) { /* Force a static priv id for system services in the boot image. */ rp->r_priv.s_id = static_priv_id( _ENDPOINT_P(boot_image_priv->endpoint)); /* Initialize privilege bitmaps. */ rp->r_priv.s_flags = boot_image_priv->flags; /* priv flags */ rp->r_priv.s_trap_mask = boot_image_priv->trap_mask; /* traps */ memcpy(&rp->r_priv.s_ipc_to, &boot_image_priv->ipc_to, sizeof(rp->r_priv.s_ipc_to)); /* targets */ /* Initialize kernel call mask bitmap from unordered set. */ fill_call_mask(boot_image_priv->k_calls, NR_SYS_CALLS, rp->r_priv.s_k_call_mask, KERNEL_CALL, TRUE); /* Set the privilege structure. */ if ((s = sys_privctl(ip->endpoint, SYS_PRIV_SET_SYS, &(rp->r_priv))) != OK) { panic("RS", "unable to set privilege structure", s); } } /* Synch the privilege structure with the kernel. */ if ((s = sys_getpriv(&(rp->r_priv), ip->endpoint)) != OK) { panic("RS", "unable to synch privilege structure", s); } /* * Set sys properties. */ rpub->sys_flags = boot_image_sys->flags; /* sys flags */ /* * Set dev properties. */ rpub->dev_nr = boot_image_dev->dev_nr; /* major device number */ rpub->dev_style = boot_image_dev->dev_style; /* device style */ rpub->period = boot_image_dev->period; /* heartbeat period */ /* Get process name. */ strcpy(rpub->proc_name, ip->proc_name); /* Get command settings. */ rp->r_cmd[0]= '\0'; rp->r_argv[0] = rp->r_cmd; rp->r_argv[1] = NULL; rp->r_argc = 1; rp->r_script[0]= '\0'; /* Initialize vm call mask bitmap from unordered set. */ fill_call_mask(boot_image_priv->vm_calls, NR_VM_CALLS, rpub->vm_call_mask, VM_RQ_BASE, TRUE); /* Get some settings from the boot image table. */ rp->r_nice = ip->priority; rpub->endpoint = ip->endpoint; /* Set some defaults. */ rp->r_uid = 0; /* root */ rp->r_check_tm = 0; /* not checked yet */ getuptime(&rp->r_alive_tm); /* currently alive */ rp->r_stop_tm = 0; /* not exiting yet */ rp->r_restarts = 0; /* no restarts so far */ rp->r_set_resources = 0; /* don't set resources */ /* Mark as in use. */ rp->r_flags = RS_IN_USE; rproc_ptr[_ENDPOINT_P(rpub->endpoint)]= rp; rpub->in_use = TRUE; } /* - Step 2: allow every system service in the boot image to run. */ nr_uncaught_init_srvs = 0; for (i=0; boot_image_priv_table[i].endpoint != NULL_BOOT_NR; i++) { boot_image_priv = &boot_image_priv_table[i]; /* System services only. */ if(iskerneln(_ENDPOINT_P(boot_image_priv->endpoint))) { continue; } /* Ignore RS. */ if(boot_image_priv->endpoint == RS_PROC_NR) { continue; } /* Lookup the corresponding slot in the system process table. */ rp = &rproc[boot_image_priv - boot_image_priv_table]; rpub = rp->r_pub; /* Allow the service to run. */ if ((s = sys_privctl(rpub->endpoint, SYS_PRIV_ALLOW, NULL)) != OK) { panic("RS", "unable to initialize privileges", s); } /* Initialize service. We assume every service will always get * back to us here at boot time. */ if(boot_image_priv->flags & SYS_PROC) { if ((s = init_service(rp, SEF_INIT_FRESH)) != OK) { panic("RS", "unable to initialize service", s); } if(rpub->sys_flags & SF_SYNCH_BOOT) { /* Catch init ready message now to synchronize. */ catch_boot_init_ready(rpub->endpoint); } else { /* Catch init ready message later. */ nr_uncaught_init_srvs++; } } } /* - Step 3: let every system service complete initialization by * catching all the init ready messages left. */ while(nr_uncaught_init_srvs) { catch_boot_init_ready(ANY); nr_uncaught_init_srvs--; } /* - Step 4: all the system services in the boot image are now running. * Complete the initialization of the system process table in collaboration * with other system processes. */ if ((s = getsysinfo(PM_PROC_NR, SI_PROC_TAB, mproc)) != OK) { panic("RS", "unable to get copy of PM process table", s); } for (i=0; boot_image_priv_table[i].endpoint != NULL_BOOT_NR; i++) { boot_image_priv = &boot_image_priv_table[i]; /* System services only. */ if(iskerneln(_ENDPOINT_P(boot_image_priv->endpoint))) { continue; } /* Lookup the corresponding slot in the system process table. */ rp = &rproc[boot_image_priv - boot_image_priv_table]; rpub = rp->r_pub; /* Get pid from PM process table. */ rp->r_pid = NO_PID; for (j = 0; j < NR_PROCS; j++) { if (mproc[j].mp_endpoint == rpub->endpoint) { rp->r_pid = mproc[j].mp_pid; break; } } if(j == NR_PROCS) { panic("RS", "unable to get pid", NO_NUM); } } /* * Now complete RS initialization process in collaboration with other * system services. */ /* Let the rest of the system know about our dynamically allocated buffer. */ if(boot_image_buffer_size > 0) { boot_image_buffer = rs_startup_sbrk_synch(boot_image_buffer_size); if(boot_image_buffer == (char *) -1) { panic("RS", "unable to synch boot image buffer", NO_NUM); } } /* Set alarm to periodically check service status. */ if (OK != (s=sys_setalarm(RS_DELTA_T, 0))) panic("RS", "couldn't set alarm", s); /* Install signal handlers. Ask PM to transform signal into message. */ sa.sa_handler = SIG_MESS; sigemptyset(&sa.sa_mask); sa.sa_flags = 0; if (sigaction(SIGCHLD,&sa,NULL)<0) panic("RS","sigaction failed", errno); if (sigaction(SIGTERM,&sa,NULL)<0) panic("RS","sigaction failed", errno); /* Initialize the exec pipe. */ if (pipe(exec_pipe) == -1) panic("RS", "pipe failed", errno); if (fcntl(exec_pipe[0], F_SETFD, fcntl(exec_pipe[0], F_GETFD) | FD_CLOEXEC) == -1) { panic("RS", "fcntl set FD_CLOEXEC on pipe input failed", errno); } if (fcntl(exec_pipe[1], F_SETFD, fcntl(exec_pipe[1], F_GETFD) | FD_CLOEXEC) == -1) { panic("RS", "fcntl set FD_CLOEXEC on pipe output failed", errno); } if (fcntl(exec_pipe[0], F_SETFL, fcntl(exec_pipe[0], F_GETFL) | O_NONBLOCK) == -1) { panic("RS", "fcntl set O_NONBLOCK on pipe input failed", errno); } /* Map out our own text and data. This is normally done in crtso.o * but RS is an exception - we don't get to talk to VM so early on. * That's why we override munmap() and munmap_text() in utility.c. * * _minix_unmapzero() is the same code in crtso.o that normally does * it on startup. It's best that it's there as crtso.o knows exactly * what the ranges are of the filler data. */ unmap_ok = 1; _minix_unmapzero(); return(OK); }
static int bdev_vrdwt_setup(int req, dev_t dev, u64_t pos, iovec_t *vec, int count, int flags, message *m, iovec_s_t *gvec) { /* Set up a vectored read/write request. */ ssize_t size; endpoint_t endpt; cp_grant_id_t grant; int i, access; assert(count <= NR_IOREQS); if ((endpt = bdev_driver_get(dev)) == NONE) return EDEADSRCDST; access = (req == BDEV_GATHER) ? CPF_WRITE : CPF_READ; size = 0; for (i = 0; i < count; i++) { grant = cpf_grant_direct(endpt, vec[i].iov_addr, vec[i].iov_size, access); if (!GRANT_VALID(grant)) { printf("bdev: unable to allocate grant!\n"); for (i--; i >= 0; i--) cpf_revoke(gvec[i].iov_grant); return EINVAL; } gvec[i].iov_grant = grant; gvec[i].iov_size = vec[i].iov_size; assert((ssize_t) (size + vec[i].iov_size) > size); size += vec[i].iov_size; } grant = cpf_grant_direct(endpt, (vir_bytes) gvec, sizeof(gvec[0]) * count, CPF_READ); if (!GRANT_VALID(grant)) { printf("bdev: unable to allocate grant!\n"); for (i = count - 1; i >= 0; i--) cpf_revoke(gvec[i].iov_grant); return EINVAL; } memset(m, 0, sizeof(*m)); m->m_type = req; m->BDEV_MINOR = minor(dev); m->BDEV_POS_LO = ex64lo(pos); m->BDEV_POS_HI = ex64hi(pos); m->BDEV_COUNT = count; m->BDEV_GRANT = grant; m->BDEV_FLAGS = flags; return OK; }