int main (int argc, char *argv[]) { guint16 gu16t1 = 0x44afU, gu16t2 = 0xaf44U; guint32 gu32t1 = 0x02a7f109U, gu32t2 = 0x09f1a702U; #ifdef G_HAVE_GINT64 guint64 gu64t1 = G_GINT64_CONSTANT(0x1d636b02300a7aa7U), gu64t2 = G_GINT64_CONSTANT(0xa77a0a30026b631dU); #endif /* type sizes */ g_assert (sizeof (gint8) == 1); g_assert (sizeof (gint16) == 2); g_assert (sizeof (gint32) == 4); #ifdef G_HAVE_GINT64 g_assert (sizeof (gint64) == 8); #endif /* G_HAVE_GINT64 */ g_assert (GUINT16_SWAP_LE_BE (gu16t1) == gu16t2); g_assert (GUINT32_SWAP_LE_BE (gu32t1) == gu32t2); #ifdef G_HAVE_GINT64 g_assert (GUINT64_SWAP_LE_BE (gu64t1) == gu64t2); #endif return 0; }
/* Swap 8- of bytes. */ static void vips_copy_swap8( VipsPel *in, VipsPel *out, int width, VipsImage *im ) { guint64 *p = (guint64 *) in; guint64 *q = (guint64 *) out; int sz = (VIPS_IMAGE_SIZEOF_PEL( im ) * width) / 8; int x; for( x = 0; x < sz; x++ ) q[x] = GUINT64_SWAP_LE_BE( p[x] ); }
static inline gdouble _gdouble_swap_le_be (gdouble * d) { union { guint64 i; gdouble d; } u; u.d = *d; u.i = GUINT64_SWAP_LE_BE (u.i); return u.d; }
gboolean qdisk_start(QDisk *self, const gchar *filename, GQueue *qout, GQueue *qbacklog, GQueue *qoverflow) { gboolean new_file = FALSE; gpointer p = NULL; int openflags = 0; /* * If qdisk_start is called for already initialized qdisk file * it can cause message loosing. * We need this assert to detect programming error as soon as possible. */ g_assert(!qdisk_initialized(self)); if (self->options->disk_buf_size <= 0) return TRUE; if (self->options->read_only && !filename) return FALSE; if (!filename) { new_file = TRUE; /* NOTE: this'd be a security problem if we were not in our private directory. But we are. */ filename = _next_filename(self); } else { struct stat st; if (stat(filename,&st) == -1) { new_file = TRUE; } } self->filename = g_strdup(filename); /* assumes self is zero initialized */ openflags = self->options->read_only ? (O_RDONLY | O_LARGEFILE) : (O_RDWR | O_LARGEFILE | (new_file ? O_CREAT : 0)); self->fd = open(filename, openflags, 0600); if (self->fd < 0) { msg_error("Error opening disk-queue file", evt_tag_str("filename", self->filename), evt_tag_errno("error", errno)); return FALSE; } p = mmap(0, sizeof(QDiskFileHeader), self->options->read_only ? (PROT_READ) : (PROT_READ | PROT_WRITE), MAP_SHARED, self->fd, 0); if (p == MAP_FAILED) { msg_error("Error returned by mmap", evt_tag_errno("errno", errno), evt_tag_str("filename", self->filename)); return FALSE; } else { madvise(p, sizeof(QDiskFileHeader), MADV_RANDOM); } if (self->options->read_only) { self->hdr = g_malloc(sizeof(QDiskFileHeader)); memcpy(self->hdr, p, sizeof(QDiskFileHeader)); munmap(p, sizeof(QDiskFileHeader) ); p = NULL; } else { self->hdr = p; } /* initialize new file */ if (new_file) { QDiskFileHeader tmp; memset(&tmp, 0, sizeof(tmp)); if (!pwrite_strict(self->fd, &tmp, sizeof(tmp), 0)) { msg_error("Error occured while initalizing the new queue file",evt_tag_str("filename",self->filename),evt_tag_errno("error",errno)); munmap((void *)self->hdr, sizeof(QDiskFileHeader)); self->hdr = NULL; close(self->fd); self->fd = -1; return FALSE; } self->hdr->version = 1; self->hdr->big_endian = (G_BYTE_ORDER == G_BIG_ENDIAN); self->hdr->read_head = QDISK_RESERVED_SPACE; self->hdr->write_head = QDISK_RESERVED_SPACE; self->hdr->backlog_head = self->hdr->read_head; self->hdr->length = 0; if (!qdisk_save_state(self, qout, qbacklog, qoverflow)) { munmap((void *)self->hdr, sizeof(QDiskFileHeader)); self->hdr = NULL; close(self->fd); self->fd = -1; return FALSE; } } else { struct stat st; if (fstat(self->fd, &st) != 0 || st.st_size == 0) { msg_error("Error loading disk-queue file", evt_tag_str("filename", self->filename), evt_tag_errno("fstat error", errno), evt_tag_int("size", st.st_size)); munmap((void *)self->hdr, sizeof(QDiskFileHeader)); self->hdr = NULL; close(self->fd); self->fd = -1; return FALSE; } if (self->hdr->version == 0) { self->hdr->big_endian = TRUE; self->hdr->version = 1; self->hdr->backlog_head = self->hdr->read_head; self->hdr->backlog_len = 0; } if ((self->hdr->big_endian && G_BYTE_ORDER == G_LITTLE_ENDIAN) || (!self->hdr->big_endian && G_BYTE_ORDER == G_BIG_ENDIAN)) { self->hdr->read_head = GUINT64_SWAP_LE_BE(self->hdr->read_head); self->hdr->write_head = GUINT64_SWAP_LE_BE(self->hdr->write_head); self->hdr->length = GUINT64_SWAP_LE_BE(self->hdr->length); self->hdr->qout_ofs = GUINT64_SWAP_LE_BE(self->hdr->qout_ofs); self->hdr->qout_len = GUINT32_SWAP_LE_BE(self->hdr->qout_len); self->hdr->qout_count = GUINT32_SWAP_LE_BE(self->hdr->qout_count); self->hdr->qbacklog_ofs = GUINT64_SWAP_LE_BE(self->hdr->qbacklog_ofs); self->hdr->qbacklog_len = GUINT32_SWAP_LE_BE(self->hdr->qbacklog_len); self->hdr->qbacklog_count = GUINT32_SWAP_LE_BE(self->hdr->qbacklog_count); self->hdr->qoverflow_ofs = GUINT64_SWAP_LE_BE(self->hdr->qoverflow_ofs); self->hdr->qoverflow_len = GUINT32_SWAP_LE_BE(self->hdr->qoverflow_len); self->hdr->qoverflow_count = GUINT32_SWAP_LE_BE(self->hdr->qoverflow_count); self->hdr->backlog_head = GUINT64_SWAP_LE_BE(self->hdr->backlog_head); self->hdr->backlog_len = GUINT64_SWAP_LE_BE(self->hdr->backlog_len); self->hdr->big_endian = (G_BYTE_ORDER == G_BIG_ENDIAN); } if (!_load_state(self, qout, qbacklog, qoverflow)) { munmap((void *)self->hdr, sizeof(QDiskFileHeader)); self->hdr = NULL; close(self->fd); self->fd = -1; return FALSE; } } return TRUE; }
int main (int argc, char *argv[]) { gchar *string; gushort gus; guint gui; gulong gul; gsize gsz; gshort gs; gint gi; glong gl; gint16 gi16t1; gint16 gi16t2; gint32 gi32t1; gint32 gi32t2; guint16 gu16t1 = 0x44afU, gu16t2 = 0xaf44U; guint32 gu32t1 = 0x02a7f109U, gu32t2 = 0x09f1a702U; guint64 gu64t1 = G_GINT64_CONSTANT(0x1d636b02300a7aa7U), gu64t2 = G_GINT64_CONSTANT(0xa77a0a30026b631dU); gint64 gi64t1; gint64 gi64t2; gssize gsst1; gssize gsst2; gsize gst1; gsize gst2; #ifdef SYMBIAN g_log_set_handler (NULL, G_LOG_FLAG_FATAL| G_LOG_FLAG_RECURSION | G_LOG_LEVEL_CRITICAL | G_LOG_LEVEL_WARNING | G_LOG_LEVEL_MESSAGE | G_LOG_LEVEL_INFO | G_LOG_LEVEL_DEBUG, &mrtLogHandler, NULL); g_set_print_handler(mrtPrintHandler); #endif /*SYMBIAN*/ /* type sizes */ g_assert (sizeof (gint8) == 1); g_assert (sizeof (gint16) == 2); g_assert (sizeof (gint32) == 4); g_assert (sizeof (gint64) == 8); g_assert (GUINT16_SWAP_LE_BE (gu16t1) == gu16t2); g_assert (GUINT32_SWAP_LE_BE (gu32t1) == gu32t2); g_assert (GUINT64_SWAP_LE_BE (gu64t1) == gu64t2); /* Test the G_(MIN|MAX|MAXU)(SHORT|INT|LONG) macros */ gus = G_MAXUSHORT; gus++; g_assert (gus == 0); gui = G_MAXUINT; gui++; g_assert (gui == 0); gul = G_MAXULONG; gul++; g_assert (gul == 0); gsz = G_MAXSIZE; gsz++; g_assert (gsz == 0); gs = G_MAXSHORT; gs++; g_assert (gs == G_MINSHORT); gi = G_MAXINT; gi++; g_assert (gi == G_MININT); gl = G_MAXLONG; gl++; g_assert (gl == G_MINLONG); /* Test the G_G(U)?INT(16|32|64)_FORMAT macros */ gi16t1 = -0x3AFA; gu16t1 = 0xFAFA; gi32t1 = -0x3AFAFAFA; gu32t1 = 0xFAFAFAFA; #define FORMAT "%" G_GINT16_FORMAT " %" G_GINT32_FORMAT \ " %" G_GUINT16_FORMAT " %" G_GUINT32_FORMAT "\n" string = g_strdup_printf (FORMAT, gi16t1, gi32t1, gu16t1, gu32t1); sscanf (string, FORMAT, &gi16t2, &gi32t2, &gu16t2, &gu32t2); g_free (string); g_assert (gi16t1 == gi16t2); g_assert (gi32t1 == gi32t2); g_assert (gu16t1 == gu16t2); g_assert (gu32t1 == gu32t2); gi64t1 = G_GINT64_CONSTANT (-0x3AFAFAFAFAFAFAFA); gu64t1 = G_GINT64_CONSTANT (0xFAFAFAFAFAFAFAFA); #define FORMAT64 "%" G_GINT64_FORMAT " %" G_GUINT64_FORMAT "\n" string = g_strdup_printf (FORMAT64, gi64t1, gu64t1); sscanf (string, FORMAT64, &gi64t2, &gu64t2); g_free (string); g_assert (gi64t1 == gi64t2); g_assert (gu64t1 == gu64t2); gsst1 = -0x3AFAFAFA; gst1 = 0xFAFAFAFA; #define FORMATSIZE "%" G_GSSIZE_FORMAT " %" G_GSIZE_FORMAT "\n" string = g_strdup_printf (FORMATSIZE, gsst1, gst1); sscanf (string, FORMATSIZE, &gsst2, &gst2); g_free (string); g_assert (gsst1 == gsst2); g_assert (gst1 == gst2); #ifdef SYMBIAN testResultXml("type-test"); #endif /* EMULATOR */ return 0; }
int main( int argc, char *argv[] ) { int i; // float 32 WriteFile( "Float32.bin", float32_data, sizeof( float32_data ) ); tFloat32 f32[sizeof( float32_data ) / sizeof( tFloat32 )]; ReadFile( "Float32.bin", f32, sizeof( float32_data ) ); if ( memcmp( float32_data, f32, sizeof( float32_data ) ) ) { fprintf( stderr, "read/write float 32 error !\n" ); return 1; } // float 64 WriteFile( "Float64.bin", float64_data, sizeof( float64_data ) ); tFloat64 f64[sizeof( float64_data ) / sizeof( tFloat64 )]; ReadFile( "Float64.bin", f64, sizeof( float64_data ) ); if ( memcmp( float64_data, f64, sizeof( float64_data ) ) ) { fprintf( stderr, "read/write float 64 error !\n" ); return 1; } // conversion if ( G_BYTE_ORDER == G_LITTLE_ENDIAN ) ReadFile( "Float32.bin.ppc", f32, sizeof( float32_data ) ); else ReadFile( "Float32.bin.i386", f32, sizeof( float32_data ) ); char *p = (char *)f32; for( i = 0; i < float32_data_num; i++, p += sizeof( tFloat32 ) ) { /* compile error */ // unsigned int v = *(unsigned int *)p; unsigned int v = *(unsigned int *)(void *)p; v = GUINT32_SWAP_LE_BE( v ); /* compile error */ // *(unsigned int *)p = v; *(unsigned int *)(void *)p = v; } if ( memcmp( float32_data, f32, sizeof( float32_data ) ) ) { fprintf( stderr, "byteswap float 32 fail !\n" ); return 1; } // conversion if ( G_BYTE_ORDER == G_LITTLE_ENDIAN ) ReadFile( "Float64.bin.ppc", f64, sizeof( float64_data ) ); else ReadFile( "Float64.bin.i386", f64, sizeof( float64_data ) ); p = (char *)f64; for( i = 0; i < float64_data_num; i++, p += sizeof( tFloat64 ) ) { /* compile error */ // unsigned long long v = *(unsigned long long *)p; unsigned long long v = *(unsigned long long *)(void *)p; v = GUINT64_SWAP_LE_BE( v ); /* compile error */ // *(unsigned long long *)p = v; *(unsigned long long *)(void *)p = v; } if ( memcmp( float64_data, f64, sizeof( float64_data ) ) ) { fprintf( stderr, "byteswap float 64 fail !\n" ); return 1; } return 0; }
gboolean log_proto_buffered_server_restart_with_state(LogProtoServer *s, PersistState *persist_state, const gchar *persist_name) { LogProtoBufferedServer *self = (LogProtoBufferedServer *) s; guint8 persist_version; PersistEntryHandle old_state_handle; gpointer old_state; gsize old_state_size; PersistEntryHandle new_state_handle = 0; gpointer new_state = NULL; gboolean success; self->pos_tracking = TRUE; self->persist_state = persist_state; old_state_handle = persist_state_lookup_entry(persist_state, persist_name, &old_state_size, &persist_version); if (!old_state_handle) { new_state_handle = log_proto_buffered_server_alloc_state(self, persist_state, persist_name); if (!new_state_handle) goto fallback_non_persistent; log_proto_buffered_server_apply_state(self, new_state_handle, persist_name); return TRUE; } if (persist_version < 4) { new_state_handle = log_proto_buffered_server_alloc_state(self, persist_state, persist_name); if (!new_state_handle) goto fallback_non_persistent; old_state = persist_state_map_entry(persist_state, old_state_handle); new_state = persist_state_map_entry(persist_state, new_state_handle); success = log_proto_buffered_server_convert_state(self, persist_version, old_state, old_state_size, new_state); persist_state_unmap_entry(persist_state, old_state_handle); persist_state_unmap_entry(persist_state, new_state_handle); /* we're using the newly allocated state structure regardless if * conversion succeeded. If the conversion went wrong then * new_state is still in its freshly initialized form since the * convert function will not touch the state in the error * branches. */ log_proto_buffered_server_apply_state(self, new_state_handle, persist_name); return success; } else if (persist_version == 4) { LogProtoBufferedServerState *state; old_state = persist_state_map_entry(persist_state, old_state_handle); state = old_state; if ((state->header.big_endian && G_BYTE_ORDER == G_LITTLE_ENDIAN) || (!state->header.big_endian && G_BYTE_ORDER == G_BIG_ENDIAN)) { /* byte order conversion in order to avoid the hassle with scattered byte order conversions in the code */ state->header.big_endian = !state->header.big_endian; state->buffer_pos = GUINT32_SWAP_LE_BE(state->buffer_pos); state->pending_buffer_pos = GUINT32_SWAP_LE_BE(state->pending_buffer_pos); state->pending_buffer_end = GUINT32_SWAP_LE_BE(state->pending_buffer_end); state->buffer_size = GUINT32_SWAP_LE_BE(state->buffer_size); state->raw_stream_pos = GUINT64_SWAP_LE_BE(state->raw_stream_pos); state->raw_buffer_size = GUINT32_SWAP_LE_BE(state->raw_buffer_size); state->pending_raw_stream_pos = GUINT64_SWAP_LE_BE(state->pending_raw_stream_pos); state->pending_raw_buffer_size = GUINT32_SWAP_LE_BE(state->pending_raw_buffer_size); state->file_size = GUINT64_SWAP_LE_BE(state->file_size); state->file_inode = GUINT64_SWAP_LE_BE(state->file_inode); } if (state->header.version > 0) { msg_error("Internal error restoring log reader state, stored data is too new", evt_tag_int("version", state->header.version)); goto error; } persist_state_unmap_entry(persist_state, old_state_handle); log_proto_buffered_server_apply_state(self, old_state_handle, persist_name); return TRUE; } else { msg_error("Internal error restoring log reader state, stored data is too new", evt_tag_int("version", persist_version)); goto error; } return TRUE; fallback_non_persistent: new_state = g_new0(LogProtoBufferedServerState, 1); error: if (!new_state) { new_state_handle = log_proto_buffered_server_alloc_state(self, persist_state, persist_name); if (!new_state_handle) goto fallback_non_persistent; new_state = persist_state_map_entry(persist_state, new_state_handle); } if (new_state) { LogProtoBufferedServerState *state = new_state; /* error happened, restart the file from the beginning */ state->raw_stream_pos = 0; state->file_inode = 0; state->file_size = 0; if (new_state_handle) log_proto_buffered_server_apply_state(self, new_state_handle, persist_name); else self->state1 = new_state; } if (new_state_handle) { persist_state_unmap_entry(persist_state, new_state_handle); } return FALSE; }
int DemarshalSimpleTypes( int byte_order, tMarshalType type, void *data, const void *buffer ) { switch( type ) { case eMtVoid: return 0; case eMtUint8: case eMtInt8: { tUint8 v = *(const tUint8 *)buffer; *(tUint8 *)data = v; } return sizeof( tUint8 ); case eMtInt16: case eMtUint16: { tUint16 v; memcpy( &v, buffer, sizeof( tUint16 ) ); if ( G_BYTE_ORDER != byte_order ) v = GUINT16_SWAP_LE_BE( v ); *(tUint16 *)data = v; } return sizeof( tUint16 ); case eMtUint32: case eMtInt32: { tUint32 v; memcpy( &v, buffer, sizeof( tUint32 ) ); if ( G_BYTE_ORDER != byte_order ) v = GUINT32_SWAP_LE_BE( v ); *(tUint32 *)data = v; } return sizeof( tUint32 ); case eMtUint64: case eMtInt64: { tUint64 v; memcpy( &v, buffer, sizeof( tUint64 ) ); if ( G_BYTE_ORDER != byte_order ) v = GUINT64_SWAP_LE_BE( v ); *(tUint64 *)data = v; } return sizeof( tUint64 ); case eMtFloat32: { // this has been tested for i386 and PPC tFloat32Uint32 v; memcpy( &(v.m_f32), buffer, sizeof( tFloat32 ) ); if ( G_BYTE_ORDER != byte_order ) v.m_u32 = GUINT32_SWAP_LE_BE( v.m_u32 ); *(tFloat32 *)data = v.m_f32; } return sizeof( tFloat32 ); case eMtFloat64: { // this has been tested for i386 and PPC tFloat64Uint64 v; memcpy( &(v.m_f64), buffer, sizeof( tFloat64 ) ); if ( G_BYTE_ORDER != byte_order ) v.m_u64 = GUINT64_SWAP_LE_BE( v.m_u64 ); *(tFloat64 *)data = v.m_f64; } return sizeof( tFloat64 ); default: break; } assert( 0 ); return -1; }
int main (int argc, char *argv[]) { GList *list, *t; GSList *slist, *st; GHashTable *hash_table; GMemChunk *mem_chunk; GStringChunk *string_chunk; GTimer *timer; gint nums[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; gint morenums[10] = { 8, 9, 7, 0, 3, 2, 5, 1, 4, 6}; gchar *string; gchar *mem[10000], *tmp_string = NULL, *tmp_string_2; gint i, j; GArray *garray; GPtrArray *gparray; GByteArray *gbarray; GString *string1, *string2; GTree *tree; char chars[62]; GRelation *relation; GTuples *tuples; gint data [1024]; struct { gchar *filename; gchar *dirname; } dirname_checks[] = { #ifndef NATIVE_WIN32 { "/", "/" }, { "////", "/" }, { ".////", "." }, { ".", "." }, { "..", "." }, { "../", ".." }, { "..////", ".." }, { "", "." }, { "a/b", "a" }, { "a/b/", "a/b" }, { "c///", "c" }, #else { "\\", "\\" }, { ".\\\\\\\\", "." }, { ".", "." }, { "..", "." }, { "..\\", ".." }, { "..\\\\\\\\", ".." }, { "", "." }, { "a\\b", "a" }, { "a\\b\\", "a\\b" }, { "c\\\\\\", "c" }, #endif }; guint n_dirname_checks = sizeof (dirname_checks) / sizeof (dirname_checks[0]); guint16 gu16t1 = 0x44afU, gu16t2 = 0xaf44U; guint32 gu32t1 = 0x02a7f109U, gu32t2 = 0x09f1a702U; #ifdef G_HAVE_GINT64 guint64 gu64t1 = G_GINT64_CONSTANT(0x1d636b02300a7aa7U), gu64t2 = G_GINT64_CONSTANT(0xa77a0a30026b631dU); #endif g_print ("TestGLib v%u.%u.%u (i:%u b:%u)\n", glib_major_version, glib_minor_version, glib_micro_version, glib_interface_age, glib_binary_age); string = g_get_current_dir (); g_print ("cwd: %s\n", string); g_free (string); g_print ("user: %s\n", g_get_user_name ()); g_print ("real: %s\n", g_get_real_name ()); g_print ("home: %s\n", g_get_home_dir ()); g_print ("tmp-dir: %s\n", g_get_tmp_dir ()); /* type sizes */ g_print ("checking size of gint8: %d", (int)sizeof (gint8)); TEST (NULL, sizeof (gint8) == 1); g_print ("\nchecking size of gint16: %d", (int)sizeof (gint16)); TEST (NULL, sizeof (gint16) == 2); g_print ("\nchecking size of gint32: %d", (int)sizeof (gint32)); TEST (NULL, sizeof (gint32) == 4); #ifdef G_HAVE_GINT64 g_print ("\nchecking size of gint64: %d", (int)sizeof (gint64)); TEST (NULL, sizeof (gint64) == 8); #endif /* G_HAVE_GINT64 */ g_print ("\n"); g_print ("checking g_dirname()..."); for (i = 0; i < n_dirname_checks; i++) { gchar *dirname; dirname = g_dirname (dirname_checks[i].filename); if (strcmp (dirname, dirname_checks[i].dirname) != 0) { g_print ("\nfailed for \"%s\"==\"%s\" (returned: \"%s\")\n", dirname_checks[i].filename, dirname_checks[i].dirname, dirname); n_dirname_checks = 0; } g_free (dirname); } if (n_dirname_checks) g_print ("ok\n"); g_print ("checking doubly linked lists..."); list = NULL; for (i = 0; i < 10; i++) list = g_list_append (list, &nums[i]); list = g_list_reverse (list); for (i = 0; i < 10; i++) { t = g_list_nth (list, i); if (*((gint*) t->data) != (9 - i)) g_error ("Regular insert failed"); } for (i = 0; i < 10; i++) if(g_list_position(list, g_list_nth (list, i)) != i) g_error("g_list_position does not seem to be the inverse of g_list_nth\n"); g_list_free (list); list = NULL; for (i = 0; i < 10; i++) list = g_list_insert_sorted (list, &morenums[i], my_list_compare_one); /* g_print("\n"); g_list_foreach (list, my_list_print, NULL); */ for (i = 0; i < 10; i++) { t = g_list_nth (list, i); if (*((gint*) t->data) != i) g_error ("Sorted insert failed"); } g_list_free (list); list = NULL; for (i = 0; i < 10; i++) list = g_list_insert_sorted (list, &morenums[i], my_list_compare_two); /* g_print("\n"); g_list_foreach (list, my_list_print, NULL); */ for (i = 0; i < 10; i++) { t = g_list_nth (list, i); if (*((gint*) t->data) != (9 - i)) g_error ("Sorted insert failed"); } g_list_free (list); list = NULL; for (i = 0; i < 10; i++) list = g_list_prepend (list, &morenums[i]); list = g_list_sort (list, my_list_compare_two); /* g_print("\n"); g_list_foreach (list, my_list_print, NULL); */ for (i = 0; i < 10; i++) { t = g_list_nth (list, i); if (*((gint*) t->data) != (9 - i)) g_error ("Merge sort failed"); } g_list_free (list); g_print ("ok\n"); g_print ("checking singly linked lists..."); slist = NULL; for (i = 0; i < 10; i++) slist = g_slist_append (slist, &nums[i]); slist = g_slist_reverse (slist); for (i = 0; i < 10; i++) { st = g_slist_nth (slist, i); if (*((gint*) st->data) != (9 - i)) g_error ("failed"); } g_slist_free (slist); slist = NULL; for (i = 0; i < 10; i++) slist = g_slist_insert_sorted (slist, &morenums[i], my_list_compare_one); /* g_print("\n"); g_slist_foreach (slist, my_list_print, NULL); */ for (i = 0; i < 10; i++) { st = g_slist_nth (slist, i); if (*((gint*) st->data) != i) g_error ("Sorted insert failed"); } g_slist_free(slist); slist = NULL; for (i = 0; i < 10; i++) slist = g_slist_insert_sorted (slist, &morenums[i], my_list_compare_two); /* g_print("\n"); g_slist_foreach (slist, my_list_print, NULL); */ for (i = 0; i < 10; i++) { st = g_slist_nth (slist, i); if (*((gint*) st->data) != (9 - i)) g_error("Sorted insert failed"); } g_slist_free(slist); slist = NULL; for (i = 0; i < 10; i++) slist = g_slist_prepend (slist, &morenums[i]); slist = g_slist_sort (slist, my_list_compare_two); /* g_print("\n"); g_slist_foreach (slist, my_list_print, NULL); */ for (i = 0; i < 10; i++) { st = g_slist_nth (slist, i); if (*((gint*) st->data) != (9 - i)) g_error("Sorted insert failed"); } g_slist_free(slist); g_print ("ok\n"); g_print ("checking binary trees...\n"); tree = g_tree_new (my_compare); i = 0; for (j = 0; j < 10; j++, i++) { chars[i] = '0' + j; g_tree_insert (tree, &chars[i], &chars[i]); } for (j = 0; j < 26; j++, i++) { chars[i] = 'A' + j; g_tree_insert (tree, &chars[i], &chars[i]); } for (j = 0; j < 26; j++, i++) { chars[i] = 'a' + j; g_tree_insert (tree, &chars[i], &chars[i]); } g_print ("tree height: %d\n", g_tree_height (tree)); g_print ("tree nnodes: %d\n", g_tree_nnodes (tree)); g_print ("tree: "); g_tree_traverse (tree, my_traverse, G_IN_ORDER, NULL); g_print ("\n"); for (i = 0; i < 10; i++) g_tree_remove (tree, &chars[i]); g_print ("tree height: %d\n", g_tree_height (tree)); g_print ("tree nnodes: %d\n", g_tree_nnodes (tree)); g_print ("tree: "); g_tree_traverse (tree, my_traverse, G_IN_ORDER, NULL); g_print ("\n"); g_print ("ok\n"); /* check n-way trees */ g_node_test (); g_print ("checking mem chunks..."); mem_chunk = g_mem_chunk_new ("test mem chunk", 50, 100, G_ALLOC_AND_FREE); for (i = 0; i < 10000; i++) { mem[i] = g_chunk_new (gchar, mem_chunk); for (j = 0; j < 50; j++) mem[i][j] = i * j; } for (i = 0; i < 10000; i++) { g_mem_chunk_free (mem_chunk, mem[i]); } g_print ("ok\n"); g_print ("checking hash tables..."); hash_table = g_hash_table_new (my_hash, my_hash_compare); for (i = 0; i < 10000; i++) { array[i] = i; g_hash_table_insert (hash_table, &array[i], &array[i]); } g_hash_table_foreach (hash_table, my_hash_callback, NULL); for (i = 0; i < 10000; i++) if (array[i] == 0) g_print ("%d\n", i); for (i = 0; i < 10000; i++) g_hash_table_remove (hash_table, &array[i]); for (i = 0; i < 10000; i++) { array[i] = i; g_hash_table_insert (hash_table, &array[i], &array[i]); } if (g_hash_table_foreach_remove (hash_table, my_hash_callback_remove, NULL) != 5000 || g_hash_table_size (hash_table) != 5000) g_print ("bad!\n"); g_hash_table_foreach (hash_table, my_hash_callback_remove_test, NULL); g_hash_table_destroy (hash_table); g_print ("ok\n"); g_print ("checking string chunks..."); string_chunk = g_string_chunk_new (1024); for (i = 0; i < 100000; i ++) { tmp_string = g_string_chunk_insert (string_chunk, "hi pete"); if (strcmp ("hi pete", tmp_string) != 0) g_error ("string chunks are broken.\n"); } tmp_string_2 = g_string_chunk_insert_const (string_chunk, tmp_string); g_assert (tmp_string_2 != tmp_string && strcmp(tmp_string_2, tmp_string) == 0); tmp_string = g_string_chunk_insert_const (string_chunk, tmp_string); g_assert (tmp_string_2 == tmp_string); g_string_chunk_free (string_chunk); g_print ("ok\n"); g_print ("checking arrays..."); garray = g_array_new (FALSE, FALSE, sizeof (gint)); for (i = 0; i < 10000; i++) g_array_append_val (garray, i); for (i = 0; i < 10000; i++) if (g_array_index (garray, gint, i) != i) g_print ("uh oh: %d ( %d )\n", g_array_index (garray, gint, i), i); g_array_free (garray, TRUE); garray = g_array_new (FALSE, FALSE, sizeof (gint)); for (i = 0; i < 100; i++) g_array_prepend_val (garray, i); for (i = 0; i < 100; i++) if (g_array_index (garray, gint, i) != (100 - i - 1)) g_print ("uh oh: %d ( %d )\n", g_array_index (garray, gint, i), 100 - i - 1); g_array_free (garray, TRUE); g_print ("ok\n"); g_print ("checking strings..."); string1 = g_string_new ("hi pete!"); string2 = g_string_new (""); g_assert (strcmp ("hi pete!", string1->str) == 0); for (i = 0; i < 10000; i++) g_string_append_c (string1, 'a'+(i%26)); #if !(defined (_MSC_VER) || defined (__LCC__)) /* MSVC and LCC use the same run-time C library, which doesn't like the %10000.10000f format... */ g_string_sprintf (string2, "%s|%0100d|%s|%s|%0*d|%*.*f|%10000.10000f", "this pete guy sure is a wuss, like he's the number ", 1, " wuss. everyone agrees.\n", string1->str, 10, 666, 15, 15, 666.666666666, 666.666666666); #else g_string_sprintf (string2, "%s|%0100d|%s|%s|%0*d|%*.*f|%100.100f", "this pete guy sure is a wuss, like he's the number ", 1, " wuss. everyone agrees.\n", string1->str, 10, 666, 15, 15, 666.666666666, 666.666666666); #endif g_print ("string2 length = %d...\n", string2->len); string2->str[70] = '\0'; g_print ("first 70 chars:\n%s\n", string2->str); string2->str[141] = '\0'; g_print ("next 70 chars:\n%s\n", string2->str+71); string2->str[212] = '\0'; g_print ("and next 70:\n%s\n", string2->str+142); g_print ("last 70 chars:\n%s\n", string2->str+string2->len - 70); g_print ("ok\n"); g_print ("checking timers...\n"); timer = g_timer_new (); g_print (" spinning for 3 seconds...\n"); g_timer_start (timer); while (g_timer_elapsed (timer, NULL) < 3) ; g_timer_stop (timer); g_timer_destroy (timer); g_print ("ok\n"); g_print ("checking g_strcasecmp..."); g_assert (g_strcasecmp ("FroboZZ", "frobozz") == 0); g_assert (g_strcasecmp ("frobozz", "frobozz") == 0); g_assert (g_strcasecmp ("frobozz", "FROBOZZ") == 0); g_assert (g_strcasecmp ("FROBOZZ", "froboz") != 0); g_assert (g_strcasecmp ("", "") == 0); g_assert (g_strcasecmp ("!#%&/()", "!#%&/()") == 0); g_assert (g_strcasecmp ("a", "b") < 0); g_assert (g_strcasecmp ("a", "B") < 0); g_assert (g_strcasecmp ("A", "b") < 0); g_assert (g_strcasecmp ("A", "B") < 0); g_assert (g_strcasecmp ("b", "a") > 0); g_assert (g_strcasecmp ("b", "A") > 0); g_assert (g_strcasecmp ("B", "a") > 0); g_assert (g_strcasecmp ("B", "A") > 0); g_print ("ok\n"); g_print ("checking g_strdup..."); g_assert(g_strdup(NULL) == NULL); string = g_strdup(GLIB_TEST_STRING); g_assert(string != NULL); g_assert(strcmp(string, GLIB_TEST_STRING) == 0); g_free(string); g_print ("ok\n"); g_print ("checking g_strconcat..."); string = g_strconcat(GLIB_TEST_STRING, NULL); g_assert(string != NULL); g_assert(strcmp(string, GLIB_TEST_STRING) == 0); g_free(string); string = g_strconcat(GLIB_TEST_STRING, GLIB_TEST_STRING, GLIB_TEST_STRING, NULL); g_assert(string != NULL); g_assert(strcmp(string, GLIB_TEST_STRING GLIB_TEST_STRING GLIB_TEST_STRING) == 0); g_free(string); g_print ("ok\n"); g_print ("checking g_strdup_printf..."); string = g_strdup_printf ("%05d %-5s", 21, "test"); g_assert (string != NULL); g_assert (strcmp(string, "00021 test ") == 0); g_free (string); g_print ("ok\n"); /* g_debug (argv[0]); */ /* Relation tests */ g_print ("checking relations..."); relation = g_relation_new (2); g_relation_index (relation, 0, g_int_hash, g_int_equal); g_relation_index (relation, 1, g_int_hash, g_int_equal); for (i = 0; i < 1024; i += 1) data[i] = i; for (i = 1; i < 1023; i += 1) { g_relation_insert (relation, data + i, data + i + 1); g_relation_insert (relation, data + i, data + i - 1); } for (i = 2; i < 1022; i += 1) { g_assert (! g_relation_exists (relation, data + i, data + i)); g_assert (! g_relation_exists (relation, data + i, data + i + 2)); g_assert (! g_relation_exists (relation, data + i, data + i - 2)); } for (i = 1; i < 1023; i += 1) { g_assert (g_relation_exists (relation, data + i, data + i + 1)); g_assert (g_relation_exists (relation, data + i, data + i - 1)); } for (i = 2; i < 1022; i += 1) { g_assert (g_relation_count (relation, data + i, 0) == 2); g_assert (g_relation_count (relation, data + i, 1) == 2); } g_assert (g_relation_count (relation, data, 0) == 0); g_assert (g_relation_count (relation, data + 42, 0) == 2); g_assert (g_relation_count (relation, data + 43, 1) == 2); g_assert (g_relation_count (relation, data + 41, 1) == 2); g_relation_delete (relation, data + 42, 0); g_assert (g_relation_count (relation, data + 42, 0) == 0); g_assert (g_relation_count (relation, data + 43, 1) == 1); g_assert (g_relation_count (relation, data + 41, 1) == 1); tuples = g_relation_select (relation, data + 200, 0); g_assert (tuples->len == 2); #if 0 for (i = 0; i < tuples->len; i += 1) { printf ("%d %d\n", *(gint*) g_tuples_index (tuples, i, 0), *(gint*) g_tuples_index (tuples, i, 1)); } #endif g_assert (g_relation_exists (relation, data + 300, data + 301)); g_relation_delete (relation, data + 300, 0); g_assert (!g_relation_exists (relation, data + 300, data + 301)); g_tuples_destroy (tuples); g_relation_destroy (relation); relation = NULL; g_print ("ok\n"); g_print ("checking pointer arrays..."); gparray = g_ptr_array_new (); for (i = 0; i < 10000; i++) g_ptr_array_add (gparray, GINT_TO_POINTER (i)); for (i = 0; i < 10000; i++) if (g_ptr_array_index (gparray, i) != GINT_TO_POINTER (i)) g_print ("array fails: %p ( %p )\n", g_ptr_array_index (gparray, i), GINT_TO_POINTER (i)); g_ptr_array_free (gparray, TRUE); g_print ("ok\n"); g_print ("checking byte arrays..."); gbarray = g_byte_array_new (); for (i = 0; i < 10000; i++) g_byte_array_append (gbarray, (guint8*) "abcd", 4); for (i = 0; i < 10000; i++) { g_assert (gbarray->data[4*i] == 'a'); g_assert (gbarray->data[4*i+1] == 'b'); g_assert (gbarray->data[4*i+2] == 'c'); g_assert (gbarray->data[4*i+3] == 'd'); } g_byte_array_free (gbarray, TRUE); g_print ("ok\n"); g_printerr ("g_log tests:"); g_warning ("harmless warning with parameters: %d %s %#x", 42, "Boo", 12345); g_message ("the next warning is a test:"); string = NULL; g_print (string); g_print ("checking endian macros (host is "); #if G_BYTE_ORDER == G_BIG_ENDIAN g_print ("big endian)..."); #else g_print ("little endian)..."); #endif g_assert (GUINT16_SWAP_LE_BE (gu16t1) == gu16t2); g_assert (GUINT32_SWAP_LE_BE (gu32t1) == gu32t2); #ifdef G_HAVE_GINT64 g_assert (GUINT64_SWAP_LE_BE (gu64t1) == gu64t2); #endif g_print ("ok\n"); return 0; }
static int DemarshalSimpleTypes( int byte_order, tMarshalType type, void *data, const void *buffer ) { union { tInt16 i16; tUint16 ui16; tInt32 i32; tUint32 ui32; tInt64 i64; tUint64 ui64; tFloat32 f32; tFloat64 f64; } u; // NB Glib does not provide SWAP_LE_BE macro for signed types! switch( type ) { case eMtVoid: return 0; case eMtInt8: memcpy(data, buffer, sizeof(tInt8)); return sizeof(tInt8); case eMtUint8: memcpy(data, buffer, sizeof(tUint8)); return sizeof(tUint8); case eMtInt16: memcpy(&u.i16, buffer, sizeof(tInt16)); if ( G_BYTE_ORDER != byte_order ) { u.ui16 = GUINT16_SWAP_LE_BE( u.ui16 ); } memcpy(data, &u.i16, sizeof(tInt16)); return sizeof(tInt16); case eMtUint16: memcpy(&u.ui16, buffer, sizeof(tUint16)); if ( G_BYTE_ORDER != byte_order ) { u.ui16 = GUINT16_SWAP_LE_BE( u.ui16 ); } memcpy(data, &u.ui16, sizeof(tUint16)); return sizeof(tUint16); case eMtInt32: memcpy(&u.i32, buffer, sizeof(tInt32)); if ( G_BYTE_ORDER != byte_order ) { u.ui32 = GUINT32_SWAP_LE_BE( u.ui32 ); } memcpy(data, &u.i32, sizeof(tInt32)); return sizeof(tInt32); case eMtUint32: memcpy(&u.ui32, buffer, sizeof(tUint32)); if ( G_BYTE_ORDER != byte_order ) { u.ui32 = GUINT32_SWAP_LE_BE( u.ui32 ); } memcpy(data, &u.ui32, sizeof(tUint32)); return sizeof(tUint32); case eMtInt64: memcpy(&u.i64, buffer, sizeof(tInt64)); if ( G_BYTE_ORDER != byte_order ) { u.ui64 = GUINT64_SWAP_LE_BE( u.ui64 ); } memcpy(data, &u.i64, sizeof(tInt64)); return sizeof(tInt64); case eMtUint64: memcpy(&u.ui64, buffer, sizeof(tUint64)); if ( G_BYTE_ORDER != byte_order ) { u.ui64 = GUINT64_SWAP_LE_BE( u.ui64 ); } memcpy(data, &u.ui64, sizeof(tUint64)); return sizeof(tUint64); case eMtFloat32: memcpy(&u.f32, buffer, sizeof(tFloat32)); if ( G_BYTE_ORDER != byte_order ) { u.ui32 = GUINT32_SWAP_LE_BE( u.ui32 ); } memcpy(data, &u.f32, sizeof(tFloat32)); return sizeof(tFloat32); case eMtFloat64: memcpy(&u.f64, buffer, sizeof(tFloat64)); if ( G_BYTE_ORDER != byte_order ) { u.ui64 = GUINT64_SWAP_LE_BE( u.ui64 ); } memcpy(data, &u.f64, sizeof(tFloat64)); return sizeof(tFloat64); default: CRIT( "Unknown marshal type %d!", type ); return -ENOSYS; } }