示例#1
0
文件: PageTbl.c 项目: baranee/edk2
/**
  Calculate the maximum support address.

  @return the maximum support address.
**/
UINT8
CalculateMaximumSupportAddress (
  VOID
  )
{
  UINT32                                        RegEax;
  UINT8                                         PhysicalAddressBits;
  VOID                                          *Hob;

  //
  // Get physical address bits supported.
  //
  Hob = GetFirstHob (EFI_HOB_TYPE_CPU);
  if (Hob != NULL) {
    PhysicalAddressBits = ((EFI_HOB_CPU *) Hob)->SizeOfMemorySpace;
  } else {
    AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
    if (RegEax >= 0x80000008) {
      AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);
      PhysicalAddressBits = (UINT8) RegEax;
    } else {
      PhysicalAddressBits = 36;
    }
  }

  //
  // IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses.
  //
  ASSERT (PhysicalAddressBits <= 52);
  if (PhysicalAddressBits > 48) {
    PhysicalAddressBits = 48;
  }
  return PhysicalAddressBits;
}
示例#2
0
EFI_STATUS
UtilGetSystemMemoryResources (
  IN  LIST_ENTRY *ResourceList
  )
{
  EFI_HOB_RESOURCE_DESCRIPTOR *ResHob;

  InitializeListHead (ResourceList);

  // Find the first System Memory Resource Descriptor
  ResHob = (EFI_HOB_RESOURCE_DESCRIPTOR *)GetFirstHob (EFI_HOB_TYPE_RESOURCE_DESCRIPTOR);
  while ((ResHob != NULL) && (ResHob->ResourceType != EFI_RESOURCE_SYSTEM_MEMORY)) {
    ResHob = (EFI_HOB_RESOURCE_DESCRIPTOR *)GetNextHob (EFI_HOB_TYPE_RESOURCE_DESCRIPTOR, (VOID *)((UINTN)ResHob + ResHob->Header.HobLength));
  }

  // Did not find any
  if (ResHob == NULL) {
    return EFI_NOT_FOUND;
  } else {
    InsertSystemMemoryResources (ResourceList, ResHob);
  }

  ResHob = (EFI_HOB_RESOURCE_DESCRIPTOR *)GetNextHob (EFI_HOB_TYPE_RESOURCE_DESCRIPTOR, (VOID *)((UINTN)ResHob + ResHob->Header.HobLength));
  while (ResHob != NULL) {
    if (ResHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY) {
      InsertSystemMemoryResources (ResourceList, ResHob);
    }
    ResHob = (EFI_HOB_RESOURCE_DESCRIPTOR *)GetNextHob (EFI_HOB_TYPE_RESOURCE_DESCRIPTOR, (VOID *)((UINTN)ResHob + ResHob->Header.HobLength));
  }

  return EFI_SUCCESS;
}
/**
  Hook point for AcpiVariableThunkPlatform for S3Ready.

  @param AcpiS3Context   ACPI s3 context
**/
VOID
S3ReadyThunkPlatform (
  IN ACPI_S3_CONTEXT      *AcpiS3Context
  )
{
  EFI_PHYSICAL_ADDRESS                          AcpiMemoryBase;
  UINT32                                        AcpiMemorySize;
  EFI_PEI_HOB_POINTERS                          Hob;
  UINT64                                        MemoryLength;

  DEBUG ((EFI_D_INFO, "S3ReadyThunkPlatform\n"));

  if (mAcpiVariableSetCompatibility == NULL) {
    return;
  }

  //
  // Allocate ACPI reserved memory under 4G
  //
  AcpiMemoryBase = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocateMemoryBelow4G (EfiReservedMemoryType, PcdGet32 (PcdS3AcpiReservedMemorySize));
  ASSERT (AcpiMemoryBase != 0);
  AcpiMemorySize = PcdGet32 (PcdS3AcpiReservedMemorySize);

  //
  // Calculate the system memory length by memory hobs
  //
  MemoryLength  = 0x100000;
  Hob.Raw = GetFirstHob (EFI_HOB_TYPE_RESOURCE_DESCRIPTOR);
  ASSERT (Hob.Raw != NULL);
  while ((Hob.Raw != NULL) && (!END_OF_HOB_LIST (Hob))) {
    if (Hob.ResourceDescriptor->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY) {
      //
      // Skip the memory region below 1MB
      //
      if (Hob.ResourceDescriptor->PhysicalStart >= 0x100000) {
        MemoryLength += Hob.ResourceDescriptor->ResourceLength;
      }
    }
    Hob.Raw = GET_NEXT_HOB (Hob);
    Hob.Raw = GetNextHob (EFI_HOB_TYPE_RESOURCE_DESCRIPTOR, Hob.Raw);
  }

  mAcpiVariableSetCompatibility->AcpiReservedMemoryBase = AcpiMemoryBase;
  mAcpiVariableSetCompatibility->AcpiReservedMemorySize = AcpiMemorySize;
  mAcpiVariableSetCompatibility->SystemMemoryLength     = MemoryLength;

  DEBUG((EFI_D_INFO, "AcpiVariableThunkPlatform: AcpiMemoryBase is 0x%8x\n", mAcpiVariableSetCompatibility->AcpiReservedMemoryBase));
  DEBUG((EFI_D_INFO, "AcpiVariableThunkPlatform: AcpiMemorySize is 0x%8x\n", mAcpiVariableSetCompatibility->AcpiReservedMemorySize));
  DEBUG((EFI_D_INFO, "AcpiVariableThunkPlatform: SystemMemoryLength is 0x%8x\n", mAcpiVariableSetCompatibility->SystemMemoryLength));

  return ;
}
示例#4
0
/**
  Allocates one or more 4KB pages of a certain memory type.

  Allocates the number of 4KB pages of a certain memory type and returns a pointer to the allocated
  buffer.  The buffer returned is aligned on a 4KB boundary.  If Pages is 0, then NULL is returned.
  If there is not enough memory remaining to satisfy the request, then NULL is returned.

  @param  MemoryType            The type of memory to allocate.
  @param  Pages                 The number of 4 KB pages to allocate.

  @return A pointer to the allocated buffer or NULL if allocation fails.

**/
VOID *
InternalAllocatePages (
  IN EFI_MEMORY_TYPE  MemoryType,
  IN UINTN            Pages
  )
{
  EFI_STATUS            Status;
  EFI_PHYSICAL_ADDRESS  Memory;
  EFI_MEMORY_TYPE       RequestType;
  EFI_PEI_HOB_POINTERS  Hob;

  if (Pages == 0) {
    return NULL;
  }

  RequestType = MemoryType;
  if (MemoryType == EfiReservedMemoryType) {
    //
    // PEI AllocatePages() doesn't support EfiReservedMemoryType.
    // Change RequestType to EfiBootServicesData for memory allocation.
    //
    RequestType = EfiBootServicesData;
  }

  Status = PeiServicesAllocatePages (RequestType, Pages, &Memory);
  if (EFI_ERROR (Status)) {
    return NULL;
  }

  if (MemoryType == EfiReservedMemoryType) {
    //
    // Memory type needs to be updated to EfiReservedMemoryType. Per PI spec Volume 1,
    // PEI AllocatePages() will automate the creation of the Memory Allocation HOB types.
    // Search Memory Allocation HOB and find the matched memory region,
    // then change its memory type to EfiReservedMemoryType.
    //
    Hob.Raw = GetFirstHob (EFI_HOB_TYPE_MEMORY_ALLOCATION);
    while (Hob.Raw != NULL && Hob.MemoryAllocation->AllocDescriptor.MemoryBaseAddress != Memory) {
      Hob.Raw = GET_NEXT_HOB (Hob);
      Hob.Raw = GetNextHob (EFI_HOB_TYPE_MEMORY_ALLOCATION, Hob.Raw);
    }
    ASSERT (Hob.Raw != NULL);
    Hob.MemoryAllocation->AllocDescriptor.MemoryType = EfiReservedMemoryType;
  }

  return (VOID *) (UINTN) Memory;
}
示例#5
0
文件: SmmMemLib.c 项目: jeppeter/vbox
/**
  Calculate and save the maximum support address.

**/
VOID
SmmMemLibInternalCalculateMaximumSupportAddress (
  VOID
  )
{
  VOID         *Hob;
  UINT32       RegEax;
  UINT8        PhysicalAddressBits;

  //
  // Get physical address bits supported.
  //
  Hob = GetFirstHob (EFI_HOB_TYPE_CPU);
  if (Hob != NULL) {
    PhysicalAddressBits = ((EFI_HOB_CPU *) Hob)->SizeOfMemorySpace;
  } else {
    AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
    if (RegEax >= 0x80000008) {
      AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);
      PhysicalAddressBits = (UINT8) RegEax;
    } else {
      PhysicalAddressBits = 36;
    }
  }
  //
  // IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses.
  //
  ASSERT (PhysicalAddressBits <= 52);
  if (PhysicalAddressBits > 48) {
    PhysicalAddressBits = 48;
  }

  //
  // Save the maximum support address in one global variable
  //
  mSmmMemLibInternalMaximumSupportAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)(LShiftU64 (1, PhysicalAddressBits) - 1);
  DEBUG ((EFI_D_INFO, "mSmmMemLibInternalMaximumSupportAddress = 0x%lx\n", mSmmMemLibInternalMaximumSupportAddress));
}
示例#6
0
/**
  Allocates one or more 4KB pages of a certain memory type at a specified alignment.

  Allocates the number of 4KB pages specified by Pages of a certain memory type with an alignment
  specified by Alignment.  The allocated buffer is returned.  If Pages is 0, then NULL is returned.
  If there is not enough memory at the specified alignment remaining to satisfy the request, then
  NULL is returned.
  If Alignment is not a power of two and Alignment is not zero, then ASSERT().
  If Pages plus EFI_SIZE_TO_PAGES (Alignment) overflows, then ASSERT().

  @param  MemoryType            The type of memory to allocate.
  @param  Pages                 The number of 4 KB pages to allocate.
  @param  Alignment             The requested alignment of the allocation.
                                Must be a power of two.
                                If Alignment is zero, then byte alignment is used.

  @return A pointer to the allocated buffer or NULL if allocation fails.

**/
VOID *
InternalAllocateAlignedPages (
  IN EFI_MEMORY_TYPE  MemoryType,
  IN UINTN            Pages,
  IN UINTN            Alignment
  )
{
  EFI_PHYSICAL_ADDRESS   Memory;
  EFI_PHYSICAL_ADDRESS   AlignedMemory;
  EFI_PEI_HOB_POINTERS   Hob;
  BOOLEAN                SkipBeforeMemHob;
  BOOLEAN                SkipAfterMemHob;
  EFI_PHYSICAL_ADDRESS   HobBaseAddress;
  UINT64                 HobLength;
  EFI_MEMORY_TYPE        HobMemoryType;
  UINTN                  TotalPages;

  //
  // Alignment must be a power of two or zero.
  //
  ASSERT ((Alignment & (Alignment - 1)) == 0);

  if (Pages == 0) {
    return NULL;
  }
  //
  // Make sure that Pages plus EFI_SIZE_TO_PAGES (Alignment) does not overflow.
  //
  ASSERT (Pages <= (MAX_ADDRESS - EFI_SIZE_TO_PAGES (Alignment)));

  //
  // We would rather waste some memory to save PEI code size.
  // meaning in addition to the requested size for the aligned mem,
  // we simply reserve an overhead memory equal to Alignmemt(page-aligned), no matter what.
  // The overhead mem size could be reduced later with more involved malloc mechanisms
  // (e.g., somthing that can detect the alignment boundary before allocating memory or
  //  can request that memory be allocated at a certain address that is aleady aligned).
  //
  TotalPages = Pages + (Alignment <= EFI_PAGE_SIZE ? 0 : EFI_SIZE_TO_PAGES(Alignment));
  Memory = (EFI_PHYSICAL_ADDRESS) (UINTN) InternalAllocatePages (MemoryType, TotalPages);
  if (Memory == 0) {
    DEBUG((DEBUG_INFO, "Out of memory resource! \n"));
    return NULL;
  }
  DEBUG ((DEBUG_INFO, "Allocated Memory unaligned: Address = 0x%LX, Pages = 0x%X, Type = %d \n", Memory, TotalPages, (UINTN) MemoryType));

  //
  // Alignment calculation
  //
  AlignedMemory = Memory;
  if (Alignment > EFI_PAGE_SIZE) {
    AlignedMemory = ALIGN_VALUE (Memory, Alignment);
  }
  DEBUG ((DEBUG_INFO, "After aligning to 0x%X bytes: Address = 0x%LX, Pages = 0x%X \n", Alignment, AlignedMemory, Pages));

  //
  // In general three HOBs cover the total allocated space.
  // The aligned portion is covered by the aligned mem HOB and
  // the unaligned(to be freed) portions before and after the aligned portion are covered by newly created HOBs.
  //
  // Before mem HOB covers the region between "Memory" and "AlignedMemory"
  // Aligned mem HOB covers the region between "AlignedMemory" and "AlignedMemory + EFI_PAGES_TO_SIZE(Pages)"
  // After mem HOB covers the region between "AlignedMemory + EFI_PAGES_TO_SIZE(Pages)" and "Memory + EFI_PAGES_TO_SIZE(TotalPages)"
  //
  // The before or after mem HOBs need to be skipped under special cases where the aligned portion
  // touches either the top or bottom of the original allocated space.
  //
  SkipBeforeMemHob = FALSE;
  SkipAfterMemHob  = FALSE;
  if (Memory == AlignedMemory) {
    SkipBeforeMemHob = TRUE;
  }
  if ((Memory + EFI_PAGES_TO_SIZE(TotalPages)) == (AlignedMemory + EFI_PAGES_TO_SIZE(Pages))) {
    //
    // This condition is never met in the current implementation.
    // There is always some after-mem since the overhead mem(used in TotalPages)
    // is no less than Alignment.
    //
    SkipAfterMemHob = TRUE;
  }

  //
  // Search for the mem HOB referring to the original(unaligned) allocation
  // and update the size and type if needed.
  //
  Hob.Raw = GetFirstHob (EFI_HOB_TYPE_MEMORY_ALLOCATION);
  while (Hob.Raw != NULL) {
    if (Hob.MemoryAllocation->AllocDescriptor.MemoryBaseAddress == Memory) {
      break;
    }
    Hob.Raw = GET_NEXT_HOB (Hob);
    Hob.Raw = GetNextHob (EFI_HOB_TYPE_MEMORY_ALLOCATION, Hob.Raw);
  }
  ASSERT (Hob.Raw != NULL);
  if (SkipBeforeMemHob) {
    //
    // Use this HOB as aligned mem HOB as there is no portion before it.
    //
    HobLength = EFI_PAGES_TO_SIZE(Pages);
    Hob.MemoryAllocation->AllocDescriptor.MemoryLength = HobLength;
  } else {
    //
    // Use this HOB as before mem HOB and create a new HOB for the aligned portion
    //
    HobLength = (AlignedMemory - Memory);
    Hob.MemoryAllocation->AllocDescriptor.MemoryLength = HobLength;
    Hob.MemoryAllocation->AllocDescriptor.MemoryType = EfiConventionalMemory;
  }

  HobBaseAddress = Hob.MemoryAllocation->AllocDescriptor.MemoryBaseAddress;
  HobMemoryType = Hob.MemoryAllocation->AllocDescriptor.MemoryType;

  //
  // Build the aligned mem HOB if needed
  //
  if (!SkipBeforeMemHob) {
    DEBUG((DEBUG_INFO, "Updated before-mem HOB with BaseAddress = %LX, Length = %LX, MemoryType = %d \n",
      HobBaseAddress, HobLength, (UINTN) HobMemoryType));

    HobBaseAddress = AlignedMemory;
    HobLength = EFI_PAGES_TO_SIZE(Pages);
    HobMemoryType = MemoryType;

    BuildMemoryAllocationHob (
      HobBaseAddress,
      HobLength,
      HobMemoryType
      );

    DEBUG((DEBUG_INFO, "Created aligned-mem HOB with BaseAddress = %LX, Length = %LX, MemoryType = %d \n",
      HobBaseAddress, HobLength, (UINTN) HobMemoryType));
  } else {
    if (HobBaseAddress != 0) {
      DEBUG((DEBUG_INFO, "Updated aligned-mem HOB with BaseAddress = %LX, Length = %LX, MemoryType = %d \n",
        HobBaseAddress, HobLength, (UINTN) HobMemoryType));
    }
  }


  //
  // Build the after mem HOB if needed
  //
  if (!SkipAfterMemHob) {
    HobBaseAddress = AlignedMemory + EFI_PAGES_TO_SIZE(Pages);
    HobLength = (Memory + EFI_PAGES_TO_SIZE(TotalPages)) - (AlignedMemory + EFI_PAGES_TO_SIZE(Pages));
    HobMemoryType = EfiConventionalMemory;

    BuildMemoryAllocationHob (
      HobBaseAddress,
      HobLength,
      HobMemoryType
      );

    DEBUG((DEBUG_INFO, "Created after-mem HOB with BaseAddress = %LX, Length = %LX, MemoryType = %d \n",
      HobBaseAddress, HobLength, (UINTN) HobMemoryType));
  }

  return (VOID *) (UINTN) AlignedMemory;
}
示例#7
0
/**
  Allocates and fills in the Page Directory and Page Table Entries to
  establish a 1:1 Virtual to Physical mapping.

  @param[in] StackBase  Stack base address.
  @param[in] StackSize  Stack size.

  @return The address of 4 level page map.

**/
UINTN
CreateIdentityMappingPageTables (
  IN EFI_PHYSICAL_ADDRESS   StackBase,
  IN UINTN                  StackSize
  )
{  
  UINT32                                        RegEax;
  UINT32                                        RegEdx;
  UINT8                                         PhysicalAddressBits;
  EFI_PHYSICAL_ADDRESS                          PageAddress;
  UINTN                                         IndexOfPml4Entries;
  UINTN                                         IndexOfPdpEntries;
  UINTN                                         IndexOfPageDirectoryEntries;
  UINT32                                        NumberOfPml4EntriesNeeded;
  UINT32                                        NumberOfPdpEntriesNeeded;
  PAGE_MAP_AND_DIRECTORY_POINTER                *PageMapLevel4Entry;
  PAGE_MAP_AND_DIRECTORY_POINTER                *PageMap;
  PAGE_MAP_AND_DIRECTORY_POINTER                *PageDirectoryPointerEntry;
  PAGE_TABLE_ENTRY                              *PageDirectoryEntry;
  UINTN                                         TotalPagesNum;
  UINTN                                         BigPageAddress;
  VOID                                          *Hob;
  BOOLEAN                                       Page1GSupport;
  PAGE_TABLE_1G_ENTRY                           *PageDirectory1GEntry;

  Page1GSupport = FALSE;
  if (PcdGetBool(PcdUse1GPageTable)) {
    AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
    if (RegEax >= 0x80000001) {
      AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx);
      if ((RegEdx & BIT26) != 0) {
        Page1GSupport = TRUE;
      }
    }
  }

  //
  // Get physical address bits supported.
  //
  Hob = GetFirstHob (EFI_HOB_TYPE_CPU);
  if (Hob != NULL) {
    PhysicalAddressBits = ((EFI_HOB_CPU *) Hob)->SizeOfMemorySpace;
  } else {
    AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
    if (RegEax >= 0x80000008) {
      AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);
      PhysicalAddressBits = (UINT8) RegEax;
    } else {
      PhysicalAddressBits = 36;
    }
  }

  //
  // IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses.
  //
  ASSERT (PhysicalAddressBits <= 52);
  if (PhysicalAddressBits > 48) {
    PhysicalAddressBits = 48;
  }

  //
  // Calculate the table entries needed.
  //
  if (PhysicalAddressBits <= 39 ) {
    NumberOfPml4EntriesNeeded = 1;
    NumberOfPdpEntriesNeeded = (UINT32)LShiftU64 (1, (PhysicalAddressBits - 30));
  } else {
    NumberOfPml4EntriesNeeded = (UINT32)LShiftU64 (1, (PhysicalAddressBits - 39));
    NumberOfPdpEntriesNeeded = 512;
  }

  //
  // Pre-allocate big pages to avoid later allocations. 
  //
  if (!Page1GSupport) {
    TotalPagesNum = (NumberOfPdpEntriesNeeded + 1) * NumberOfPml4EntriesNeeded + 1;
  } else {
    TotalPagesNum = NumberOfPml4EntriesNeeded + 1;
  }
  BigPageAddress = (UINTN) AllocatePages (TotalPagesNum);
  ASSERT (BigPageAddress != 0);

  //
  // By architecture only one PageMapLevel4 exists - so lets allocate storage for it.
  //
  PageMap         = (VOID *) BigPageAddress;
  BigPageAddress += SIZE_4KB;

  PageMapLevel4Entry = PageMap;
  PageAddress        = 0;
  for (IndexOfPml4Entries = 0; IndexOfPml4Entries < NumberOfPml4EntriesNeeded; IndexOfPml4Entries++, PageMapLevel4Entry++) {
    //
    // Each PML4 entry points to a page of Page Directory Pointer entires.
    // So lets allocate space for them and fill them in in the IndexOfPdpEntries loop.
    //
    PageDirectoryPointerEntry = (VOID *) BigPageAddress;
    BigPageAddress += SIZE_4KB;

    //
    // Make a PML4 Entry
    //
    PageMapLevel4Entry->Uint64 = (UINT64)(UINTN)PageDirectoryPointerEntry;
    PageMapLevel4Entry->Bits.ReadWrite = 1;
    PageMapLevel4Entry->Bits.Present = 1;

    if (Page1GSupport) {
      PageDirectory1GEntry = (VOID *) PageDirectoryPointerEntry;
    
      for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectory1GEntry++, PageAddress += SIZE_1GB) {
        if (PcdGetBool (PcdSetNxForStack) && (PageAddress < StackBase + StackSize) && ((PageAddress + SIZE_1GB) > StackBase)) {
          Split1GPageTo2M (PageAddress, (UINT64 *) PageDirectory1GEntry, StackBase, StackSize);
        } else {
          //
          // Fill in the Page Directory entries
          //
          PageDirectory1GEntry->Uint64 = (UINT64)PageAddress;
          PageDirectory1GEntry->Bits.ReadWrite = 1;
          PageDirectory1GEntry->Bits.Present = 1;
          PageDirectory1GEntry->Bits.MustBe1 = 1;
        }
      }
    } else {
      for (IndexOfPdpEntries = 0; IndexOfPdpEntries < NumberOfPdpEntriesNeeded; IndexOfPdpEntries++, PageDirectoryPointerEntry++) {
        //
        // Each Directory Pointer entries points to a page of Page Directory entires.
        // So allocate space for them and fill them in in the IndexOfPageDirectoryEntries loop.
        //       
        PageDirectoryEntry = (VOID *) BigPageAddress;
        BigPageAddress += SIZE_4KB;

        //
        // Fill in a Page Directory Pointer Entries
        //
        PageDirectoryPointerEntry->Uint64 = (UINT64)(UINTN)PageDirectoryEntry;
        PageDirectoryPointerEntry->Bits.ReadWrite = 1;
        PageDirectoryPointerEntry->Bits.Present = 1;

        for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectoryEntry++, PageAddress += SIZE_2MB) {
          if (PcdGetBool (PcdSetNxForStack) && (PageAddress < StackBase + StackSize) && ((PageAddress + SIZE_2MB) > StackBase)) {
            //
            // Need to split this 2M page that covers stack range.
            //
            Split2MPageTo4K (PageAddress, (UINT64 *) PageDirectoryEntry, StackBase, StackSize);
          } else {
            //
            // Fill in the Page Directory entries
            //
            PageDirectoryEntry->Uint64 = (UINT64)PageAddress;
            PageDirectoryEntry->Bits.ReadWrite = 1;
            PageDirectoryEntry->Bits.Present = 1;
            PageDirectoryEntry->Bits.MustBe1 = 1;
          }
        }
      }

      for (; IndexOfPdpEntries < 512; IndexOfPdpEntries++, PageDirectoryPointerEntry++) {
        ZeroMem (
          PageDirectoryPointerEntry,
          sizeof(PAGE_MAP_AND_DIRECTORY_POINTER)
          );
      }
    }
  }

  //
  // For the PML4 entries we are not using fill in a null entry.
  //
  for (; IndexOfPml4Entries < 512; IndexOfPml4Entries++, PageMapLevel4Entry++) {
    ZeroMem (
      PageMapLevel4Entry,
      sizeof (PAGE_MAP_AND_DIRECTORY_POINTER)
      );
  }

  if (PcdGetBool (PcdSetNxForStack)) {
    EnableExecuteDisableBit ();
  }

  return (UINTN)PageMap;
}
示例#8
0
/**
  Allocates and fills in the Page Directory and Page Table Entries to
  establish a 1:1 Virtual to Physical mapping.
  If BootScriptExector driver will run in 64-bit mode, this function will establish the 1:1 
  virtual to physical mapping page table.
  If BootScriptExector driver will not run in 64-bit mode, this function will do nothing. 
  
  @return  the 1:1 Virtual to Physical identity mapping page table base address. 

**/
EFI_PHYSICAL_ADDRESS
S3CreateIdentityMappingPageTables (
  VOID
  )
{  
  if (FeaturePcdGet (PcdDxeIplSwitchToLongMode)) {
    UINT32                                        RegEax;
    UINT32                                        RegEdx;
    UINT8                                         PhysicalAddressBits;
    UINT32                                        NumberOfPml4EntriesNeeded;
    UINT32                                        NumberOfPdpEntriesNeeded;
    EFI_PHYSICAL_ADDRESS                          S3NvsPageTableAddress;
    UINTN                                         TotalPageTableSize;
    VOID                                          *Hob;
    BOOLEAN                                       Page1GSupport;

    Page1GSupport = FALSE;
    if (PcdGetBool(PcdUse1GPageTable)) {
      AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
      if (RegEax >= 0x80000001) {
        AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx);
        if ((RegEdx & BIT26) != 0) {
          Page1GSupport = TRUE;
        }
      }
    }

    //
    // Get physical address bits supported.
    //
    Hob = GetFirstHob (EFI_HOB_TYPE_CPU);
    if (Hob != NULL) {
      PhysicalAddressBits = ((EFI_HOB_CPU *) Hob)->SizeOfMemorySpace;
    } else {
      AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
      if (RegEax >= 0x80000008) {
        AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);
        PhysicalAddressBits = (UINT8) RegEax;
      } else {
        PhysicalAddressBits = 36;
      }
    }
    
    //
    // IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses.
    //
    ASSERT (PhysicalAddressBits <= 52);
    if (PhysicalAddressBits > 48) {
      PhysicalAddressBits = 48;
    }

    //
    // Calculate the table entries needed.
    //
    if (PhysicalAddressBits <= 39 ) {
      NumberOfPml4EntriesNeeded = 1;
      NumberOfPdpEntriesNeeded = (UINT32)LShiftU64 (1, (PhysicalAddressBits - 30));
    } else {
      NumberOfPml4EntriesNeeded = (UINT32)LShiftU64 (1, (PhysicalAddressBits - 39));
      NumberOfPdpEntriesNeeded = 512;
    }

    //
    // We need calculate whole page size then allocate once, because S3 restore page table does not know each page in Nvs.
    //
    if (!Page1GSupport) {
      TotalPageTableSize = (UINTN)(1 + NumberOfPml4EntriesNeeded + NumberOfPml4EntriesNeeded * NumberOfPdpEntriesNeeded);
    } else {
      TotalPageTableSize = (UINTN)(1 + NumberOfPml4EntriesNeeded);
    }
    DEBUG ((EFI_D_ERROR, "TotalPageTableSize - %x pages\n", TotalPageTableSize));

    //
    // By architecture only one PageMapLevel4 exists - so lets allocate storage for it.
    //
    S3NvsPageTableAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocateMemoryBelow4G (EfiReservedMemoryType, EFI_PAGES_TO_SIZE(TotalPageTableSize));
    ASSERT (S3NvsPageTableAddress != 0);
    return S3NvsPageTableAddress;
  } else {
    //
    // If DXE is running 32-bit mode, no need to establish page table.
    //
    return  (EFI_PHYSICAL_ADDRESS) 0;  
  }
}
示例#9
0
/*---------------------------------------------------------------------------------------*/
EFI_PHYSICAL_ADDRESS
CreateIdentityMappingPageTables (
  IN       EFI_PHYSICAL_ADDRESS  PageTablesAddress
  )
{
  UINT32                                        RegEax;
  UINT32                                        RegEdx;
  UINT8                                         PhysicalAddressBits;
  EFI_PHYSICAL_ADDRESS                          PageAddress;
  UINTN                                         IndexOfPml4Entries;
  UINTN                                         IndexOfPdpEntries;
  UINTN                                         IndexOfPageDirectoryEntries;
  UINT32                                        NumberOfPml4EntriesNeeded;
  UINT32                                        NumberOfPdpEntriesNeeded;
  PAGE_MAP_AND_DIRECTORY_POINTER                *PageMapLevel4Entry;
  PAGE_MAP_AND_DIRECTORY_POINTER                *PageMap;
  PAGE_MAP_AND_DIRECTORY_POINTER                *PageDirectoryPointerEntry;
  PAGE_TABLE_ENTRY                              *PageDirectoryEntry;
  UINTN                                         TotalPagesNum;
  UINTN                                         BigPageAddress;
  VOID                                          *Hob;
  BOOLEAN                                       Page1GSupport;
  PAGE_TABLE_1G_ENTRY                           *PageDirectory1GEntry;

  // Always force a 1GB Page Table in X64 SMM otherwise page tables can get
  // very large.  At this time the processor supports 48 bits which makes
  // the 1GB page table 2MB + 64KB in size. 2MB page table would be > 256MB
  Page1GSupport = FALSE;
  AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
  if (RegEax >= 0x80000001) {
    AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx);
    if ((RegEdx & BIT26) != 0) {
      Page1GSupport = TRUE;
    }
  }
  if (!Page1GSupport) {
    DEBUG ((DEBUG_ERROR, "SmmFoundation driver requires 1 GB Page table support.\n"));
    ASSERT (FALSE);
  }

  //
  // Get physical address bits supported.
  //
  Hob = GetFirstHob (EFI_HOB_TYPE_CPU);
  if (Hob != NULL) {
    PhysicalAddressBits = ((EFI_HOB_CPU *) Hob)->SizeOfMemorySpace;
  } else {
    AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
    if (RegEax >= 0x80000008) {
      AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);
      PhysicalAddressBits = (UINT8) RegEax;
    } else {
      PhysicalAddressBits = 36;
    }
  }

  //
  // IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses.
  //
  ASSERT (PhysicalAddressBits <= 52);
  if (PhysicalAddressBits > 48) {
    PhysicalAddressBits = 48;
  }

  //
  // Calculate the table entries needed.
  //
  if (PhysicalAddressBits <= 39 ) {
    NumberOfPml4EntriesNeeded = 1;
    NumberOfPdpEntriesNeeded = (UINT32)LShiftU64 (1, (PhysicalAddressBits - 30));
  } else {
    NumberOfPml4EntriesNeeded = (UINT32)LShiftU64 (1, (PhysicalAddressBits - 39));
    NumberOfPdpEntriesNeeded = 512;
  }

  //
  // Pre-allocate big pages to avoid later allocations.
  //
  if (!Page1GSupport) {
    TotalPagesNum = (NumberOfPdpEntriesNeeded + 1) * NumberOfPml4EntriesNeeded + 1;
  } else {
    TotalPagesNum = NumberOfPml4EntriesNeeded + 1;
  }
  BigPageAddress = (UINTN) PageTablesAddress;

  //
  // By architecture only one PageMapLevel4 exists - so lets allocate storage for it.
  //
  PageMap         = (VOID *) BigPageAddress;
  BigPageAddress += SIZE_4KB;

  PageMapLevel4Entry = PageMap;
  PageAddress        = 0;
  for (IndexOfPml4Entries = 0; IndexOfPml4Entries < NumberOfPml4EntriesNeeded; IndexOfPml4Entries++, PageMapLevel4Entry++) {
    //
    // Each PML4 entry points to a page of Page Directory Pointer entires.
    // So lets allocate space for them and fill them in in the IndexOfPdpEntries loop.
    //
    PageDirectoryPointerEntry = (VOID *) BigPageAddress;
    BigPageAddress += SIZE_4KB;

    //
    // Make a PML4 Entry
    //
    PageMapLevel4Entry->Uint64 = (UINT64) (UINTN)PageDirectoryPointerEntry;
    PageMapLevel4Entry->Bits.ReadWrite = 1;
    PageMapLevel4Entry->Bits.Present = 1;

    if (Page1GSupport) {
      PageDirectory1GEntry = (VOID *) PageDirectoryPointerEntry;

      for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectory1GEntry++, PageAddress += SIZE_1GB) {
        //
        // Fill in the Page Directory entries
        //
        PageDirectory1GEntry->Uint64 = (UINT64)PageAddress;
        PageDirectory1GEntry->Bits.ReadWrite = 1;
        PageDirectory1GEntry->Bits.Present = 1;
        PageDirectory1GEntry->Bits.MustBe1 = 1;
      }
    } else {
      for (IndexOfPdpEntries = 0; IndexOfPdpEntries < NumberOfPdpEntriesNeeded; IndexOfPdpEntries++, PageDirectoryPointerEntry++) {
        //
        // Each Directory Pointer entries points to a page of Page Directory entires.
        // So allocate space for them and fill them in in the IndexOfPageDirectoryEntries loop.
        //
        PageDirectoryEntry = (VOID *) BigPageAddress;
        BigPageAddress += SIZE_4KB;

        //
        // Fill in a Page Directory Pointer Entries
        //
        PageDirectoryPointerEntry->Uint64 = (UINT64) (UINTN)PageDirectoryEntry;
        PageDirectoryPointerEntry->Bits.ReadWrite = 1;
        PageDirectoryPointerEntry->Bits.Present = 1;

        for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectoryEntry++, PageAddress += SIZE_2MB) {
          //
          // Fill in the Page Directory entries
          //
          PageDirectoryEntry->Uint64 = (UINT64)PageAddress;
          PageDirectoryEntry->Bits.ReadWrite = 1;
          PageDirectoryEntry->Bits.Present = 1;
          PageDirectoryEntry->Bits.MustBe1 = 1;
        }
      }

      for (; IndexOfPdpEntries < 512; IndexOfPdpEntries++, PageDirectoryPointerEntry++) {
        ZeroMem (
          PageDirectoryPointerEntry,
          sizeof (PAGE_MAP_AND_DIRECTORY_POINTER)
          );
      }
    }
  }

  //
  // For the PML4 entries we are not using fill in a null entry.
  //
  for (; IndexOfPml4Entries < 512; IndexOfPml4Entries++, PageMapLevel4Entry++) {
    ZeroMem (
      PageMapLevel4Entry,
      sizeof (PAGE_MAP_AND_DIRECTORY_POINTER)
      );
  }

  return ((EFI_PHYSICAL_ADDRESS)BigPageAddress);
}
示例#10
0
/**
  DxeSmmReadyToLock Protocol notification event handler.
  We reuse S3 ACPI NVS reserved memory to do capsule process
  after reset.

  @param[in] Event    Event whose notification function is being invoked.
  @param[in] Context  Pointer to the notification function's context.
**/
VOID
EFIAPI
DxeSmmReadyToLockNotification (
  IN EFI_EVENT  Event,
  IN VOID       *Context
  )
{
  EFI_STATUS                    Status;
  VOID                          *DxeSmmReadyToLock;
  UINTN                         VarSize;
  EFI_PHYSICAL_ADDRESS          TempAcpiS3Context;
  ACPI_S3_CONTEXT               *AcpiS3Context;
  EFI_CAPSULE_LONG_MODE_BUFFER  LongModeBuffer;
  UINTN                         TotalPagesNum;
  UINT8                         PhysicalAddressBits;
  VOID                          *Hob;
  UINT32                        NumberOfPml4EntriesNeeded;
  UINT32                        NumberOfPdpEntriesNeeded;
  BOOLEAN                       LockBoxFound;

  Status = gBS->LocateProtocol (
                  &gEfiDxeSmmReadyToLockProtocolGuid,
                  NULL,
                  &DxeSmmReadyToLock
                  );
  if (EFI_ERROR (Status)) {
    return ;
  }

  //
  // Get the ACPI NVS pages reserved by AcpiS3Save
  //
  LockBoxFound = FALSE;
  VarSize = sizeof (EFI_PHYSICAL_ADDRESS);
  Status = RestoreLockBox (
             &gEfiAcpiVariableGuid,
             &TempAcpiS3Context,
             &VarSize
             );
  if (!EFI_ERROR (Status)) {
    AcpiS3Context = (ACPI_S3_CONTEXT *)(UINTN)TempAcpiS3Context;
    ASSERT (AcpiS3Context != NULL);
    
    Status = RestoreLockBox (
               &gEfiAcpiS3ContextGuid,
               NULL,
               NULL
               );
    if (!EFI_ERROR (Status)) {
      LongModeBuffer.PageTableAddress = AcpiS3Context->S3NvsPageTableAddress;
      LongModeBuffer.StackBaseAddress = AcpiS3Context->BootScriptStackBase;
      LongModeBuffer.StackSize        = AcpiS3Context->BootScriptStackSize;
      LockBoxFound                    = TRUE;
    }
  }
  
  if (!LockBoxFound) {
    //
    // Page table base address and stack base address can not be found in lock box,
    // allocate both here. 
    //

    //
    // Get physical address bits supported from CPU HOB.
    //
    PhysicalAddressBits = 36;
    
    Hob = GetFirstHob (EFI_HOB_TYPE_CPU);
    if (Hob != NULL) {
      PhysicalAddressBits = ((EFI_HOB_CPU *) Hob)->SizeOfMemorySpace;
    }
    
    //
    // IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses.
    //
    ASSERT (PhysicalAddressBits <= 52);
    if (PhysicalAddressBits > 48) {
      PhysicalAddressBits = 48;
    }
    
    //
    // Calculate page table size and allocate memory for it.
    //
    if (PhysicalAddressBits <= 39 ) {
      NumberOfPml4EntriesNeeded = 1;
      NumberOfPdpEntriesNeeded =  1 << (PhysicalAddressBits - 30);
    } else {
      NumberOfPml4EntriesNeeded = 1 << (PhysicalAddressBits - 39);
      NumberOfPdpEntriesNeeded = 512;
    }
    
    TotalPagesNum = (NumberOfPdpEntriesNeeded + 1) * NumberOfPml4EntriesNeeded + 1;
    LongModeBuffer.PageTableAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocateAcpiNvsMemoryBelow4G (EFI_PAGES_TO_SIZE (TotalPagesNum));
    ASSERT (LongModeBuffer.PageTableAddress != 0);
    
    //
    // Allocate stack
    //
    LongModeBuffer.StackSize        = PcdGet32 (PcdCapsulePeiLongModeStackSize);
    LongModeBuffer.StackBaseAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocateAcpiNvsMemoryBelow4G (PcdGet32 (PcdCapsulePeiLongModeStackSize));
    ASSERT (LongModeBuffer.StackBaseAddress != 0);
  }

  Status = gRT->SetVariable (
                  EFI_CAPSULE_LONG_MODE_BUFFER_NAME,
                  &gEfiCapsuleVendorGuid,
                  EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS,
                  sizeof (EFI_CAPSULE_LONG_MODE_BUFFER),
                  &LongModeBuffer
                  );
  ASSERT_EFI_ERROR (Status);

  //
  // Close event, so it will not be invoked again.
  //
  gBS->CloseEvent (Event);

  return ;
}
示例#11
0
EFI_STATUS
EFIAPI
InitAcpiSmmPlatform (
  IN EFI_HANDLE        ImageHandle,
  IN EFI_SYSTEM_TABLE  *SystemTable
  )
/*++

Routine Description:

  Initializes the SMM S3 Handler Driver.

Arguments:

  ImageHandle  -  The image handle of Sleep State Wake driver.
  SystemTable  -  The starndard EFI system table.

Returns:

  EFI_OUT_OF_RESOURCES  -  Insufficient resources to complete function.
  EFI_SUCCESS           -  Function has completed successfully.
  Other                 -  Error occured during execution.

--*/
{
  EFI_STATUS                      Status;
  EFI_GLOBAL_NVS_AREA_PROTOCOL    *AcpiNvsProtocol = NULL;
  UINTN                           MemoryLength;
  EFI_PEI_HOB_POINTERS            Hob;

  Status = gBS->LocateProtocol (
                  &gEfiGlobalNvsAreaProtocolGuid,
                  NULL,
                  (VOID **) &AcpiNvsProtocol
                  );
  ASSERT_EFI_ERROR (Status);

  mAcpiSmm.BootScriptSaved  = 0;

  mPlatformType = (EFI_PLATFORM_TYPE)PcdGet16 (PcdPlatformType);

  //
  // Calculate the system memory length by memory hobs
  //
  MemoryLength  = 0x100000;
  Hob.Raw = GetFirstHob (EFI_HOB_TYPE_RESOURCE_DESCRIPTOR);
  ASSERT (Hob.Raw != NULL);
  while ((Hob.Raw != NULL) && (!END_OF_HOB_LIST (Hob))) {
    if (Hob.ResourceDescriptor->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY) {
      //
      // Skip the memory region below 1MB
      //
      if (Hob.ResourceDescriptor->PhysicalStart >= 0x100000) {
        MemoryLength += (UINTN)Hob.ResourceDescriptor->ResourceLength;
      }
    }
    Hob.Raw = GET_NEXT_HOB (Hob);
    Hob.Raw = GetNextHob (EFI_HOB_TYPE_RESOURCE_DESCRIPTOR, Hob.Raw);
  }

  ReservedS3Memory(MemoryLength);

  //
  // Locate and Register to Parent driver
  //
  Status = RegisterToDispatchDriver ();
  ASSERT_EFI_ERROR (Status);

  return EFI_SUCCESS;
}
示例#12
0
/**
  Allocates and fills in the Page Directory and Page Table Entries to
  establish a 1:1 Virtual to Physical mapping.

  @param  NumberOfProcessorPhysicalAddressBits  Number of processor address bits 
                                                to use. Limits the number of page 
                                                table entries  to the physical 
                                                address space. 

  @return The address of 4 level page map.

**/
UINTN
CreateIdentityMappingPageTables (
  VOID
  )
{  
  UINT8                                         PhysicalAddressBits;
  EFI_PHYSICAL_ADDRESS                          PageAddress;
  UINTN                                         IndexOfPml4Entries;
  UINTN                                         IndexOfPdpEntries;
  UINTN                                         IndexOfPageDirectoryEntries;
  UINT32                                        NumberOfPml4EntriesNeeded;
  UINT32                                        NumberOfPdpEntriesNeeded;
  PAGE_MAP_AND_DIRECTORY_POINTER                *PageMapLevel4Entry;
  PAGE_MAP_AND_DIRECTORY_POINTER                *PageMap;
  PAGE_MAP_AND_DIRECTORY_POINTER                *PageDirectoryPointerEntry;
  PAGE_TABLE_ENTRY                              *PageDirectoryEntry;
  UINTN                                         TotalPagesNum;
  UINTN                                         BigPageAddress;
  VOID                                          *Hob;

  //
  // Get physical address bits supported from CPU HOB.
  //
  PhysicalAddressBits = 36;
  
  Hob = GetFirstHob (EFI_HOB_TYPE_CPU);
  if (Hob != NULL) {
    PhysicalAddressBits = ((EFI_HOB_CPU *) Hob)->SizeOfMemorySpace;
  }

  //
  // IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses.
  //
  ASSERT (PhysicalAddressBits <= 52);
  if (PhysicalAddressBits > 48) {
    PhysicalAddressBits = 48;
  }

  //
  // Calculate the table entries needed.
  //
  if (PhysicalAddressBits <= 39 ) {
    NumberOfPml4EntriesNeeded = 1;
    NumberOfPdpEntriesNeeded =  1 << (PhysicalAddressBits - 30);
  } else {
    NumberOfPml4EntriesNeeded = 1 << (PhysicalAddressBits - 39);
    NumberOfPdpEntriesNeeded = 512;
  }

  //
  // Pre-allocate big pages to avoid later allocations. 
  //
  TotalPagesNum = (NumberOfPdpEntriesNeeded + 1) * NumberOfPml4EntriesNeeded + 1;
  BigPageAddress = (UINTN) AllocatePages (TotalPagesNum);
  ASSERT (BigPageAddress != 0);

  //
  // By architecture only one PageMapLevel4 exists - so lets allocate storage for it.
  //
  PageMap         = (VOID *) BigPageAddress;
  BigPageAddress += EFI_PAGE_SIZE;

  PageMapLevel4Entry = PageMap;
  PageAddress        = 0;
  for (IndexOfPml4Entries = 0; IndexOfPml4Entries < NumberOfPml4EntriesNeeded; IndexOfPml4Entries++, PageMapLevel4Entry++) {
    //
    // Each PML4 entry points to a page of Page Directory Pointer entires.
    // So lets allocate space for them and fill them in in the IndexOfPdpEntries loop.
    //
    PageDirectoryPointerEntry = (VOID *) BigPageAddress;
    BigPageAddress += EFI_PAGE_SIZE;

    //
    // Make a PML4 Entry
    //
    PageMapLevel4Entry->Uint64 = (UINT64)(UINTN)PageDirectoryPointerEntry;
    PageMapLevel4Entry->Bits.ReadWrite = 1;
    PageMapLevel4Entry->Bits.Present = 1;

    for (IndexOfPdpEntries = 0; IndexOfPdpEntries < NumberOfPdpEntriesNeeded; IndexOfPdpEntries++, PageDirectoryPointerEntry++) {
      //
      // Each Directory Pointer entries points to a page of Page Directory entires.
      // So allocate space for them and fill them in in the IndexOfPageDirectoryEntries loop.
      //       
      PageDirectoryEntry = (VOID *) BigPageAddress;
      BigPageAddress += EFI_PAGE_SIZE;

      //
      // Fill in a Page Directory Pointer Entries
      //
      PageDirectoryPointerEntry->Uint64 = (UINT64)(UINTN)PageDirectoryEntry;
      PageDirectoryPointerEntry->Bits.ReadWrite = 1;
      PageDirectoryPointerEntry->Bits.Present = 1;

      for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectoryEntry++, PageAddress += 0x200000) {
        //
        // Fill in the Page Directory entries
        //
        PageDirectoryEntry->Uint64 = (UINT64)PageAddress;
        PageDirectoryEntry->Bits.ReadWrite = 1;
        PageDirectoryEntry->Bits.Present = 1;
        PageDirectoryEntry->Bits.MustBe1 = 1;

      }
    }
  }

  //
  // For the PML4 entries we are not using fill in a null entry.
  // For now we just copy the first entry.
  //
  for (; IndexOfPml4Entries < 512; IndexOfPml4Entries++, PageMapLevel4Entry++) {
     CopyMem (
       PageMapLevel4Entry,
       PageMap,
       sizeof (PAGE_MAP_AND_DIRECTORY_POINTER)
       );
  }

  return (UINTN)PageMap;
}