void SGDFeedbackSolver<Dtype>::ComputeUpdateValue() {
  vector<shared_ptr<Blob<Dtype> > >& net_params = this->net_->params();
  vector<float>& net_params_lr = this->net_->params_lr();
  vector<float>& net_params_weight_decay = this->net_->params_weight_decay();
  // get the learning rate
  Dtype rate = GetLearningRate();
  if (this->param_.display() && this->iter_ % this->param_.display() == 0) {
    LOG(INFO) << "Iteration " << this->iter_ << ", lr = " << rate;
  }
  Dtype momentum = this->param_.momentum();
  Dtype weight_decay = this->param_.weight_decay();
  switch (Caffe::mode()) {
  case Caffe::CPU:
    for (int param_id = 0; param_id < net_params.size(); ++param_id) {
      // Compute the value to history, and then copy them to the blob's diff.
      Dtype local_rate = rate * net_params_lr[param_id];
      Dtype local_decay = weight_decay * net_params_weight_decay[param_id];
      caffe_cpu_axpby(net_params[param_id]->count(), local_rate,
          net_params[param_id]->cpu_diff(), momentum,
          history_[param_id]->mutable_cpu_data());
      if (local_decay) {
        // add weight decay
        caffe_axpy(net_params[param_id]->count(),
            local_decay * local_rate,
            net_params[param_id]->cpu_data(),
            history_[param_id]->mutable_cpu_data());
      }
      // copy
      caffe_copy(net_params[param_id]->count(),
          history_[param_id]->cpu_data(),
          net_params[param_id]->mutable_cpu_diff());
    }
    break;
  case Caffe::GPU:
    for (int param_id = 0; param_id < net_params.size(); ++param_id) {
      // Compute the value to history, and then copy them to the blob's diff.
      Dtype local_rate = rate * net_params_lr[param_id];
      Dtype local_decay = weight_decay * net_params_weight_decay[param_id];
      caffe_gpu_axpby(net_params[param_id]->count(), local_rate,
          net_params[param_id]->gpu_diff(), momentum,
          history_[param_id]->mutable_gpu_data());
      if (local_decay) {
        // add weight decay
        caffe_gpu_axpy(net_params[param_id]->count(),
            local_decay * local_rate,
            net_params[param_id]->gpu_data(),
            history_[param_id]->mutable_gpu_data());
      }
      // copy
      caffe_gpu_copy(net_params[param_id]->count(),
          history_[param_id]->gpu_data(),
          net_params[param_id]->mutable_gpu_diff());
    }
    break;
  default:
    LOG(FATAL) << "Unknown caffe mode: " << Caffe::mode();
  }
}
示例#2
0
void SGDSolver<Dtype>::ComputeUpdateValue() {
  vector<shared_ptr<Blob<Dtype> > >& net_params = this->net_->params();
  // get the learning rate
  Dtype rate = GetLearningRate();
  Dtype momentum = this->param_.momentum();
  Dtype weight_decay = this->param_.weight_decay();
  // LOG(ERROR) << "rate:" << rate << " momentum:" << momentum
  //     << " weight_decay:" << weight_decay;
  switch (Caffe::mode()) {
  case Caffe::CPU:
    for (size_t param_id = 0; param_id < net_params.size(); ++param_id) {
      // Compute the value to history, and then copy them to the blob's diff.
      caffe_axpby(net_params[param_id]->count(), rate,
          net_params[param_id]->cpu_diff(), momentum,
          history_[param_id]->mutable_cpu_data());
      if (weight_decay) {
        // add weight decay
        caffe_axpy(net_params[param_id]->count(), weight_decay * rate,
            net_params[param_id]->cpu_data(),
            history_[param_id]->mutable_cpu_data());
      }
      // copy
      caffe_copy(net_params[param_id]->count(),
          history_[param_id]->cpu_data(),
          net_params[param_id]->mutable_cpu_diff());
    }
    break;
  case Caffe::GPU:
    for (size_t param_id = 0; param_id < net_params.size(); ++param_id) {
      // Compute the value to history, and then copy them to the blob's diff.
      caffe_gpu_axpby(net_params[param_id]->count(), rate,
          net_params[param_id]->gpu_diff(), momentum,
          history_[param_id]->mutable_gpu_data());
      if (weight_decay) {
        // add weight decay
        caffe_gpu_axpy(net_params[param_id]->count(), weight_decay * rate,
            net_params[param_id]->gpu_data(),
            history_[param_id]->mutable_gpu_data());
      }
      // copy
      caffe_gpu_copy(net_params[param_id]->count(),
          history_[param_id]->gpu_data(),
          net_params[param_id]->mutable_gpu_diff());
    }
    break;
  default:
    LOG(FATAL) << "Unknown caffe mode: " << Caffe::mode();
  }
}
示例#3
0
void SGDSolver<Dtype>::ApplyUpdate() {
  Dtype rate = GetLearningRate();
  if (this->param_.display() && this->iter_ % this->param_.display() == 0) {
    LOG_IF(INFO, Caffe::root_solver()) << "Iteration " << this->iter_
        << ", lr = " << rate;
  }
  ClipGradients();
  for (int param_id = 0; param_id < this->net_->learnable_params().size();
       ++param_id) {
    Normalize(param_id);
    Regularize(param_id);
    ComputeUpdateValue(param_id, rate);
  }
  this->net_->Update();
}
示例#4
0
void SGDSolver<Dtype>::ApplyUpdate() {
  Dtype rate = GetLearningRate();
  if (this->param_.display() && this->iter_ % this->param_.display() == 0) {
    LOG_IF(INFO, Caffe::root_solver()) << "Iteration " << this->iter_
        << ", lr = " << rate;
  }
  ClipGradients();
  for (int param_id = 0; param_id < this->net_->learnable_params().size();
       ++param_id) {
    Normalize(param_id);
    Regularize(param_id);
    ComputeUpdateValue(param_id, rate);
  }
  this->net_->Update();

  // Increment the internal iter_ counter -- its value should always indicate
  // the number of times the weights have been updated.
  ++this->iter_;
}
示例#5
0
文件: solver.cpp 项目: VikingMew/dec
void SGDSolver<Dtype>::ComputeUpdateValue() {
  vector<shared_ptr<Blob<Dtype> > >& net_params = this->net_->params();
  vector<float>& net_params_lr = this->net_->params_lr();
  vector<float>& net_params_weight_decay = this->net_->params_weight_decay();
  // get the learning rate
  Dtype rate = GetLearningRate();
  Dtype momentum = this->param_.momentum();
  if (this->param_.momentum_burnin() > this->iter_) {
    momentum = momentum * this->iter_ / this->param_.momentum_burnin();
  }
  if (this->param_.display() && this->iter_ % this->param_.display() == 0) {
    LOG(INFO) << "Iteration " << this->iter_ << ", lr = " << rate << ", mom = " << momentum;
  }
  Dtype weight_decay = this->param_.weight_decay();
  string regularization_type = this->param_.regularization_type();
  switch (Caffe::mode()) {
  case Caffe::CPU:
    for (int param_id = 0; param_id < net_params.size(); ++param_id) {
      // Compute the value to history, and then copy them to the blob's diff.
      Dtype local_rate = rate * net_params_lr[param_id];
      Dtype local_decay = weight_decay * net_params_weight_decay[param_id];

      if (local_decay) {
        if (regularization_type == "L2") {
          // add weight decay
          caffe_axpy(net_params[param_id]->count(),
              local_decay,
              net_params[param_id]->cpu_data(),
              net_params[param_id]->mutable_cpu_diff());
        } else if (regularization_type == "L1") {
          caffe_cpu_sign(net_params[param_id]->count(),
              net_params[param_id]->cpu_data(),
              temp_[param_id]->mutable_cpu_data());
          caffe_axpy(net_params[param_id]->count(),
              local_decay,
              temp_[param_id]->cpu_data(),
              net_params[param_id]->mutable_cpu_diff());
        } else {
          LOG(FATAL) << "Unknown regularization type: " << regularization_type;
        }
      }

      caffe_cpu_axpby(net_params[param_id]->count(), local_rate,
                net_params[param_id]->cpu_diff(), momentum,
                history_[param_id]->mutable_cpu_data());
      // copy
      caffe_copy(net_params[param_id]->count(),
          history_[param_id]->cpu_data(),
          net_params[param_id]->mutable_cpu_diff());
    }
    break;
  case Caffe::GPU:
#ifndef CPU_ONLY
    for (int param_id = 0; param_id < net_params.size(); ++param_id) {
      // Compute the value to history, and then copy them to the blob's diff.
      Dtype local_rate = rate * net_params_lr[param_id];
      Dtype local_decay = weight_decay * net_params_weight_decay[param_id];

      if (local_decay) {
        if (regularization_type == "L2") {
          // add weight decay
          caffe_gpu_axpy(net_params[param_id]->count(),
              local_decay,
              net_params[param_id]->gpu_data(),
              net_params[param_id]->mutable_gpu_diff());
        } else if (regularization_type == "L1") {
          caffe_gpu_sign(net_params[param_id]->count(),
              net_params[param_id]->gpu_data(),
              temp_[param_id]->mutable_gpu_data());
          caffe_gpu_axpy(net_params[param_id]->count(),
              local_decay,
              temp_[param_id]->gpu_data(),
              net_params[param_id]->mutable_gpu_diff());
        } else {
          LOG(FATAL) << "Unknown regularization type: " << regularization_type;
        }
      }

      caffe_gpu_axpby(net_params[param_id]->count(), local_rate,
                net_params[param_id]->gpu_diff(), momentum,
                history_[param_id]->mutable_gpu_data());
      // copy
      caffe_copy(net_params[param_id]->count(),
          history_[param_id]->gpu_data(),
          net_params[param_id]->mutable_gpu_diff());
    }
#else
    NO_GPU;
#endif
    break;
  default:
    LOG(FATAL) << "Unknown caffe mode: " << Caffe::mode();
  }
}
示例#6
0
void SGDSolver<Dtype>::ComputeUpdateValue() {
  vector<shared_ptr<Blob<Dtype> > >& net_params = this->net_->params();
  vector<float>& net_params_lr = this->net_->params_lr();
  vector<string>& net_params_lr_policy = this->net_->params_lr_policy();
  vector<float>& net_params_weight_decay = this->net_->params_weight_decay();
  // get the learning rate
  Dtype rate = GetLearningRate();
  if (this->param_.display() && this->iter_ % this->param_.display() == 0) {
    LOG(INFO) << "Iteration " << this->iter_ << ", lr = " << rate;
  }
  Dtype momentum = this->param_.momentum();
  Dtype weight_decay = this->param_.weight_decay();
  switch (Caffe::mode()) {
  case Caffe::CPU:
    for (int param_id = 0; param_id < net_params.size(); ++param_id) {
      // Compute the value to history, and then copy them to the blob's diff.
      Dtype local_rate = rate * net_params_lr[param_id];
      Dtype local_decay = weight_decay * net_params_weight_decay[param_id];
      caffe_axpby(net_params[param_id]->count(), local_rate,
          net_params[param_id]->cpu_diff(), momentum,
          history_[param_id]->mutable_cpu_data());
      if (local_decay) {
        // add weight decay
        caffe_axpy(net_params[param_id]->count(),
            local_decay * local_rate,
            net_params[param_id]->cpu_data(),
            history_[param_id]->mutable_cpu_data());
      }
      // copy
      caffe_copy(net_params[param_id]->count(),
          history_[param_id]->cpu_data(),
          net_params[param_id]->mutable_cpu_diff());
    }
    break;
  case Caffe::GPU:
    //LOG(INFO) << "Installing local lr policy";
    for (int param_id = 0; param_id < net_params.size(); ++param_id) {
      // Compute the value to history, and then copy them to the blob's diff.
      Dtype local_rate;
      if(net_params_lr_policy[param_id] == "naive_inv") {
           local_rate = rate * net_params_lr[param_id] * Dtype(1.0)/(this->iter_/500 + 1);
           //LOG(INFO) << "rate: " << rate << " local rate: " << net_params_lr[param_id] << " inv coeff: " << Dtype(1.0)/(this->iter_/500 + 1) << " hehe: " << (this->iter_/500 + 1);      
      }
      else if (net_params_lr_policy[param_id] == "power_inv") { 
           local_rate = rate * net_params_lr[param_id] * pow(Dtype(1.0) + this->param_.localgamma() * this->iter_, - this->param_.localpower());
           //LOG(INFO) << "local rate: " << local_rate;
      }
      else if (net_params_lr_policy[param_id] == "step") {
          int current_step = this->iter_ / this->param_.localstepsize();
          local_rate = rate * net_params_lr[param_id] *
             pow(this->param_.localgamma(), current_step);
      }
      else if (net_params_lr_policy[param_id] == "nothing") 
           local_rate = rate * net_params_lr[param_id];
      else LOG(FATAL) << "Unknown caffe local policy: " << net_params_lr_policy[param_id]; 
      
      Dtype local_decay = weight_decay * net_params_weight_decay[param_id];
      caffe_gpu_axpby(net_params[param_id]->count(), local_rate,
          net_params[param_id]->gpu_diff(), momentum,
          history_[param_id]->mutable_gpu_data());
      if (local_decay) {
        // add weight decay
        caffe_gpu_axpy(net_params[param_id]->count(),
            local_decay * local_rate,
            net_params[param_id]->gpu_data(),
            history_[param_id]->mutable_gpu_data());
      }
      // copy
      caffe_gpu_copy(net_params[param_id]->count(),
          history_[param_id]->gpu_data(),
          net_params[param_id]->mutable_gpu_diff());
    }
    break;
  default:
    LOG(FATAL) << "Unknown caffe mode: " << Caffe::mode();
  }
}