/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S e p a r a t e I m a g e s % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % SeparateImages() returns a separate grayscale image for each channel % specified. % % The format of the SeparateImages method is: % % Image *SeparateImages(const Image *image,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *SeparateImages(const Image *image,ExceptionInfo *exception) { Image *images, *separate_image; register ssize_t i; assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); images=NewImageList(); for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel=GetPixelChannelChannel(image,i); PixelTrait traits=GetPixelChannelTraits(image,channel); if ((traits == UndefinedPixelTrait) || ((traits & UpdatePixelTrait) == 0)) continue; separate_image=SeparateImage(image,(ChannelType) (1 << channel),exception); if (separate_image != (Image *) NULL) AppendImageToList(&images,separate_image); } if (images == (Image *) NULL) images=SeparateImage(image,UndefinedChannel,exception); return(images); }
static void vips_magick7_print_traits( Image *image ) { static const int trait_bits[] = { CopyPixelTrait, UpdatePixelTrait, BlendPixelTrait }; static const char *trait_names[] = { "CopyPixelTrait", "UpdatePixelTrait", "BlendPixelTrait" }; int b; int i; printf( "vips_magick7_print_traits: channel traits:\n" ); for( b = 0; b < GetPixelChannels( image ); b++ ) { PixelChannel channel = GetPixelChannelChannel( image, b ); PixelTrait traits = GetPixelChannelTraits( image, channel ); printf( "\t%d) ", b ); for( i = 0; i < VIPS_NUMBER( trait_bits ); i++ ) if( traits & trait_bits[i] ) printf( "%s ", trait_names[i] ); if( traits == 0 ) printf( "undefined" ); printf( "\n" ); } }
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % G e t O n e C a c h e V i e w V i r t u a l P i x e l % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % GetOneCacheViewVirtualPixel() returns a single pixel at the specified (x,y) % location. The image background color is returned if an error occurs. If % you plan to modify the pixel, use GetOneCacheViewAuthenticPixel() instead. % % The format of the GetOneCacheViewVirtualPixel method is: % % MagickBooleanType GetOneCacheViewVirtualPixel( % const CacheView *cache_view,const ssize_t x,const ssize_t y, % Quantum *pixel,ExceptionInfo *exception) % % A description of each parameter follows: % % o cache_view: the cache view. % % o x,y: These values define the offset of the pixel. % % o pixel: return a pixel at the specified (x,y) location. % % o exception: return any errors or warnings in this structure. % */ MagickExport MagickBooleanType GetOneCacheViewVirtualPixel( const CacheView *cache_view,const ssize_t x,const ssize_t y,Quantum *pixel, ExceptionInfo *exception) { const int id = GetOpenMPThreadId(); register const Quantum *magick_restrict p; register ssize_t i; assert(cache_view != (CacheView *) NULL); assert(cache_view->signature == MagickCoreSignature); assert(id < (int) cache_view->number_threads); (void) memset(pixel,0,MaxPixelChannels*sizeof(*pixel)); p=GetVirtualPixelsFromNexus(cache_view->image, cache_view->virtual_pixel_method,x,y,1,1,cache_view->nexus_info[id], exception); if (p == (const Quantum *) NULL) { PixelInfo background_color; background_color=cache_view->image->background_color; pixel[RedPixelChannel]=ClampToQuantum(background_color.red); pixel[GreenPixelChannel]=ClampToQuantum(background_color.green); pixel[BluePixelChannel]=ClampToQuantum(background_color.blue); pixel[BlackPixelChannel]=ClampToQuantum(background_color.black); pixel[AlphaPixelChannel]=ClampToQuantum(background_color.alpha); return(MagickFalse); } for (i=0; i < (ssize_t) GetPixelChannels(cache_view->image); i++) { PixelChannel channel=GetPixelChannelChannel(cache_view->image,i); pixel[channel]=p[i]; } return(MagickTrue); }
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S e t I m a g e D e p t h % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % SetImageDepth() sets the depth of the image. % % The format of the SetImageDepth method is: % % MagickBooleanType SetImageDepth(Image *image,const size_t depth, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o channel: the channel. % % o depth: the image depth. % % o exception: return any errors or warnings in this structure. % */ MagickExport MagickBooleanType SetImageDepth(Image *image, const size_t depth,ExceptionInfo *exception) { CacheView *image_view; MagickBooleanType status; QuantumAny range; ssize_t y; assert(image != (Image *) NULL); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"..."); assert(image->signature == MagickSignature); if (depth >= MAGICKCORE_QUANTUM_DEPTH) { image->depth=depth; return(MagickTrue); } range=GetQuantumRange(depth); if (image->storage_class == PseudoClass) { register ssize_t i; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) \ magick_threads(image,image,1,1) #endif for (i=0; i < (ssize_t) image->colors; i++) { if ((GetPixelRedTraits(image) & UpdatePixelTrait) != 0) image->colormap[i].red=(double) ScaleAnyToQuantum(ScaleQuantumToAny( ClampToQuantum(image->colormap[i].red),range),range); if ((GetPixelGreenTraits(image) & UpdatePixelTrait) != 0) image->colormap[i].green=(double) ScaleAnyToQuantum(ScaleQuantumToAny( ClampToQuantum(image->colormap[i].green),range),range); if ((GetPixelBlueTraits(image) & UpdatePixelTrait) != 0) image->colormap[i].blue=(double) ScaleAnyToQuantum(ScaleQuantumToAny( ClampToQuantum(image->colormap[i].blue),range),range); if ((GetPixelAlphaTraits(image) & UpdatePixelTrait) != 0) image->colormap[i].alpha=(double) ScaleAnyToQuantum(ScaleQuantumToAny( ClampToQuantum(image->colormap[i].alpha),range),range); } } status=MagickTrue; image_view=AcquireAuthenticCacheView(image,exception); #if !defined(MAGICKCORE_HDRI_SUPPORT) if (QuantumRange <= MaxMap) { Quantum *depth_map; register ssize_t i; /* Scale pixels to desired (optimized with depth map). */ depth_map=(Quantum *) AcquireQuantumMemory(MaxMap+1,sizeof(*depth_map)); if (depth_map == (Quantum *) NULL) ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed"); for (i=0; i <= (ssize_t) MaxMap; i++) depth_map[i]=ScaleAnyToQuantum(ScaleQuantumToAny((Quantum) i,range), range); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) \ magick_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register ssize_t x; register Quantum *restrict q; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1, exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { register ssize_t i; if (GetPixelReadMask(image,q) == 0) { q+=GetPixelChannels(image); continue; } for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel; PixelTrait traits; channel=GetPixelChannelChannel(image,i); traits=GetPixelChannelTraits(image,channel); if ((traits == UndefinedPixelTrait) || (channel == IndexPixelChannel) || (channel == ReadMaskPixelChannel)) continue; q[i]=depth_map[ScaleQuantumToMap(q[i])]; } q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) { status=MagickFalse; continue; } } image_view=DestroyCacheView(image_view); depth_map=(Quantum *) RelinquishMagickMemory(depth_map); if (status != MagickFalse) image->depth=depth; return(status); }
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % G e t I m a g e D e p t h % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % GetImageDepth() returns the depth of a particular image channel. % % The format of the GetImageDepth method is: % % size_t GetImageDepth(const Image *image,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o exception: return any errors or warnings in this structure. % */ MagickExport size_t GetImageDepth(const Image *image,ExceptionInfo *exception) { CacheView *image_view; MagickBooleanType status; register ssize_t id; size_t *current_depth, depth, number_threads; ssize_t y; /* Compute image depth. */ assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); number_threads=(size_t) GetMagickResourceLimit(ThreadResource); current_depth=(size_t *) AcquireQuantumMemory(number_threads, sizeof(*current_depth)); if (current_depth == (size_t *) NULL) ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed"); status=MagickTrue; for (id=0; id < (ssize_t) number_threads; id++) current_depth[id]=1; if ((image->storage_class == PseudoClass) && (image->alpha_trait != BlendPixelTrait)) { register ssize_t i; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) \ if ((image->colors) > 256) \ num_threads(GetMagickResourceLimit(ThreadResource)) #endif for (i=0; i < (ssize_t) image->colors; i++) { const int id = GetOpenMPThreadId(); if (status == MagickFalse) continue; while (current_depth[id] < MAGICKCORE_QUANTUM_DEPTH) { MagickStatusType status; QuantumAny range; status=0; range=GetQuantumRange(current_depth[id]); if ((GetPixelRedTraits(image) & UpdatePixelTrait) != 0) status|=ClampToQuantum(image->colormap[i].red) != ScaleAnyToQuantum(ScaleQuantumToAny(ClampToQuantum( image->colormap[i].red),range),range); if ((GetPixelGreenTraits(image) & UpdatePixelTrait) != 0) status|=ClampToQuantum(image->colormap[i].green) != ScaleAnyToQuantum(ScaleQuantumToAny(ClampToQuantum( image->colormap[i].green),range),range); if ((GetPixelBlueTraits(image) & UpdatePixelTrait) != 0) status|=ClampToQuantum(image->colormap[i].blue) != ScaleAnyToQuantum(ScaleQuantumToAny(ClampToQuantum( image->colormap[i].blue),range),range); if (status == 0) break; current_depth[id]++; } } depth=current_depth[0]; for (id=1; id < (ssize_t) number_threads; id++) if (depth < current_depth[id]) depth=current_depth[id]; current_depth=(size_t *) RelinquishMagickMemory(current_depth); return(depth); } image_view=AcquireVirtualCacheView(image,exception); #if !defined(MAGICKCORE_HDRI_SUPPORT) if (QuantumRange <= MaxMap) { register ssize_t i; size_t *depth_map; /* Scale pixels to desired (optimized with depth map). */ depth_map=(size_t *) AcquireQuantumMemory(MaxMap+1,sizeof(*depth_map)); if (depth_map == (size_t *) NULL) ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed"); for (i=0; i <= (ssize_t) MaxMap; i++) { unsigned int depth; for (depth=1; depth < MAGICKCORE_QUANTUM_DEPTH; depth++) { Quantum pixel; QuantumAny range; range=GetQuantumRange(depth); pixel=(Quantum) i; if (pixel == ScaleAnyToQuantum(ScaleQuantumToAny(pixel,range),range)) break; } depth_map[i]=depth; } #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) \ magick_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { const int id = GetOpenMPThreadId(); register const Quantum *restrict p; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) continue; for (x=0; x < (ssize_t) image->columns; x++) { register ssize_t i; if (GetPixelReadMask(image,p) == 0) { p+=GetPixelChannels(image); continue; } for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel=GetPixelChannelChannel(image,i); PixelTrait traits=GetPixelChannelTraits(image,channel); if ((traits == UndefinedPixelTrait) || (channel == IndexPixelChannel) || (channel == ReadMaskPixelChannel) || (channel == MetaPixelChannel)) continue; if (depth_map[ScaleQuantumToMap(p[i])] > current_depth[id]) current_depth[id]=depth_map[ScaleQuantumToMap(p[i])]; } p+=GetPixelChannels(image); } if (current_depth[id] == MAGICKCORE_QUANTUM_DEPTH) status=MagickFalse; } image_view=DestroyCacheView(image_view); depth=current_depth[0]; for (id=1; id < (ssize_t) number_threads; id++) if (depth < current_depth[id]) depth=current_depth[id]; depth_map=(size_t *) RelinquishMagickMemory(depth_map); current_depth=(size_t *) RelinquishMagickMemory(current_depth); return(depth); } #endif /* Compute pixel depth. */ #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) \ magick_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { const int id = GetOpenMPThreadId(); register const Quantum *restrict p; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) continue; for (x=0; x < (ssize_t) image->columns; x++) { register ssize_t i; if (GetPixelReadMask(image,p) == 0) { p+=GetPixelChannels(image); continue; } for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel; PixelTrait traits; channel=GetPixelChannelChannel(image,i); traits=GetPixelChannelTraits(image,channel); if ((traits == UndefinedPixelTrait) || (channel == IndexPixelChannel) || (channel == ReadMaskPixelChannel)) continue; while (current_depth[id] < MAGICKCORE_QUANTUM_DEPTH) { QuantumAny range; range=GetQuantumRange(current_depth[id]); if (p[i] == ScaleAnyToQuantum(ScaleQuantumToAny(p[i],range),range)) break; current_depth[id]++; } } p+=GetPixelChannels(image); } if (current_depth[id] == MAGICKCORE_QUANTUM_DEPTH) status=MagickFalse; } image_view=DestroyCacheView(image_view); depth=current_depth[0]; for (id=1; id < (ssize_t) number_threads; id++) if (depth < current_depth[id]) depth=current_depth[id]; current_depth=(size_t *) RelinquishMagickMemory(current_depth); return(depth); }
MagickExport MagickBooleanType SetImageAlphaChannel(Image *image, const AlphaChannelOption alpha_type,ExceptionInfo *exception) { CacheView *image_view; MagickBooleanType status; ssize_t y; assert(image != (Image *) NULL); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"..."); assert(image->signature == MagickSignature); status=MagickTrue; switch (alpha_type) { case ActivateAlphaChannel: { image->alpha_trait=BlendPixelTrait; break; } case AssociateAlphaChannel: { /* Associate alpha. */ status=SetImageStorageClass(image,DirectClass,exception); if (status == MagickFalse) break; image_view=AcquireAuthenticCacheView(image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) \ magick_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register Quantum *restrict q; register ssize_t x; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1, exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { double Sa; register ssize_t i; if (GetPixelReadMask(image,q) == 0) { q+=GetPixelChannels(image); continue; } Sa=QuantumScale*GetPixelAlpha(image,q); for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel=GetPixelChannelChannel(image,i); PixelTrait traits=GetPixelChannelTraits(image,channel); if ((traits & UpdatePixelTrait) == 0) continue; q[i]=ClampToQuantum(Sa*q[i]); } q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; } image_view=DestroyCacheView(image_view); image->alpha_trait=CopyPixelTrait; return(status); } case BackgroundAlphaChannel: { /* Set transparent pixels to background color. */ if (image->alpha_trait != BlendPixelTrait) break; status=SetImageStorageClass(image,DirectClass,exception); if (status == MagickFalse) break; image_view=AcquireAuthenticCacheView(image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) \ magick_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register Quantum *restrict q; register ssize_t x; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1, exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { if (GetPixelAlpha(image,q) == TransparentAlpha) { SetPixelInfoPixel(image,&image->background_color,q); SetPixelChannel(image,AlphaPixelChannel,TransparentAlpha,q); } q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; } image_view=DestroyCacheView(image_view); return(status); } case CopyAlphaChannel: case ShapeAlphaChannel: { /* Copy pixel intensity to the alpha channel. */ status=CompositeImage(image,image,IntensityCompositeOp,MagickTrue,0,0, exception); if (alpha_type == ShapeAlphaChannel) (void) LevelImageColors(image,&image->background_color, &image->background_color,MagickTrue,exception); break; } case DeactivateAlphaChannel: { image->alpha_trait=CopyPixelTrait; break; } case DisassociateAlphaChannel: { /* Disassociate alpha. */ status=SetImageStorageClass(image,DirectClass,exception); if (status == MagickFalse) break; image->alpha_trait=BlendPixelTrait; image_view=AcquireAuthenticCacheView(image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) \ magick_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register Quantum *restrict q; register ssize_t x; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1, exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { double gamma, Sa; register ssize_t i; if (GetPixelReadMask(image,q) == 0) { q+=GetPixelChannels(image); continue; } Sa=QuantumScale*GetPixelAlpha(image,q); gamma=PerceptibleReciprocal(Sa); for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel=GetPixelChannelChannel(image,i); PixelTrait traits=GetPixelChannelTraits(image,channel); if ((traits & UpdatePixelTrait) == 0) continue; q[i]=ClampToQuantum(gamma*q[i]); } q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; } image_view=DestroyCacheView(image_view); return(status); } case DiscreteAlphaChannel: { image->alpha_trait=UpdatePixelTrait; break; } case ExtractAlphaChannel: { status=CompositeImage(image,image,AlphaCompositeOp,MagickTrue,0,0, exception); image->alpha_trait=CopyPixelTrait; break; } case OpaqueAlphaChannel: { status=SetImageAlpha(image,OpaqueAlpha,exception); break; } case RemoveAlphaChannel: { /* Remove transparency. */ if (image->alpha_trait != BlendPixelTrait) break; status=SetImageStorageClass(image,DirectClass,exception); if (status == MagickFalse) break; image_view=AcquireAuthenticCacheView(image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) \ magick_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register Quantum *restrict q; register ssize_t x; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1, exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { FlattenPixelInfo(image,&image->background_color, image->background_color.alpha,q,(double) GetPixelAlpha(image,q),q); q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; } image_view=DestroyCacheView(image_view); image->alpha_trait=image->background_color.alpha_trait; return(status); } case SetAlphaChannel: { if (image->alpha_trait != BlendPixelTrait) status=SetImageAlpha(image,OpaqueAlpha,exception); break; } case TransparentAlphaChannel: { status=SetImageAlpha(image,TransparentAlpha,exception); break; } case UndefinedAlphaChannel: break; } if (status == MagickFalse) return(status); return(SyncImagePixelCache(image,exception)); }
static inline void FlattenPixelInfo(const Image *image,const PixelInfo *p, const double alpha,const Quantum *q,const double beta, Quantum *composite) { double Da, gamma, Sa; register ssize_t i; /* Compose pixel p over pixel q with the given alpha. */ Sa=QuantumScale*alpha; Da=QuantumScale*beta, gamma=Sa*(-Da)+Sa+Da; gamma=PerceptibleReciprocal(gamma); for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel=GetPixelChannelChannel(image,i); PixelTrait traits=GetPixelChannelTraits(image,channel); if (traits == UndefinedPixelTrait) continue; switch (channel) { case RedPixelChannel: { composite[i]=ClampToQuantum(gamma*MagickOver_((double) q[i],beta, (double) p->red,alpha)); break; } case GreenPixelChannel: { composite[i]=ClampToQuantum(gamma*MagickOver_((double) q[i],beta, (double) p->green,alpha)); break; } case BluePixelChannel: { composite[i]=ClampToQuantum(gamma*MagickOver_((double) q[i],beta, (double) p->blue,alpha)); break; } case BlackPixelChannel: { composite[i]=ClampToQuantum(gamma*MagickOver_((double) q[i],beta, (double) p->black,alpha)); break; } case AlphaPixelChannel: { composite[i]=ClampToQuantum(QuantumRange*(Sa*(-Da)+Sa+Da)); break; } default: break; } } }
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S e p a r a t e I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % SeparateImage() separates a channel from the image and returns it as a % grayscale image. % % The format of the SeparateImage method is: % % Image *SeparateImage(const Image *image,const ChannelType channel, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o channel: the image channel. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *SeparateImage(const Image *image, const ChannelType channel_type,ExceptionInfo *exception) { #define GetChannelBit(mask,bit) (((size_t) (mask) >> (size_t) (bit)) & 0x01) #define SeparateImageTag "Separate/Image" CacheView *image_view, *separate_view; Image *separate_image; MagickBooleanType status; MagickOffsetType progress; ssize_t y; /* Initialize separate image attributes. */ assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); separate_image=CloneImage(image,image->columns,image->rows,MagickTrue, exception); if (separate_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(separate_image,DirectClass,exception) == MagickFalse) { separate_image=DestroyImage(separate_image); return((Image *) NULL); } (void) SetImageColorspace(separate_image,GRAYColorspace,exception); separate_image->alpha_trait=UndefinedPixelTrait; /* Separate image. */ status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(image,exception); separate_view=AcquireAuthenticCacheView(separate_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ magick_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *restrict p; register Quantum *restrict q; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); q=QueueCacheViewAuthenticPixels(separate_view,0,y,separate_image->columns,1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { register ssize_t i; if (GetPixelReadMask(image,p) == 0) { SetPixelBackgoundColor(separate_image,q); p+=GetPixelChannels(image); q+=GetPixelChannels(separate_image); continue; } SetPixelChannel(separate_image,GrayPixelChannel,0,q); for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel=GetPixelChannelChannel(image,i); PixelTrait traits=GetPixelChannelTraits(image,channel); if ((traits == UndefinedPixelTrait) || (GetChannelBit(channel_type,channel) == 0)) continue; SetPixelChannel(separate_image,GrayPixelChannel,p[i],q); } p+=GetPixelChannels(image); q+=GetPixelChannels(separate_image); } if (SyncCacheViewAuthenticPixels(separate_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_SeparateImage) #endif proceed=SetImageProgress(image,SeparateImageTag,progress++,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } separate_view=DestroyCacheView(separate_view); image_view=DestroyCacheView(image_view); if (status == MagickFalse) separate_image=DestroyImage(separate_image); return(separate_image); }
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % C o m b i n e I m a g e s % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % CombineImages() combines one or more images into a single image. The % grayscale value of the pixels of each image in the sequence is assigned in % order to the specified channels of the combined image. The typical % ordering would be image 1 => Red, 2 => Green, 3 => Blue, etc. % % The format of the CombineImages method is: % % Image *CombineImages(const Image *images,const ColorspaceType colorspace, % ExceptionInfo *exception) % % A description of each parameter follows: % % o images: the image sequence. % % o colorspace: the image colorspace. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *CombineImages(const Image *image, const ColorspaceType colorspace,ExceptionInfo *exception) { #define CombineImageTag "Combine/Image" CacheView *combine_view; Image *combine_image; MagickBooleanType status; MagickOffsetType progress; ssize_t y; /* Ensure the image are the same size. */ assert(image != (const Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); combine_image=CloneImage(image,0,0,MagickTrue,exception); if (combine_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(combine_image,DirectClass,exception) == MagickFalse) { combine_image=DestroyImage(combine_image); return((Image *) NULL); } (void) SetImageColorspace(combine_image,colorspace,exception); if ((GetPixelAlphaTraits(image) & UpdatePixelTrait) != 0) combine_image->alpha_trait=BlendPixelTrait; /* Combine images. */ status=MagickTrue; progress=0; combine_view=AcquireAuthenticCacheView(combine_image,exception); for (y=0; y < (ssize_t) combine_image->rows; y++) { CacheView *image_view; const Image *next; Quantum *pixels; register const Quantum *restrict p; register Quantum *restrict q; register ssize_t i; if (status == MagickFalse) continue; pixels=GetCacheViewAuthenticPixels(combine_view,0,y,combine_image->columns, 1,exception); if (pixels == (Quantum *) NULL) { status=MagickFalse; continue; } next=image; for (i=0; i < (ssize_t) GetPixelChannels(combine_image); i++) { register ssize_t x; PixelChannel channel=GetPixelChannelChannel(combine_image,i); PixelTrait traits=GetPixelChannelTraits(combine_image,channel); if (traits == UndefinedPixelTrait) continue; if (next == (Image *) NULL) continue; image_view=AcquireVirtualCacheView(next,exception); p=GetCacheViewVirtualPixels(image_view,0,y,next->columns,1,exception); if (p == (const Quantum *) NULL) continue; q=pixels; for (x=0; x < (ssize_t) combine_image->columns; x++) { if (x < (ssize_t) next->columns) { q[i]=GetPixelGray(next,p); p+=GetPixelChannels(next); } q+=GetPixelChannels(combine_image); } image_view=DestroyCacheView(image_view); next=GetNextImageInList(next); } if (SyncCacheViewAuthenticPixels(combine_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; proceed=SetImageProgress(image,CombineImageTag,progress++, combine_image->rows); if (proceed == MagickFalse) status=MagickFalse; } } combine_view=DestroyCacheView(combine_view); if (status == MagickFalse) combine_image=DestroyImage(combine_image); return(combine_image); }
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S i g n a t u r e I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % SignatureImage() computes a message digest from an image pixel stream with % an implementation of the NIST SHA-256 Message Digest algorithm. This % signature uniquely identifies the image and is convenient for determining % if an image has been modified or whether two images are identical. % % The format of the SignatureImage method is: % % MagickBooleanType SignatureImage(Image *image,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o exception: return any errors or warnings in this structure. % */ MagickExport MagickBooleanType SignatureImage(Image *image, ExceptionInfo *exception) { CacheView *image_view; char *hex_signature; double pixel; register const Quantum *p; SignatureInfo *signature_info; ssize_t y; StringInfo *signature; unsigned char *pixels; /* Compute image digital signature. */ assert(image != (Image *) NULL); assert(image->signature == MagickSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); signature_info=AcquireSignatureInfo(); signature=AcquireStringInfo(image->columns*GetPixelChannels(image)* sizeof(pixel)); image_view=AcquireVirtualCacheView(image,exception); for (y=0; y < (ssize_t) image->rows; y++) { register ssize_t x; register unsigned char *q; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) break; SetStringInfoLength(signature,image->columns*GetPixelChannels(image)* sizeof(pixel)); pixels=GetStringInfoDatum(signature); q=pixels; for (x=0; x < (ssize_t) image->columns; x++) { register ssize_t i; if (GetPixelReadMask(image,p) == 0) { p+=GetPixelChannels(image); continue; } for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { register ssize_t j; PixelChannel channel=GetPixelChannelChannel(image,i); PixelTrait traits=GetPixelChannelTraits(image,channel); if (traits == UndefinedPixelTrait) continue; pixel=QuantumScale*p[i]; for (j=0; j < (ssize_t) sizeof(pixel); j++) *q++=(unsigned char) ((unsigned char *) &pixel)[j]; } p+=GetPixelChannels(image); } SetStringInfoLength(signature,(size_t) (q-pixels)); UpdateSignature(signature_info,signature); } image_view=DestroyCacheView(image_view); FinalizeSignature(signature_info); hex_signature=StringInfoToHexString(GetSignatureDigest(signature_info)); (void) DeleteImageProperty(image,"signature"); (void) SetImageProperty(image,"signature",hex_signature,exception); /* Free resources. */ hex_signature=DestroyString(hex_signature); signature=DestroyStringInfo(signature); signature_info=DestroySignatureInfo(signature_info); return(MagickTrue); }
MagickExport Image *OilPaintImage(const Image *image,const double radius, const double sigma,ExceptionInfo *exception) { #define NumberPaintBins 256 #define OilPaintImageTag "OilPaint/Image" CacheView *image_view, *paint_view; Image *linear_image, *paint_image; MagickBooleanType status; MagickOffsetType progress; size_t **histograms, width; ssize_t center, y; /* Initialize painted image attributes. */ assert(image != (const Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); width=GetOptimalKernelWidth2D(radius,sigma); linear_image=CloneImage(image,0,0,MagickTrue,exception); paint_image=CloneImage(image,image->columns,image->rows,MagickTrue,exception); if ((linear_image == (Image *) NULL) || (paint_image == (Image *) NULL)) { if (linear_image != (Image *) NULL) linear_image=DestroyImage(linear_image); if (paint_image != (Image *) NULL) linear_image=DestroyImage(paint_image); return((Image *) NULL); } if (SetImageStorageClass(paint_image,DirectClass,exception) == MagickFalse) { linear_image=DestroyImage(linear_image); paint_image=DestroyImage(paint_image); return((Image *) NULL); } histograms=AcquireHistogramThreadSet(NumberPaintBins); if (histograms == (size_t **) NULL) { linear_image=DestroyImage(linear_image); paint_image=DestroyImage(paint_image); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } /* Oil paint image. */ status=MagickTrue; progress=0; center=(ssize_t) GetPixelChannels(linear_image)*(linear_image->columns+width)* (width/2L)+GetPixelChannels(linear_image)*(width/2L); image_view=AcquireVirtualCacheView(linear_image,exception); paint_view=AcquireAuthenticCacheView(paint_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ magick_threads(linear_image,paint_image,linear_image->rows,1) #endif for (y=0; y < (ssize_t) linear_image->rows; y++) { register const Quantum *restrict p; register Quantum *restrict q; register size_t *histogram; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,-((ssize_t) width/2L),y-(ssize_t) (width/2L),linear_image->columns+width,width,exception); q=QueueCacheViewAuthenticPixels(paint_view,0,y,paint_image->columns,1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } histogram=histograms[GetOpenMPThreadId()]; for (x=0; x < (ssize_t) linear_image->columns; x++) { register ssize_t i, u; size_t count; ssize_t j, k, n, v; /* Assign most frequent color. */ k=0; j=0; count=0; (void) ResetMagickMemory(histogram,0,NumberPaintBins* sizeof(*histogram)); for (v=0; v < (ssize_t) width; v++) { for (u=0; u < (ssize_t) width; u++) { n=(ssize_t) ScaleQuantumToChar(ClampToQuantum(GetPixelIntensity( linear_image,p+GetPixelChannels(linear_image)*(u+k)))); histogram[n]++; if (histogram[n] > count) { j=k+u; count=histogram[n]; } } k+=(ssize_t) (linear_image->columns+width); } for (i=0; i < (ssize_t) GetPixelChannels(linear_image); i++) { PixelChannel channel=GetPixelChannelChannel(linear_image,i); PixelTrait traits=GetPixelChannelTraits(linear_image,channel); PixelTrait paint_traits=GetPixelChannelTraits(paint_image,channel); if ((traits == UndefinedPixelTrait) || (paint_traits == UndefinedPixelTrait)) continue; if (((paint_traits & CopyPixelTrait) != 0) || (GetPixelReadMask(linear_image,p) == 0)) { SetPixelChannel(paint_image,channel,p[center+i],q); continue; } SetPixelChannel(paint_image,channel,p[j*GetPixelChannels(linear_image)+ i],q); } p+=GetPixelChannels(linear_image); q+=GetPixelChannels(paint_image); } if (SyncCacheViewAuthenticPixels(paint_view,exception) == MagickFalse) status=MagickFalse; if (linear_image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_OilPaintImage) #endif proceed=SetImageProgress(linear_image,OilPaintImageTag,progress++, linear_image->rows); if (proceed == MagickFalse) status=MagickFalse; } } paint_view=DestroyCacheView(paint_view); image_view=DestroyCacheView(image_view); histograms=DestroyHistogramThreadSet(histograms); linear_image=DestroyImage(linear_image); if (status == MagickFalse) paint_image=DestroyImage(paint_image); return(paint_image); }
static void vips_magick7_print_channel_names( Image *image ) { static const int pixel_channels[] = { UndefinedPixelChannel, RedPixelChannel, CyanPixelChannel, GrayPixelChannel, LPixelChannel, LabelPixelChannel, YPixelChannel, aPixelChannel, GreenPixelChannel, MagentaPixelChannel, CbPixelChannel, bPixelChannel, BluePixelChannel, YellowPixelChannel, CrPixelChannel, BlackPixelChannel, AlphaPixelChannel, IndexPixelChannel, ReadMaskPixelChannel, WriteMaskPixelChannel, MetaPixelChannel, IntensityPixelChannel, CompositePixelChannel, SyncPixelChannel }; static const char *pixel_channel_names[] = { "UndefinedPixelChannel", "RedPixelChannel", "CyanPixelChannel", "GrayPixelChannel", "LPixelChannel", "LabelPixelChannel", "YPixelChannel", "aPixelChannel", "GreenPixelChannel", "MagentaPixelChannel", "CbPixelChannel", "bPixelChannel", "BluePixelChannel", "YellowPixelChannel", "CrPixelChannel", "BlackPixelChannel", "AlphaPixelChannel", "IndexPixelChannel", "ReadMaskPixelChannel", "WriteMaskPixelChannel", "MetaPixelChannel", "IntensityPixelChannel", "CompositePixelChannel", "SyncPixelChannel", }; int b; int i; printf( "vips_magick7_print_channel_names: channel names:\n" ); for( b = 0; b < GetPixelChannels( image ); b++ ) { PixelChannel channel = GetPixelChannelChannel( image, b ); printf( "\t%d) ", b ); for( i = 0; i < VIPS_NUMBER( pixel_channels ); i++ ) /* Don't break on found, many channel names repeat. */ if( channel == pixel_channels[i] ) printf( "%s ", pixel_channel_names[i] ); printf( "\n" ); } }