示例#1
0
int TLogRegFit::MLENewton(const double& ChangeEps, const int& MaxStep, const TStr PlotNm) {
    TExeTm ExeTm;
    TFltV GradV(Theta.Len()), DeltaLV(Theta.Len());
    TFltVV HVV(Theta.Len(), Theta.Len());
    int iter = 0;
    double MinVal = -1e10, MaxVal = 1e10;
    for(iter = 0; iter < MaxStep; iter++) {
        Gradient(GradV);
        Hessian(HVV);
        GetNewtonStep(HVV, GradV, DeltaLV);
        double Increment = TLinAlg::DotProduct(GradV, DeltaLV);
        if (Increment <= ChangeEps) {
            break;
        }
        double LearnRate = GetStepSizeByLineSearch(DeltaLV, GradV, 0.15, 0.5);//InitLearnRate/double(0.01*(double)iter + 1);
        for(int i = 0; i < Theta.Len(); i++) {
            double Change = LearnRate * DeltaLV[i];
            Theta[i] += Change;
            if(Theta[i] < MinVal) {
                Theta[i] = MinVal;
            }
            if(Theta[i] > MaxVal) {
                Theta[i] = MaxVal;
            }
        }
    }
    if (! PlotNm.Empty()) {
        printf("MLE with Newton method completed with %d iterations(%s)\n",iter,ExeTm.GetTmStr());
    }

    return iter;
}
示例#2
0
int TLogRegFit::MLEGradient(const double& ChangeEps, const int& MaxStep, const TStr PlotNm) {
    TExeTm ExeTm;
    TFltV GradV(Theta.Len());
    int iter = 0;
    TIntFltPrV IterLV, IterGradNormV;
    double MinVal = -1e10, MaxVal = 1e10;
    double GradCutOff = 100000;
    for(iter = 0; iter < MaxStep; iter++) {
        Gradient(GradV);    //if gradient is going out of the boundary, cut off
        for(int i = 0; i < Theta.Len(); i++) {
            if (GradV[i] < -GradCutOff) {
                GradV[i] = -GradCutOff;
            }
            if (GradV[i] > GradCutOff) {
                GradV[i] = GradCutOff;
            }
            if (Theta[i] <= MinVal && GradV[i] < 0) {
                GradV[i] = 0.0;
            }
            if (Theta[i] >= MaxVal && GradV[i] > 0) {
                GradV[i] = 0.0;
            }
        }
        double Alpha = 0.15, Beta = 0.9;
        //double LearnRate = 0.1 / (0.1 * iter + 1); //GetStepSizeByLineSearch(GradV, GradV, Alpha, Beta);
        double LearnRate = GetStepSizeByLineSearch(GradV, GradV, Alpha, Beta);
        if (TLinAlg::Norm(GradV) < ChangeEps) {
            break;
        }
        for(int i = 0; i < Theta.Len(); i++) {
            double Change = LearnRate * GradV[i];
            Theta[i] += Change;
            if(Theta[i] < MinVal) {
                Theta[i] = MinVal;
            }
            if(Theta[i] > MaxVal) {
                Theta[i] = MaxVal;
            }
        }
        if (! PlotNm.Empty()) {
            double L = Likelihood();
            IterLV.Add(TIntFltPr(iter, L));
            IterGradNormV.Add(TIntFltPr(iter, TLinAlg::Norm(GradV)));
        }

    }
    if (! PlotNm.Empty()) {
        TGnuPlot::PlotValV(IterLV, PlotNm + ".likelihood_Q");
        TGnuPlot::PlotValV(IterGradNormV, PlotNm + ".gradnorm_Q");
        printf("MLE for Lambda completed with %d iterations(%s)\n",iter,ExeTm.GetTmStr());
    }
    return iter;
}
示例#3
0
int TAGMFast::MLEGradAscentParallel(const double& Thres, const int& MaxIter, const int ChunkNum, const int ChunkSize, const TStr PlotNm, const double StepAlpha, const double StepBeta) {
  //parallel
  time_t InitTime = time(NULL);
  uint64 StartTm = TSecTm::GetCurTm().GetAbsSecs();
  TExeTm ExeTm, CheckTm;
  double PrevL = Likelihood(true);
  TIntFltPrV IterLV;
  int PrevIter = 0;
  int iter = 0;
  TIntV NIdxV(F.Len(), 0);
  for (int i = 0; i < F.Len(); i++) { NIdxV.Add(i); }
  TIntV NIDOPTV(F.Len()); //check if a node needs optimization or not 1: does not require optimization
  NIDOPTV.PutAll(0);
  TVec<TIntFltH> NewF(ChunkNum * ChunkSize);
  TIntV NewNIDV(ChunkNum * ChunkSize);
  for (iter = 0; iter < MaxIter; iter++) {
    NIdxV.Clr(false);
    for (int i = 0; i < F.Len(); i++) { 
      if (NIDOPTV[i] == 0) {  NIdxV.Add(i); }
    }
    IAssert (NIdxV.Len() <= F.Len());
    NIdxV.Shuffle(Rnd);
    // compute gradient for chunk of nodes
#pragma omp parallel for schedule(static, 1)
    for (int TIdx = 0; TIdx < ChunkNum; TIdx++) {
      TIntFltH GradV;
      for (int ui = TIdx * ChunkSize; ui < (TIdx + 1) * ChunkSize; ui++) {
        NewNIDV[ui] = -1;
        if (ui > NIdxV.Len()) { continue; }
        int u = NIdxV[ui]; //
        //find set of candidate c (we only need to consider c to which a neighbor of u belongs to)
        TUNGraph::TNodeI UI = G->GetNI(u);
        TIntSet CIDSet(5 * UI.GetDeg());
        TIntFltH CurFU = F[u];
        for (int e = 0; e < UI.GetDeg(); e++) {
          if (HOVIDSV[u].IsKey(UI.GetNbrNId(e))) { continue; }
          TIntFltH& NbhCIDH = F[UI.GetNbrNId(e)];
          for (TIntFltH::TIter CI = NbhCIDH.BegI(); CI < NbhCIDH.EndI(); CI++) {
            CIDSet.AddKey(CI.GetKey());
          }
        }
        if (CIDSet.Empty()) { 
          CurFU.Clr();
        }
        else {
          for (TIntFltH::TIter CI = CurFU.BegI(); CI < CurFU.EndI(); CI++) { //remove the community membership which U does not share with its neighbors
            if (! CIDSet.IsKey(CI.GetKey())) {
              CurFU.DelIfKey(CI.GetKey());
            }
          }
          GradientForRow(u, GradV, CIDSet);
          if (Norm2(GradV) < 1e-4) { NIDOPTV[u] = 1; continue; }
          double LearnRate = GetStepSizeByLineSearch(u, GradV, GradV, StepAlpha, StepBeta, 5);
          if (LearnRate <= 1e-5) { NewNIDV[ui] = -2; continue; }
          for (int ci = 0; ci < GradV.Len(); ci++) {
            int CID = GradV.GetKey(ci);
            double Change = LearnRate * GradV.GetDat(CID);
            double NewFuc = CurFU.IsKey(CID)? CurFU.GetDat(CID) + Change : Change;
            if (NewFuc <= 0.0) {
              CurFU.DelIfKey(CID);
            } else {
              CurFU.AddDat(CID) = NewFuc;
            }
          }
          CurFU.Defrag();
        }
        //store changes
        NewF[ui] = CurFU;
        NewNIDV[ui] = u;
      }
    }
    int NumNoChangeGrad = 0;
    int NumNoChangeStepSize = 0;
    for (int ui = 0; ui < NewNIDV.Len(); ui++) {
      int NewNID = NewNIDV[ui];
      if (NewNID == -1) { NumNoChangeGrad++; continue; }
      if (NewNID == -2) { NumNoChangeStepSize++; continue; }
      for (TIntFltH::TIter CI = F[NewNID].BegI(); CI < F[NewNID].EndI(); CI++) {
        SumFV[CI.GetKey()] -= CI.GetDat();
      }
    }
#pragma omp parallel for
    for (int ui = 0; ui < NewNIDV.Len(); ui++) {
      int NewNID = NewNIDV[ui];
      if (NewNID < 0) { continue; }
      F[NewNID] = NewF[ui];
    }
    for (int ui = 0; ui < NewNIDV.Len(); ui++) {
      int NewNID = NewNIDV[ui];
      if (NewNID < 0) { continue; }
      for (TIntFltH::TIter CI = F[NewNID].BegI(); CI < F[NewNID].EndI(); CI++) {
        SumFV[CI.GetKey()] += CI.GetDat();
      }
    }
    // update the nodes who are optimal
    for (int ui = 0; ui < NewNIDV.Len(); ui++) {
      int NewNID = NewNIDV[ui];
      if (NewNID < 0) { continue; }
      TUNGraph::TNodeI UI = G->GetNI(NewNID);
      NIDOPTV[NewNID] = 0;
      for (int e = 0; e < UI.GetDeg(); e++) {
        NIDOPTV[UI.GetNbrNId(e)] = 0;
      }
    }
    int OPTCnt = 0;
    for (int i = 0; i < NIDOPTV.Len(); i++) { if (NIDOPTV[i] == 1) { OPTCnt++; } }
    if (! PlotNm.Empty()) {
      printf("\r%d iterations [%s] %d secs", iter * ChunkSize * ChunkNum, ExeTm.GetTmStr(), int(TSecTm::GetCurTm().GetAbsSecs() - StartTm));
      if (PrevL > TFlt::Mn) { printf(" (%f) %d g %d s %d OPT", PrevL, NumNoChangeGrad, NumNoChangeStepSize, OPTCnt); }
      fflush(stdout);
    }
    if ((iter - PrevIter) * ChunkSize * ChunkNum >= G->GetNodes()) {
      PrevIter = iter;
      double CurL = Likelihood(true);
      IterLV.Add(TIntFltPr(iter * ChunkSize * ChunkNum, CurL));
      printf("\r%d iterations, Likelihood: %f, Diff: %f [%d secs]", iter, CurL,  CurL - PrevL, int(time(NULL) - InitTime));
       fflush(stdout);
      if (CurL - PrevL <= Thres * fabs(PrevL)) { 
        break;
      }
      else {
        PrevL = CurL;
      }
    }
  }
  if (! PlotNm.Empty()) {
    printf("\nMLE completed with %d iterations(%s secs)\n", iter, int(TSecTm::GetCurTm().GetAbsSecs() - StartTm));
    TGnuPlot::PlotValV(IterLV, PlotNm + ".likelihood_Q");[]
  } else {
示例#4
0
int TAGMFast::MLEGradAscent(const double& Thres, const int& MaxIter, const TStr PlotNm, const double StepAlpha, const double StepBeta) {
  time_t InitTime = time(NULL);
  TExeTm ExeTm, CheckTm;
  int iter = 0, PrevIter = 0;
  TIntFltPrV IterLV;
  TUNGraph::TNodeI UI;
  double PrevL = TFlt::Mn, CurL = 0.0;
  TIntV NIdxV(F.Len(), 0);
  for (int i = 0; i < F.Len(); i++) { NIdxV.Add(i); }
  IAssert(NIdxV.Len() == F.Len());
  TIntFltH GradV;
  while(iter < MaxIter) {
    NIdxV.Shuffle(Rnd);
    for (int ui = 0; ui < F.Len(); ui++, iter++) {
      int u = NIdxV[ui]; //
      //find set of candidate c (we only need to consider c to which a neighbor of u belongs to)
      UI = G->GetNI(u);
      TIntSet CIDSet(5 * UI.GetDeg());
      for (int e = 0; e < UI.GetDeg(); e++) {
        if (HOVIDSV[u].IsKey(UI.GetNbrNId(e))) { continue; }
        TIntFltH& NbhCIDH = F[UI.GetNbrNId(e)];
        for (TIntFltH::TIter CI = NbhCIDH.BegI(); CI < NbhCIDH.EndI(); CI++) {
          CIDSet.AddKey(CI.GetKey());
        }
      }
      for (TIntFltH::TIter CI = F[u].BegI(); CI < F[u].EndI(); CI++) { //remove the community membership which U does not share with its neighbors
        if (! CIDSet.IsKey(CI.GetKey())) {
          DelCom(u, CI.GetKey());
        }
      }
      if (CIDSet.Empty()) { continue; }
      GradientForRow(u, GradV, CIDSet);
      if (Norm2(GradV) < 1e-4) { continue; }
      double LearnRate = GetStepSizeByLineSearch(u, GradV, GradV, StepAlpha, StepBeta);
      if (LearnRate == 0.0) { continue; }
      for (int ci = 0; ci < GradV.Len(); ci++) {
        int CID = GradV.GetKey(ci);
        double Change = LearnRate * GradV.GetDat(CID);
        double NewFuc = GetCom(u, CID) + Change;
        if (NewFuc <= 0.0) {
          DelCom(u, CID);
        } else {
          AddCom(u, CID, NewFuc);
        }
      }
      if (! PlotNm.Empty() && (iter + 1) % G->GetNodes() == 0) {
        IterLV.Add(TIntFltPr(iter, Likelihood(false)));
      }
    }
    printf("\r%d iterations (%f) [%lu sec]", iter, CurL, time(NULL) - InitTime);
    fflush(stdout);
    if (iter - PrevIter >= 2 * G->GetNodes() && iter > 10000) {
      PrevIter = iter;
      CurL = Likelihood();
      if (PrevL > TFlt::Mn && ! PlotNm.Empty()) {
        printf("\r%d iterations, Likelihood: %f, Diff: %f", iter, CurL,  CurL - PrevL);
      }
      fflush(stdout);
      if (CurL - PrevL <= Thres * fabs(PrevL)) { break; }
      else { PrevL = CurL; }
    }
    
  }
  printf("\n");
  printf("MLE for Lambda completed with %d iterations(%s)\n", iter, ExeTm.GetTmStr());
  if (! PlotNm.Empty()) {
    TGnuPlot::PlotValV(IterLV, PlotNm + ".likelihood_Q");
  }
  return iter;
}