void hypre_F90_IFACE(hypre_parcsrflexgmrescreate, HYPRE_PARCSRFLEXGMRESCREATE) ( hypre_F90_Comm *comm, hypre_F90_Obj *solver, hypre_F90_Int *ierr ) { *ierr = (hypre_F90_Int) ( HYPRE_ParCSRFlexGMRESCreate( hypre_F90_PassComm (comm), hypre_F90_PassObjRef (HYPRE_Solver, solver) ) ); }
inline void numfact(unsigned int ncol, int* I, int* loc2glob, int* J, K* C) { static_assert(std::is_same<double, K>::value, "Hypre only supports double-precision floating-point real numbers"); static_assert(S == 'G', "Hypre only supports nonsymmetric matrices"); HYPRE_IJMatrixCreate(DMatrix::_communicator, loc2glob[0], loc2glob[1], loc2glob[0], loc2glob[1], &_A); HYPRE_IJMatrixSetObjectType(_A, HYPRE_PARCSR); HYPRE_IJMatrixSetRowSizes(_A, I + 1); _local = ncol; int* rows = new int[3 * _local](); int* diag_sizes = rows + _local; int* offdiag_sizes = diag_sizes + _local; rows[0] = I[0]; for(unsigned int i = 0; i < _local; ++i) { std::for_each(J + rows[0], J + rows[0] + I[i + 1], [&](int& j) { (j < loc2glob[0] || loc2glob[1] < j) ? ++offdiag_sizes[i] : ++diag_sizes[i]; }); rows[0] += I[i + 1]; } HYPRE_IJMatrixSetDiagOffdSizes(_A, diag_sizes, offdiag_sizes); HYPRE_IJMatrixSetMaxOffProcElmts(_A, 0); HYPRE_IJMatrixInitialize(_A); std::iota(rows, rows + _local, loc2glob[0]); HYPRE_IJMatrixSetValues(_A, _local, I + 1, rows, J, C); HYPRE_IJMatrixAssemble(_A); HYPRE_IJVectorCreate(DMatrix::_communicator, loc2glob[0], loc2glob[1], &_b); HYPRE_IJVectorSetObjectType(_b, HYPRE_PARCSR); HYPRE_IJVectorInitialize(_b); HYPRE_IJVectorCreate(DMatrix::_communicator, loc2glob[0], loc2glob[1], &_x); HYPRE_IJVectorSetObjectType(_x, HYPRE_PARCSR); HYPRE_IJVectorInitialize(_x); delete [] rows; delete [] I; delete [] loc2glob; HYPRE_BoomerAMGCreate(_strategy == 1 ? &_solver : &_precond); HYPRE_BoomerAMGSetCoarsenType(_strategy == 1 ? _solver : _precond, 6); /* Falgout coarsening */ HYPRE_BoomerAMGSetRelaxType(_strategy == 1 ? _solver : _precond, 6); /* G-S/Jacobi hybrid relaxation */ HYPRE_BoomerAMGSetNumSweeps(_strategy == 1 ? _solver : _precond, 1); /* sweeps on each level */ HYPRE_BoomerAMGSetMaxLevels(_strategy == 1 ? _solver : _precond, 10); /* maximum number of levels */ HYPRE_ParCSRMatrix parcsr_A; HYPRE_IJMatrixGetObject(_A, reinterpret_cast<void**>(&parcsr_A)); HYPRE_ParVector par_b; HYPRE_IJVectorGetObject(_b, reinterpret_cast<void**>(&par_b)); HYPRE_ParVector par_x; HYPRE_IJVectorGetObject(_x, reinterpret_cast<void**>(&par_x)); if(_strategy == 1) { HYPRE_BoomerAMGSetTol(_solver, 1.0e-8); HYPRE_BoomerAMGSetMaxIter(_solver, 1000); HYPRE_BoomerAMGSetPrintLevel(_solver, 1); HYPRE_BoomerAMGSetup(_solver, parcsr_A, nullptr, nullptr); } else { HYPRE_BoomerAMGSetTol(_precond, 0.0); HYPRE_BoomerAMGSetMaxIter(_precond, 1); HYPRE_BoomerAMGSetPrintLevel(_precond, 1); if(_strategy == 2) { HYPRE_ParCSRPCGCreate(DMatrix::_communicator, &_solver); HYPRE_PCGSetMaxIter(_solver, 500); HYPRE_PCGSetTol(_solver, 1.0e-8); HYPRE_PCGSetTwoNorm(_solver, 1); HYPRE_PCGSetPrintLevel(_solver, 1); HYPRE_PCGSetLogging(_solver, 1); HYPRE_PCGSetPrecond(_solver, reinterpret_cast<HYPRE_PtrToSolverFcn>(HYPRE_BoomerAMGSolve), reinterpret_cast<HYPRE_PtrToSolverFcn>(HYPRE_BoomerAMGSetup), _precond); HYPRE_ParCSRPCGSetup(_solver, parcsr_A, par_b, par_x); } else { HYPRE_ParCSRFlexGMRESCreate(DMatrix::_communicator, &_solver); HYPRE_FlexGMRESSetKDim(_solver, 50); HYPRE_FlexGMRESSetMaxIter(_solver, 500); HYPRE_FlexGMRESSetTol(_solver, 1.0e-8); HYPRE_FlexGMRESSetPrintLevel(_solver, 1); HYPRE_FlexGMRESSetLogging(_solver, 1); HYPRE_FlexGMRESSetPrecond(_solver, reinterpret_cast<HYPRE_PtrToSolverFcn>(HYPRE_BoomerAMGSolve), reinterpret_cast<HYPRE_PtrToSolverFcn>(HYPRE_BoomerAMGSetup), _precond); HYPRE_ParCSRFlexGMRESSetup(_solver, parcsr_A, par_b, par_x); } } }
int main (int argc, char *argv[]) { HYPRE_Int i; int myid, num_procs; int N, n; HYPRE_Int ilower, iupper; HYPRE_Int local_size, extra; int solver_id; int print_solution, print_system; double h, h2; HYPRE_IJMatrix A; HYPRE_ParCSRMatrix parcsr_A; HYPRE_IJVector b; HYPRE_ParVector par_b; HYPRE_IJVector x; HYPRE_ParVector par_x; HYPRE_Solver solver, precond; /* Initialize MPI */ MPI_Init(&argc, &argv); MPI_Comm_rank(MPI_COMM_WORLD, &myid); MPI_Comm_size(MPI_COMM_WORLD, &num_procs); /* Default problem parameters */ n = 33; solver_id = 0; print_solution = 0; print_system = 0; /* Parse command line */ { int arg_index = 0; int print_usage = 0; while (arg_index < argc) { if ( strcmp(argv[arg_index], "-n") == 0 ) { arg_index++; n = atoi(argv[arg_index++]); } else if ( strcmp(argv[arg_index], "-solver") == 0 ) { arg_index++; solver_id = atoi(argv[arg_index++]); } else if ( strcmp(argv[arg_index], "-print_solution") == 0 ) { arg_index++; print_solution = 1; } else if ( strcmp(argv[arg_index], "-print_system") == 0 ) { arg_index++; print_system = 1; } else if ( strcmp(argv[arg_index], "-help") == 0 ) { print_usage = 1; break; } else { arg_index++; } } if ((print_usage) && (myid == 0)) { printf("\n"); printf("Usage: %s [<options>]\n", argv[0]); printf("\n"); printf(" -n <n> : problem size in each direction (default: 33)\n"); printf(" -solver <ID> : solver ID\n"); printf(" 0 - AMG (default) \n"); printf(" 1 - AMG-PCG\n"); printf(" 8 - ParaSails-PCG\n"); printf(" 50 - PCG\n"); printf(" 61 - AMG-FlexGMRES\n"); printf(" -print_solution : print the solution vector\n"); printf(" -print_system : print the matrix and rhs\n"); printf("\n"); } if (print_usage) { MPI_Finalize(); return (0); } } /* Preliminaries: want at least one processor per row */ if (n*n < num_procs) n = sqrt(num_procs) + 1; N = n*n; /* global number of rows */ h = 1.0/(n+1); /* mesh size*/ h2 = h*h; /* Each processor knows only of its own rows - the range is denoted by ilower and upper. Here we partition the rows. We account for the fact that N may not divide evenly by the number of processors. */ local_size = N/num_procs; extra = N - local_size*num_procs; ilower = local_size*myid; ilower += hypre_min(myid, extra); iupper = local_size*(myid+1); iupper += hypre_min(myid+1, extra); iupper = iupper - 1; /* How many rows do I have? */ local_size = iupper - ilower + 1; /* Create the matrix. Note that this is a square matrix, so we indicate the row partition size twice (since number of rows = number of cols) */ HYPRE_IJMatrixCreate(MPI_COMM_WORLD, ilower, iupper, ilower, iupper, &A); /* Choose a parallel csr format storage (see the User's Manual) */ HYPRE_IJMatrixSetObjectType(A, HYPRE_PARCSR); /* Initialize before setting coefficients */ HYPRE_IJMatrixInitialize(A); /* Now go through my local rows and set the matrix entries. Each row has at most 5 entries. For example, if n=3: A = [M -I 0; -I M -I; 0 -I M] M = [4 -1 0; -1 4 -1; 0 -1 4] Note that here we are setting one row at a time, though one could set all the rows together (see the User's Manual). */ { HYPRE_Int nnz; double values[5]; HYPRE_Int cols[5]; for (i = ilower; i <= iupper; i++) { nnz = 0; /* The left identity block:position i-n */ if ((i-n)>=0) { cols[nnz] = i-n; values[nnz] = -1.0; nnz++; } /* The left -1: position i-1 */ if (i%n) { cols[nnz] = i-1; values[nnz] = -1.0; nnz++; } /* Set the diagonal: position i */ cols[nnz] = i; values[nnz] = 4.0; nnz++; /* The right -1: position i+1 */ if ((i+1)%n) { cols[nnz] = i+1; values[nnz] = -1.0; nnz++; } /* The right identity block:position i+n */ if ((i+n)< N) { cols[nnz] = i+n; values[nnz] = -1.0; nnz++; } /* Set the values for row i */ HYPRE_IJMatrixSetValues(A, 1, &nnz, &i, cols, values); } } /* Assemble after setting the coefficients */ HYPRE_IJMatrixAssemble(A); /* Note: for the testing of small problems, one may wish to read in a matrix in IJ format (for the format, see the output files from the -print_system option). In this case, one would use the following routine: HYPRE_IJMatrixRead( <filename>, MPI_COMM_WORLD, HYPRE_PARCSR, &A ); <filename> = IJ.A.out to read in what has been printed out by -print_system (processor numbers are omitted). A call to HYPRE_IJMatrixRead is an *alternative* to the following sequence of HYPRE_IJMatrix calls: Create, SetObjectType, Initialize, SetValues, and Assemble */ /* Get the parcsr matrix object to use */ HYPRE_IJMatrixGetObject(A, (void**) &parcsr_A); /* Create the rhs and solution */ HYPRE_IJVectorCreate(MPI_COMM_WORLD, ilower, iupper,&b); HYPRE_IJVectorSetObjectType(b, HYPRE_PARCSR); HYPRE_IJVectorInitialize(b); HYPRE_IJVectorCreate(MPI_COMM_WORLD, ilower, iupper,&x); HYPRE_IJVectorSetObjectType(x, HYPRE_PARCSR); HYPRE_IJVectorInitialize(x); /* Set the rhs values to h^2 and the solution to zero */ { double *rhs_values, *x_values; HYPRE_Int *rows; rhs_values = calloc(local_size, sizeof(double)); x_values = calloc(local_size, sizeof(double)); rows = calloc(local_size, sizeof(HYPRE_Int)); for (i=0; i<local_size; i++) { rhs_values[i] = h2; x_values[i] = 0.0; rows[i] = ilower + i; } HYPRE_IJVectorSetValues(b, local_size, rows, rhs_values); HYPRE_IJVectorSetValues(x, local_size, rows, x_values); free(x_values); free(rhs_values); free(rows); } HYPRE_IJVectorAssemble(b); /* As with the matrix, for testing purposes, one may wish to read in a rhs: HYPRE_IJVectorRead( <filename>, MPI_COMM_WORLD, HYPRE_PARCSR, &b ); as an alternative to the following sequence of HYPRE_IJVectors calls: Create, SetObjectType, Initialize, SetValues, and Assemble */ HYPRE_IJVectorGetObject(b, (void **) &par_b); HYPRE_IJVectorAssemble(x); HYPRE_IJVectorGetObject(x, (void **) &par_x); /* Print out the system - files names will be IJ.out.A.XXXXX and IJ.out.b.XXXXX, where XXXXX = processor id */ if (print_system) { HYPRE_IJMatrixPrint(A, "IJ.out.A"); HYPRE_IJVectorPrint(b, "IJ.out.b"); } /* Choose a solver and solve the system */ /* AMG */ if (solver_id == 0) { HYPRE_Int num_iterations; double final_res_norm; /* Create solver */ HYPRE_BoomerAMGCreate(&solver); /* Set some parameters (See Reference Manual for more parameters) */ HYPRE_BoomerAMGSetPrintLevel(solver, 3); /* print solve info + parameters */ HYPRE_BoomerAMGSetCoarsenType(solver, 6); /* Falgout coarsening */ HYPRE_BoomerAMGSetRelaxType(solver, 3); /* G-S/Jacobi hybrid relaxation */ HYPRE_BoomerAMGSetNumSweeps(solver, 1); /* Sweeeps on each level */ HYPRE_BoomerAMGSetMaxLevels(solver, 20); /* maximum number of levels */ HYPRE_BoomerAMGSetTol(solver, 1e-7); /* conv. tolerance */ /* Now setup and solve! */ HYPRE_BoomerAMGSetup(solver, parcsr_A, par_b, par_x); HYPRE_BoomerAMGSolve(solver, parcsr_A, par_b, par_x); /* Run info - needed logging turned on */ HYPRE_BoomerAMGGetNumIterations(solver, &num_iterations); HYPRE_BoomerAMGGetFinalRelativeResidualNorm(solver, &final_res_norm); if (myid == 0) { printf("\n"); printf("Iterations = %lld\n", num_iterations); printf("Final Relative Residual Norm = %e\n", final_res_norm); printf("\n"); } /* Destroy solver */ HYPRE_BoomerAMGDestroy(solver); } /* PCG */ else if (solver_id == 50) { HYPRE_Int num_iterations; double final_res_norm; /* Create solver */ HYPRE_ParCSRPCGCreate(MPI_COMM_WORLD, &solver); /* Set some parameters (See Reference Manual for more parameters) */ HYPRE_PCGSetMaxIter(solver, 1000); /* max iterations */ HYPRE_PCGSetTol(solver, 1e-7); /* conv. tolerance */ HYPRE_PCGSetTwoNorm(solver, 1); /* use the two norm as the stopping criteria */ HYPRE_PCGSetPrintLevel(solver, 2); /* prints out the iteration info */ HYPRE_PCGSetLogging(solver, 1); /* needed to get run info later */ /* Now setup and solve! */ HYPRE_ParCSRPCGSetup(solver, parcsr_A, par_b, par_x); HYPRE_ParCSRPCGSolve(solver, parcsr_A, par_b, par_x); /* Run info - needed logging turned on */ HYPRE_PCGGetNumIterations(solver, &num_iterations); HYPRE_PCGGetFinalRelativeResidualNorm(solver, &final_res_norm); if (myid == 0) { printf("\n"); printf("Iterations = %lld\n", num_iterations); printf("Final Relative Residual Norm = %e\n", final_res_norm); printf("\n"); } /* Destroy solver */ HYPRE_ParCSRPCGDestroy(solver); } /* PCG with AMG preconditioner */ else if (solver_id == 1) { HYPRE_Int num_iterations; double final_res_norm; /* Create solver */ HYPRE_ParCSRPCGCreate(MPI_COMM_WORLD, &solver); /* Set some parameters (See Reference Manual for more parameters) */ HYPRE_PCGSetMaxIter(solver, 1000); /* max iterations */ HYPRE_PCGSetTol(solver, 1e-7); /* conv. tolerance */ HYPRE_PCGSetTwoNorm(solver, 1); /* use the two norm as the stopping criteria */ HYPRE_PCGSetPrintLevel(solver, 2); /* print solve info */ HYPRE_PCGSetLogging(solver, 1); /* needed to get run info later */ /* Now set up the AMG preconditioner and specify any parameters */ HYPRE_BoomerAMGCreate(&precond); HYPRE_BoomerAMGSetPrintLevel(precond, 1); /* print amg solution info */ HYPRE_BoomerAMGSetCoarsenType(precond, 6); HYPRE_BoomerAMGSetRelaxType(precond, 6); /* Sym G.S./Jacobi hybrid */ HYPRE_BoomerAMGSetNumSweeps(precond, 1); HYPRE_BoomerAMGSetTol(precond, 0.0); /* conv. tolerance zero */ HYPRE_BoomerAMGSetMaxIter(precond, 1); /* do only one iteration! */ /* Set the PCG preconditioner */ HYPRE_PCGSetPrecond(solver, (HYPRE_PtrToSolverFcn) HYPRE_BoomerAMGSolve, (HYPRE_PtrToSolverFcn) HYPRE_BoomerAMGSetup, precond); /* Now setup and solve! */ HYPRE_ParCSRPCGSetup(solver, parcsr_A, par_b, par_x); HYPRE_ParCSRPCGSolve(solver, parcsr_A, par_b, par_x); /* Run info - needed logging turned on */ HYPRE_PCGGetNumIterations(solver, &num_iterations); HYPRE_PCGGetFinalRelativeResidualNorm(solver, &final_res_norm); if (myid == 0) { printf("\n"); printf("Iterations = %lld\n", num_iterations); printf("Final Relative Residual Norm = %e\n", final_res_norm); printf("\n"); } /* Destroy solver and preconditioner */ HYPRE_ParCSRPCGDestroy(solver); HYPRE_BoomerAMGDestroy(precond); } /* PCG with Parasails Preconditioner */ else if (solver_id == 8) { HYPRE_Int num_iterations; double final_res_norm; int sai_max_levels = 1; double sai_threshold = 0.1; double sai_filter = 0.05; int sai_sym = 1; /* Create solver */ HYPRE_ParCSRPCGCreate(MPI_COMM_WORLD, &solver); /* Set some parameters (See Reference Manual for more parameters) */ HYPRE_PCGSetMaxIter(solver, 1000); /* max iterations */ HYPRE_PCGSetTol(solver, 1e-7); /* conv. tolerance */ HYPRE_PCGSetTwoNorm(solver, 1); /* use the two norm as the stopping criteria */ HYPRE_PCGSetPrintLevel(solver, 2); /* print solve info */ HYPRE_PCGSetLogging(solver, 1); /* needed to get run info later */ /* Now set up the ParaSails preconditioner and specify any parameters */ HYPRE_ParaSailsCreate(MPI_COMM_WORLD, &precond); /* Set some parameters (See Reference Manual for more parameters) */ HYPRE_ParaSailsSetParams(precond, sai_threshold, sai_max_levels); HYPRE_ParaSailsSetFilter(precond, sai_filter); HYPRE_ParaSailsSetSym(precond, sai_sym); HYPRE_ParaSailsSetLogging(precond, 3); /* Set the PCG preconditioner */ HYPRE_PCGSetPrecond(solver, (HYPRE_PtrToSolverFcn) HYPRE_ParaSailsSolve, (HYPRE_PtrToSolverFcn) HYPRE_ParaSailsSetup, precond); /* Now setup and solve! */ HYPRE_ParCSRPCGSetup(solver, parcsr_A, par_b, par_x); HYPRE_ParCSRPCGSolve(solver, parcsr_A, par_b, par_x); /* Run info - needed logging turned on */ HYPRE_PCGGetNumIterations(solver, &num_iterations); HYPRE_PCGGetFinalRelativeResidualNorm(solver, &final_res_norm); if (myid == 0) { printf("\n"); printf("Iterations = %lld\n", num_iterations); printf("Final Relative Residual Norm = %e\n", final_res_norm); printf("\n"); } /* Destory solver and preconditioner */ HYPRE_ParCSRPCGDestroy(solver); HYPRE_ParaSailsDestroy(precond); } /* Flexible GMRES with AMG Preconditioner */ else if (solver_id == 61) { HYPRE_Int num_iterations; double final_res_norm; int restart = 30; int modify = 1; /* Create solver */ HYPRE_ParCSRFlexGMRESCreate(MPI_COMM_WORLD, &solver); /* Set some parameters (See Reference Manual for more parameters) */ HYPRE_FlexGMRESSetKDim(solver, restart); HYPRE_FlexGMRESSetMaxIter(solver, 1000); /* max iterations */ HYPRE_FlexGMRESSetTol(solver, 1e-7); /* conv. tolerance */ HYPRE_FlexGMRESSetPrintLevel(solver, 2); /* print solve info */ HYPRE_FlexGMRESSetLogging(solver, 1); /* needed to get run info later */ /* Now set up the AMG preconditioner and specify any parameters */ HYPRE_BoomerAMGCreate(&precond); HYPRE_BoomerAMGSetPrintLevel(precond, 1); /* print amg solution info */ HYPRE_BoomerAMGSetCoarsenType(precond, 6); HYPRE_BoomerAMGSetRelaxType(precond, 6); /* Sym G.S./Jacobi hybrid */ HYPRE_BoomerAMGSetNumSweeps(precond, 1); HYPRE_BoomerAMGSetTol(precond, 0.0); /* conv. tolerance zero */ HYPRE_BoomerAMGSetMaxIter(precond, 1); /* do only one iteration! */ /* Set the FlexGMRES preconditioner */ HYPRE_FlexGMRESSetPrecond(solver, (HYPRE_PtrToSolverFcn) HYPRE_BoomerAMGSolve, (HYPRE_PtrToSolverFcn) HYPRE_BoomerAMGSetup, precond); if (modify) /* this is an optional call - if you don't call it, hypre_FlexGMRESModifyPCDefault is used - which does nothing. Otherwise, you can define your own, similar to the one used here */ HYPRE_FlexGMRESSetModifyPC( solver, (HYPRE_PtrToModifyPCFcn) hypre_FlexGMRESModifyPCAMGExample); /* Now setup and solve! */ HYPRE_ParCSRFlexGMRESSetup(solver, parcsr_A, par_b, par_x); HYPRE_ParCSRFlexGMRESSolve(solver, parcsr_A, par_b, par_x); /* Run info - needed logging turned on */ HYPRE_FlexGMRESGetNumIterations(solver, &num_iterations); HYPRE_FlexGMRESGetFinalRelativeResidualNorm(solver, &final_res_norm); if (myid == 0) { printf("\n"); printf("Iterations = %lld\n", num_iterations); printf("Final Relative Residual Norm = %e\n", final_res_norm); printf("\n"); } /* Destory solver and preconditioner */ HYPRE_ParCSRFlexGMRESDestroy(solver); HYPRE_BoomerAMGDestroy(precond); } else { if (myid ==0) printf("Invalid solver id specified.\n"); } /* Print the solution */ if (print_solution) HYPRE_IJVectorPrint(x, "ij.out.x"); /* Clean up */ HYPRE_IJMatrixDestroy(A); HYPRE_IJVectorDestroy(b); HYPRE_IJVectorDestroy(x); /* Finalize MPI*/ MPI_Finalize(); return(0); }