static void ar5416AniCckErrTrigger(struct ath_hal *ah) { struct ath_hal_5212 *ahp = AH5212(ah); const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan; struct ar5212AniState *aniState; const struct ar5212AniParams *params; HALASSERT(chan != AH_NULL); if (!ANI_ENA(ah)) return; /* first, raise noise immunity level, up to max */ aniState = ahp->ah_curani; params = aniState->params; if ((AH5416(ah)->ah_ani_function & (1 << HAL_ANI_NOISE_IMMUNITY_LEVEL) && aniState->noiseImmunityLevel+1 < params->maxNoiseImmunityLevel)) { ar5416AniControl(ah, HAL_ANI_NOISE_IMMUNITY_LEVEL, aniState->noiseImmunityLevel + 1); return; } if (ANI_ENA_RSSI(ah)) { int32_t rssi = BEACON_RSSI(ahp); if (rssi > params->rssiThrLow) { /* * Beacon signal in mid and high range, * raise firstep level. */ if (aniState->firstepLevel+1 < params->maxFirstepLevel) ar5416AniControl(ah, HAL_ANI_FIRSTEP_LEVEL, aniState->firstepLevel + 1); } else { /* * Beacon rssi is low, zero firstep level to maximize * CCK sensitivity in 11b/g mode. */ if (IEEE80211_IS_CHAN_CCK(chan)) { if (aniState->firstepLevel > 0) ar5416AniControl(ah, HAL_ANI_FIRSTEP_LEVEL, 0); } } } }
/* * Sets the transmit power in the baseband for the given * operating channel and mode. */ static HAL_BOOL setRateTable(struct ath_hal *ah, const struct ieee80211_channel *chan, int16_t tpcScaleReduction, int16_t powerLimit, int16_t *pMinPower, int16_t *pMaxPower) { u_int16_t ratesArray[16]; u_int16_t *rpow = ratesArray; u_int16_t twiceMaxRDPower, twiceMaxEdgePower, twiceMaxEdgePowerCck; int8_t twiceAntennaGain, twiceAntennaReduction; TRGT_POWER_INFO targetPowerOfdm, targetPowerCck; RD_EDGES_POWER *rep; int16_t scaledPower; u_int8_t cfgCtl; twiceMaxRDPower = chan->ic_maxregpower * 2; *pMaxPower = -MAX_RATE_POWER; *pMinPower = MAX_RATE_POWER; /* Get conformance test limit maximum for this channel */ cfgCtl = ath_hal_getctl(ah, chan); rep = findEdgePower(ah, cfgCtl); if (rep != AH_NULL) twiceMaxEdgePower = ar5212GetMaxEdgePower(chan->ic_freq, rep); else twiceMaxEdgePower = MAX_RATE_POWER; if (IEEE80211_IS_CHAN_G(chan)) { /* Check for a CCK CTL for 11G CCK powers */ cfgCtl = (cfgCtl & 0xFC) | 0x01; rep = findEdgePower(ah, cfgCtl); if (rep != AH_NULL) twiceMaxEdgePowerCck = ar5212GetMaxEdgePower(chan->ic_freq, rep); else twiceMaxEdgePowerCck = MAX_RATE_POWER; } else { /* Set the 11B cck edge power to the one found before */ twiceMaxEdgePowerCck = twiceMaxEdgePower; } /* Get Antenna Gain reduction */ if (IEEE80211_IS_CHAN_5GHZ(chan)) { twiceAntennaGain = antennaGainMax[0]; } else { twiceAntennaGain = antennaGainMax[1]; } twiceAntennaReduction = ath_hal_getantennareduction(ah, chan, twiceAntennaGain); if (IEEE80211_IS_CHAN_OFDM(chan)) { /* Get final OFDM target powers */ if (IEEE80211_IS_CHAN_G(chan)) { /* TODO - add Turbo 2.4 to this mode check */ ar5212GetTargetPowers(ah, chan, trgtPwr_11g, numTargetPwr_11g, &targetPowerOfdm); } else { ar5212GetTargetPowers(ah, chan, trgtPwr_11a, numTargetPwr_11a, &targetPowerOfdm); } /* Get Maximum OFDM power */ /* Minimum of target and edge powers */ scaledPower = AH_MIN(twiceMaxEdgePower, twiceMaxRDPower - twiceAntennaReduction); /* * If turbo is set, reduce power to keep power * consumption under 2 Watts. Note that we always do * this unless specially configured. Then we limit * power only for non-AP operation. */ if (IEEE80211_IS_CHAN_TURBO(chan) #ifdef AH_ENABLE_AP_SUPPORT && AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP #endif ) { /* * If turbo is set, reduce power to keep power * consumption under 2 Watts */ if (eeversion >= AR_EEPROM_VER3_1) scaledPower = AH_MIN(scaledPower, turbo2WMaxPower5); /* * EEPROM version 4.0 added an additional * constraint on 2.4GHz channels. */ if (eeversion >= AR_EEPROM_VER4_0 && IEEE80211_IS_CHAN_2GHZ(chan)) scaledPower = AH_MIN(scaledPower, turbo2WMaxPower2); } /* Reduce power by max regulatory domain allowed restrictions */ scaledPower -= (tpcScaleReduction * 2); scaledPower = (scaledPower < 0) ? 0 : scaledPower; scaledPower = AH_MIN(scaledPower, powerLimit); scaledPower = AH_MIN(scaledPower, targetPowerOfdm.twicePwr6_24); /* Set OFDM rates 9, 12, 18, 24, 36, 48, 54, XR */ rpow[0] = rpow[1] = rpow[2] = rpow[3] = rpow[4] = scaledPower; rpow[5] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr36); rpow[6] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr48); rpow[7] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr54); #ifdef notyet if (eeversion >= AR_EEPROM_VER4_0) { /* Setup XR target power from EEPROM */ rpow[15] = AH_MIN(scaledPower, IS_CHAN_2GHZ(chan) ? xrTargetPower2 : xrTargetPower5); } else { /* XR uses 6mb power */ rpow[15] = rpow[0]; } #else rpow[15] = rpow[0]; #endif *pMinPower = rpow[7]; *pMaxPower = rpow[0]; #if 0 ahp->ah_ofdmTxPower = rpow[0]; #endif HALDEBUG(ah, HAL_DEBUG_ANY, "%s: MaxRD: %d TurboMax: %d MaxCTL: %d " "TPC_Reduction %d\n", __func__, twiceMaxRDPower, turbo2WMaxPower5, twiceMaxEdgePower, tpcScaleReduction * 2); } if (IEEE80211_IS_CHAN_CCK(chan)) { /* Get final CCK target powers */ ar5212GetTargetPowers(ah, chan, trgtPwr_11b, numTargetPwr_11b, &targetPowerCck); /* Reduce power by max regulatory domain allowed restrictions */ scaledPower = AH_MIN(twiceMaxEdgePowerCck, twiceMaxRDPower - twiceAntennaReduction); scaledPower -= (tpcScaleReduction * 2); scaledPower = (scaledPower < 0) ? 0 : scaledPower; scaledPower = AH_MIN(scaledPower, powerLimit); rpow[8] = (scaledPower < 1) ? 1 : scaledPower; /* Set CCK rates 2L, 2S, 5.5L, 5.5S, 11L, 11S */ rpow[8] = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24); rpow[9] = AH_MIN(scaledPower, targetPowerCck.twicePwr36); rpow[10] = rpow[9]; rpow[11] = AH_MIN(scaledPower, targetPowerCck.twicePwr48); rpow[12] = rpow[11]; rpow[13] = AH_MIN(scaledPower, targetPowerCck.twicePwr54); rpow[14] = rpow[13]; /* Set min/max power based off OFDM values or initialization */ if (rpow[13] < *pMinPower) *pMinPower = rpow[13]; if (rpow[9] > *pMaxPower) *pMaxPower = rpow[9]; } #if 0 ahp->ah_tx6PowerInHalfDbm = *pMaxPower; #endif return AH_TRUE; }
static void ar5416AniOfdmErrTrigger(struct ath_hal *ah) { struct ath_hal_5212 *ahp = AH5212(ah); const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan; struct ar5212AniState *aniState; const struct ar5212AniParams *params; HALASSERT(chan != AH_NULL); if (!ANI_ENA(ah)) return; aniState = ahp->ah_curani; params = aniState->params; /* First, raise noise immunity level, up to max */ if (aniState->noiseImmunityLevel+1 < params->maxNoiseImmunityLevel) { ar5416AniControl(ah, HAL_ANI_NOISE_IMMUNITY_LEVEL, aniState->noiseImmunityLevel + 1); return; } /* then, raise spur immunity level, up to max */ if (aniState->spurImmunityLevel+1 < params->maxSpurImmunityLevel) { ar5416AniControl(ah, HAL_ANI_SPUR_IMMUNITY_LEVEL, aniState->spurImmunityLevel + 1); return; } if (ANI_ENA_RSSI(ah)) { int32_t rssi = BEACON_RSSI(ahp); if (rssi > params->rssiThrHigh) { /* * Beacon rssi is high, can turn off ofdm * weak sig detect. */ if (!aniState->ofdmWeakSigDetectOff) { ar5416AniControl(ah, HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION, AH_FALSE); ar5416AniControl(ah, HAL_ANI_SPUR_IMMUNITY_LEVEL, 0); return; } /* * If weak sig detect is already off, as last resort, * raise firstep level */ if (aniState->firstepLevel+1 < params->maxFirstepLevel) { ar5416AniControl(ah, HAL_ANI_FIRSTEP_LEVEL, aniState->firstepLevel + 1); return; } } else if (rssi > params->rssiThrLow) { /* * Beacon rssi in mid range, need ofdm weak signal * detect, but we can raise firststepLevel. */ if (aniState->ofdmWeakSigDetectOff) ar5416AniControl(ah, HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION, AH_TRUE); if (aniState->firstepLevel+1 < params->maxFirstepLevel) ar5416AniControl(ah, HAL_ANI_FIRSTEP_LEVEL, aniState->firstepLevel + 1); return; } else { /* * Beacon rssi is low, if in 11b/g mode, turn off ofdm * weak signal detection and zero firstepLevel to * maximize CCK sensitivity */ if (IEEE80211_IS_CHAN_CCK(chan)) { if (!aniState->ofdmWeakSigDetectOff) ar5416AniControl(ah, HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION, AH_FALSE); if (aniState->firstepLevel > 0) ar5416AniControl(ah, HAL_ANI_FIRSTEP_LEVEL, 0); return; } } } }
/* * Places the hardware into reset and then pulls it out of reset * * TODO: Only write the PLL if we're changing to or from CCK mode * * WARNING: The order of the PLL and mode registers must be correct. */ HAL_BOOL ar5312ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan) { OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0); /* * Reset the HW */ if (!ar5312SetResetReg(ah, AR_RC_MAC | AR_RC_BB)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: ar5312SetResetReg failed\n", __func__); return AH_FALSE; } /* Bring out of sleep mode (AGAIN) */ if (!ar5312SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: ar5312SetPowerMode failed\n", __func__); return AH_FALSE; } /* Clear warm reset register */ if (!ar5312SetResetReg(ah, 0)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: ar5312SetResetReg failed\n", __func__); return AH_FALSE; } /* * Perform warm reset before the mode/PLL/turbo registers * are changed in order to deactivate the radio. Mode changes * with an active radio can result in corrupted shifts to the * radio device. */ /* * Set CCK and Turbo modes correctly. */ if (chan != AH_NULL) { /* NB: can be null during attach */ uint32_t rfMode, phyPLL = 0, curPhyPLL, turbo; if (IS_RAD5112_ANY(ah)) { rfMode = AR_PHY_MODE_AR5112; if (!IS_5315(ah)) { if (IEEE80211_IS_CHAN_CCK(chan)) { phyPLL = AR_PHY_PLL_CTL_44_5312; } else { if (IEEE80211_IS_CHAN_HALF(chan)) { phyPLL = AR_PHY_PLL_CTL_40_5312_HALF; } else if (IEEE80211_IS_CHAN_QUARTER(chan)) { phyPLL = AR_PHY_PLL_CTL_40_5312_QUARTER; } else { phyPLL = AR_PHY_PLL_CTL_40_5312; } } } else { if (IEEE80211_IS_CHAN_CCK(chan)) phyPLL = AR_PHY_PLL_CTL_44_5112; else phyPLL = AR_PHY_PLL_CTL_40_5112; if (IEEE80211_IS_CHAN_HALF(chan)) phyPLL |= AR_PHY_PLL_CTL_HALF; else if (IEEE80211_IS_CHAN_QUARTER(chan)) phyPLL |= AR_PHY_PLL_CTL_QUARTER; } } else { rfMode = AR_PHY_MODE_AR5111; if (IEEE80211_IS_CHAN_CCK(chan)) phyPLL = AR_PHY_PLL_CTL_44; else phyPLL = AR_PHY_PLL_CTL_40; if (IEEE80211_IS_CHAN_HALF(chan)) phyPLL = AR_PHY_PLL_CTL_HALF; else if (IEEE80211_IS_CHAN_QUARTER(chan)) phyPLL = AR_PHY_PLL_CTL_QUARTER; } if (IEEE80211_IS_CHAN_G(chan)) rfMode |= AR_PHY_MODE_DYNAMIC; else if (IEEE80211_IS_CHAN_OFDM(chan)) rfMode |= AR_PHY_MODE_OFDM; else rfMode |= AR_PHY_MODE_CCK; if (IEEE80211_IS_CHAN_5GHZ(chan)) rfMode |= AR_PHY_MODE_RF5GHZ; else rfMode |= AR_PHY_MODE_RF2GHZ; turbo = IEEE80211_IS_CHAN_TURBO(chan) ? (AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT) : 0; curPhyPLL = OS_REG_READ(ah, AR_PHY_PLL_CTL); /* * PLL, Mode, and Turbo values must be written in the correct * order to ensure: * - The PLL cannot be set to 44 unless the CCK or DYNAMIC * mode bit is set * - Turbo cannot be set at the same time as CCK or DYNAMIC */ if (IEEE80211_IS_CHAN_CCK(chan)) { OS_REG_WRITE(ah, AR_PHY_TURBO, turbo); OS_REG_WRITE(ah, AR_PHY_MODE, rfMode); if (curPhyPLL != phyPLL) { OS_REG_WRITE(ah, AR_PHY_PLL_CTL, phyPLL); /* Wait for the PLL to settle */ OS_DELAY(PLL_SETTLE_DELAY); } } else { if (curPhyPLL != phyPLL) { OS_REG_WRITE(ah, AR_PHY_PLL_CTL, phyPLL); /* Wait for the PLL to settle */ OS_DELAY(PLL_SETTLE_DELAY); } OS_REG_WRITE(ah, AR_PHY_TURBO, turbo); OS_REG_WRITE(ah, AR_PHY_MODE, rfMode); } } return AH_TRUE; }