/* * Return 0 if the selector 'sel' in within the limits of the GDT/LDT * and non-zero otherwise. */ static int desc_table_limit_check(struct vmctx *ctx, int vcpu, uint16_t sel) { uint64_t base; uint32_t limit, access; int error, reg; reg = ISLDT(sel) ? VM_REG_GUEST_LDTR : VM_REG_GUEST_GDTR; error = vm_get_desc(ctx, vcpu, reg, &base, &limit, &access); assert(error == 0); if (reg == VM_REG_GUEST_LDTR) { if (SEG_DESC_UNUSABLE(access) || !SEG_DESC_PRESENT(access)) return (-1); } if (limit < SEL_LIMIT(sel)) return (-1); else return (0); }
int db_segsize(struct trapframe *tfp) { struct proc_ldt *plp; struct segment_descriptor *sdp; int sel; if (tfp == NULL) return (32); if (tfp->tf_eflags & PSL_VM) return (16); sel = tfp->tf_cs & 0xffff; if (sel == GSEL(GCODE_SEL, SEL_KPL)) return (32); /* Rare cases follow. User mode cases are currently unreachable. */ if (ISLDT(sel)) { plp = curthread->td_proc->p_md.md_ldt; sdp = (plp != NULL) ? &plp->ldt_sd : &ldt[0].sd; } else { sdp = &gdt[PCPU_GET(cpuid) * NGDT].sd; } return (sdp[IDXSEL(sel)].sd_def32 == 0 ? 16 : 32); }
/* * Read the TSS descriptor referenced by 'sel' into 'desc'. * * Returns 0 on success. * Returns 1 if an exception was injected into the guest. * Returns -1 otherwise. */ static int read_tss_descriptor(struct vmctx *ctx, int vcpu, struct vm_task_switch *ts, uint16_t sel, struct user_segment_descriptor *desc) { struct vm_guest_paging sup_paging; int error; assert(!ISLDT(sel)); assert(IDXSEL(sel) != 0); /* Fetch the new TSS descriptor */ if (desc_table_limit_check(ctx, vcpu, sel)) { if (ts->reason == TSR_IRET) sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext); else sel_exception(ctx, vcpu, IDT_GP, sel, ts->ext); return (1); } sup_paging = ts->paging; sup_paging.cpl = 0; /* implicit supervisor mode */ error = desc_table_read(ctx, vcpu, &sup_paging, sel, desc); return (error); }
/* * Read/write the segment descriptor 'desc' into the GDT/LDT slot referenced * by the selector 'sel'. * * Returns 0 on success. * Returns 1 if an exception was injected into the guest. * Returns -1 otherwise. */ static int desc_table_rw(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, uint16_t sel, struct user_segment_descriptor *desc, bool doread) { struct iovec iov[2]; uint64_t base; uint32_t limit, access; int error, reg; reg = ISLDT(sel) ? VM_REG_GUEST_LDTR : VM_REG_GUEST_GDTR; error = vm_get_desc(ctx, vcpu, reg, &base, &limit, &access); assert(error == 0); assert(limit >= SEL_LIMIT(sel)); error = vm_copy_setup(ctx, vcpu, paging, base + SEL_START(sel), sizeof(*desc), doread ? PROT_READ : PROT_WRITE, iov, nitems(iov)); if (error == 0) { if (doread) vm_copyin(ctx, vcpu, iov, desc, sizeof(*desc)); else vm_copyout(ctx, vcpu, desc, iov, sizeof(*desc)); } return (error); }
int amd64_set_ldt(struct proc *p, void *args, register_t *retval) { int error, i, n; struct pcb *pcb = &p->p_addr->u_pcb; pmap_t pmap = p->p_vmspace->vm_map.pmap; struct amd64_set_ldt_args ua; union descriptor desc; if ((error = copyin(args, &ua, sizeof(ua))) != 0) return (error); #ifdef LDT_DEBUG printf("amd64_set_ldt: start=%d num=%d descs=%p\n", ua.start, ua.num, ua.desc); #endif if (ua.start < 0 || ua.num < 0) return (EINVAL); if (ua.start > 8192 || (ua.start + ua.num) > 8192) return (EINVAL); /* * XXX LOCKING */ /* allocate user ldt */ if (pmap->pm_ldt == 0 || (ua.start + ua.num) > pmap->pm_ldt_len) { size_t old_len, new_len; union descriptor *old_ldt, *new_ldt; if (pmap->pm_flags & PMF_USER_LDT) { old_len = pmap->pm_ldt_len * sizeof(union descriptor); old_ldt = pmap->pm_ldt; } else { old_len = NLDT * sizeof(union descriptor); old_ldt = ldt; pmap->pm_ldt_len = 512; } while ((ua.start + ua.num) > pmap->pm_ldt_len) pmap->pm_ldt_len *= 2; new_len = pmap->pm_ldt_len * sizeof(union descriptor); new_ldt = (union descriptor *)uvm_km_alloc(kernel_map, new_len); memcpy(new_ldt, old_ldt, old_len); memset((caddr_t)new_ldt + old_len, 0, new_len - old_len); pmap->pm_ldt = new_ldt; if (pmap->pm_flags & PCB_USER_LDT) ldt_free(pmap); else pmap->pm_flags |= PCB_USER_LDT; ldt_alloc(pmap, new_ldt, new_len); pcb->pcb_ldt_sel = pmap->pm_ldt_sel; if (pcb == curpcb) lldt(pcb->pcb_ldt_sel); /* * XXX Need to notify other processors which may be * XXX currently using this pmap that they need to * XXX re-load the LDT. */ if (old_ldt != ldt) uvm_km_free(kernel_map, (vaddr_t)old_ldt, old_len); #ifdef LDT_DEBUG printf("amd64_set_ldt(%d): new_ldt=%p\n", p->p_pid, new_ldt); #endif } if (pcb == curpcb) savectx(curpcb); error = 0; /* Check descriptors for access violations. */ for (i = 0, n = ua.start; i < ua.num; i++, n++) { if ((error = copyin(&ua.desc[i], &desc, sizeof(desc))) != 0) return (error); switch (desc.sd.sd_type) { case SDT_SYSNULL: desc.sd.sd_p = 0; break; case SDT_SYS286CGT: case SDT_SYS386CGT: /* * Only allow call gates targeting a segment * in the LDT or a user segment in the fixed * part of the gdt. Segments in the LDT are * constrained (below) to be user segments. */ if (desc.gd.gd_p != 0 && !ISLDT(desc.gd.gd_selector) && ((IDXSEL(desc.gd.gd_selector) >= NGDT) || (gdt[IDXSEL(desc.gd.gd_selector)].sd.sd_dpl != SEL_UPL))) return (EACCES); break; case SDT_MEMEC: case SDT_MEMEAC: case SDT_MEMERC: case SDT_MEMERAC: /* Must be "present" if executable and conforming. */ if (desc.sd.sd_p == 0) return (EACCES); break; case SDT_MEMRO: case SDT_MEMROA: case SDT_MEMRW: case SDT_MEMRWA: case SDT_MEMROD: case SDT_MEMRODA: case SDT_MEMRWD: case SDT_MEMRWDA: case SDT_MEME: case SDT_MEMEA: case SDT_MEMER: case SDT_MEMERA: break; default: /* Only care if it's present. */ if (desc.sd.sd_p != 0) return (EACCES); break; } if (desc.sd.sd_p != 0) { /* Only user (ring-3) descriptors may be present. */ if (desc.sd.sd_dpl != SEL_UPL) return (EACCES); } } /* Now actually replace the descriptors. */ for (i = 0, n = ua.start; i < ua.num; i++, n++) { if ((error = copyin(&ua.desc[i], &desc, sizeof(desc))) != 0) goto out; pmap->pm_ldt[n] = desc; } *retval = ua.start; out: return (error); }
static int fasttrap_do_seg(fasttrap_tracepoint_t *tp, struct reg *rp, uintptr_t *addr) { proc_t *p = curproc; #ifdef __i386__ struct segment_descriptor *desc; #else struct user_segment_descriptor *desc; #endif uint16_t sel = 0, ndx, type; uintptr_t limit; switch (tp->ftt_segment) { case FASTTRAP_SEG_CS: sel = rp->r_cs; break; case FASTTRAP_SEG_DS: sel = rp->r_ds; break; case FASTTRAP_SEG_ES: sel = rp->r_es; break; case FASTTRAP_SEG_FS: sel = rp->r_fs; break; case FASTTRAP_SEG_GS: sel = rp->r_gs; break; case FASTTRAP_SEG_SS: sel = rp->r_ss; break; } /* * Make sure the given segment register specifies a user priority * selector rather than a kernel selector. */ if (ISPL(sel) != SEL_UPL) return (-1); ndx = IDXSEL(sel); /* * Check the bounds and grab the descriptor out of the specified * descriptor table. */ if (ISLDT(sel)) { #ifdef __i386__ if (ndx > p->p_md.md_ldt->ldt_len) return (-1); desc = (struct segment_descriptor *) p->p_md.md_ldt[ndx].ldt_base; #else if (ndx > max_ldt_segment) return (-1); desc = (struct user_segment_descriptor *) p->p_md.md_ldt[ndx].ldt_base; #endif } else { if (ndx >= NGDT) return (-1); #ifdef __i386__ desc = &gdt[ndx].sd; #else desc = &gdt[ndx]; #endif } /* * The descriptor must have user privilege level and it must be * present in memory. */ if (desc->sd_dpl != SEL_UPL || desc->sd_p != 1) return (-1); type = desc->sd_type; /* * If the S bit in the type field is not set, this descriptor can * only be used in system context. */ if ((type & 0x10) != 0x10) return (-1); limit = USD_GETLIMIT(desc) * (desc->sd_gran ? PAGESIZE : 1); if (tp->ftt_segment == FASTTRAP_SEG_CS) { /* * The code/data bit and readable bit must both be set. */ if ((type & 0xa) != 0xa) return (-1); if (*addr > limit) return (-1); } else { /* * The code/data bit must be clear. */ if ((type & 0x8) != 0) return (-1); /* * If the expand-down bit is clear, we just check the limit as * it would naturally be applied. Otherwise, we need to check * that the address is the range [limit + 1 .. 0xffff] or * [limit + 1 ... 0xffffffff] depending on if the default * operand size bit is set. */ if ((type & 0x4) == 0) { if (*addr > limit) return (-1); } else if (desc->sd_def32) { if (*addr < limit + 1 || 0xffff < *addr) return (-1); } else { if (*addr < limit + 1 || 0xffffffff < *addr) return (-1); } } *addr += USD_GETBASE(desc); return (0); }
int vmexit_task_switch(struct vmctx *ctx, struct vm_exit *vmexit, int *pvcpu) { struct seg_desc nt; struct tss32 oldtss, newtss; struct vm_task_switch *task_switch; struct vm_guest_paging *paging, sup_paging; struct user_segment_descriptor nt_desc, ot_desc; struct iovec nt_iov[2], ot_iov[2]; uint64_t cr0, ot_base; uint32_t eip, ot_lim, access; int error, ext, minlimit, nt_type, ot_type, vcpu; enum task_switch_reason reason; uint16_t nt_sel, ot_sel; task_switch = &vmexit->u.task_switch; nt_sel = task_switch->tsssel; ext = vmexit->u.task_switch.ext; reason = vmexit->u.task_switch.reason; paging = &vmexit->u.task_switch.paging; vcpu = *pvcpu; assert(paging->cpu_mode == CPU_MODE_PROTECTED); /* * Section 4.6, "Access Rights" in Intel SDM Vol 3. * The following page table accesses are implicitly supervisor mode: * - accesses to GDT or LDT to load segment descriptors * - accesses to the task state segment during task switch */ sup_paging = *paging; sup_paging.cpl = 0; /* implicit supervisor mode */ /* Fetch the new TSS descriptor */ error = read_tss_descriptor(ctx, vcpu, task_switch, nt_sel, &nt_desc); CHKERR(error); nt = usd_to_seg_desc(&nt_desc); /* Verify the type of the new TSS */ nt_type = SEG_DESC_TYPE(nt.access); if (nt_type != SDT_SYS386BSY && nt_type != SDT_SYS386TSS && nt_type != SDT_SYS286BSY && nt_type != SDT_SYS286TSS) { sel_exception(ctx, vcpu, IDT_TS, nt_sel, ext); goto done; } /* TSS descriptor must have present bit set */ if (!SEG_DESC_PRESENT(nt.access)) { sel_exception(ctx, vcpu, IDT_NP, nt_sel, ext); goto done; } /* * TSS must have a minimum length of 104 bytes for a 32-bit TSS and * 44 bytes for a 16-bit TSS. */ if (nt_type == SDT_SYS386BSY || nt_type == SDT_SYS386TSS) minlimit = 104 - 1; else if (nt_type == SDT_SYS286BSY || nt_type == SDT_SYS286TSS) minlimit = 44 - 1; else minlimit = 0; assert(minlimit > 0); if (nt.limit < minlimit) { sel_exception(ctx, vcpu, IDT_TS, nt_sel, ext); goto done; } /* TSS must be busy if task switch is due to IRET */ if (reason == TSR_IRET && !TSS_BUSY(nt_type)) { sel_exception(ctx, vcpu, IDT_TS, nt_sel, ext); goto done; } /* * TSS must be available (not busy) if task switch reason is * CALL, JMP, exception or interrupt. */ if (reason != TSR_IRET && TSS_BUSY(nt_type)) { sel_exception(ctx, vcpu, IDT_GP, nt_sel, ext); goto done; } /* Fetch the new TSS */ error = vm_copy_setup(ctx, vcpu, &sup_paging, nt.base, minlimit + 1, PROT_READ | PROT_WRITE, nt_iov, nitems(nt_iov)); CHKERR(error); vm_copyin(ctx, vcpu, nt_iov, &newtss, minlimit + 1); /* Get the old TSS selector from the guest's task register */ ot_sel = GETREG(ctx, vcpu, VM_REG_GUEST_TR); if (ISLDT(ot_sel) || IDXSEL(ot_sel) == 0) { /* * This might happen if a task switch was attempted without * ever loading the task register with LTR. In this case the * TR would contain the values from power-on: * (sel = 0, base = 0, limit = 0xffff). */ sel_exception(ctx, vcpu, IDT_TS, ot_sel, task_switch->ext); goto done; } /* Get the old TSS base and limit from the guest's task register */ error = vm_get_desc(ctx, vcpu, VM_REG_GUEST_TR, &ot_base, &ot_lim, &access); assert(error == 0); assert(!SEG_DESC_UNUSABLE(access) && SEG_DESC_PRESENT(access)); ot_type = SEG_DESC_TYPE(access); assert(ot_type == SDT_SYS386BSY || ot_type == SDT_SYS286BSY); /* Fetch the old TSS descriptor */ error = read_tss_descriptor(ctx, vcpu, task_switch, ot_sel, &ot_desc); CHKERR(error); /* Get the old TSS */ error = vm_copy_setup(ctx, vcpu, &sup_paging, ot_base, minlimit + 1, PROT_READ | PROT_WRITE, ot_iov, nitems(ot_iov)); CHKERR(error); vm_copyin(ctx, vcpu, ot_iov, &oldtss, minlimit + 1); /* * Clear the busy bit in the old TSS descriptor if the task switch * due to an IRET or JMP instruction. */ if (reason == TSR_IRET || reason == TSR_JMP) { ot_desc.sd_type &= ~0x2; error = desc_table_write(ctx, vcpu, &sup_paging, ot_sel, &ot_desc); CHKERR(error); } if (nt_type == SDT_SYS286BSY || nt_type == SDT_SYS286TSS) { fprintf(stderr, "Task switch to 16-bit TSS not supported\n"); return (VMEXIT_ABORT); } /* Save processor state in old TSS */ eip = vmexit->rip + vmexit->inst_length; tss32_save(ctx, vcpu, task_switch, eip, &oldtss, ot_iov); /* * If the task switch was triggered for any reason other than IRET * then set the busy bit in the new TSS descriptor. */ if (reason != TSR_IRET) { nt_desc.sd_type |= 0x2; error = desc_table_write(ctx, vcpu, &sup_paging, nt_sel, &nt_desc); CHKERR(error); } /* Update task register to point at the new TSS */ SETREG(ctx, vcpu, VM_REG_GUEST_TR, nt_sel); /* Update the hidden descriptor state of the task register */ nt = usd_to_seg_desc(&nt_desc); update_seg_desc(ctx, vcpu, VM_REG_GUEST_TR, &nt); /* Set CR0.TS */ cr0 = GETREG(ctx, vcpu, VM_REG_GUEST_CR0); SETREG(ctx, vcpu, VM_REG_GUEST_CR0, cr0 | CR0_TS); /* * We are now committed to the task switch. Any exceptions encountered * after this point will be handled in the context of the new task and * the saved instruction pointer will belong to the new task. */ vmexit->rip = newtss.tss_eip; vmexit->inst_length = 0; /* Load processor state from new TSS */ error = tss32_restore(ctx, vcpu, task_switch, ot_sel, &newtss, nt_iov); CHKERR(error); /* * Section "Interrupt Tasks" in Intel SDM, Vol 3: if an exception * caused an error code to be generated, this error code is copied * to the stack of the new task. */ if (task_switch->errcode_valid) { assert(task_switch->ext); assert(task_switch->reason == TSR_IDT_GATE); error = push_errcode(ctx, vcpu, &task_switch->paging, nt_type, task_switch->errcode); CHKERR(error); } /* * Treatment of virtual-NMI blocking if NMI is delivered through * a task gate. * * Section "Architectural State Before A VM Exit", Intel SDM, Vol3: * If the virtual NMIs VM-execution control is 1, VM entry injects * an NMI, and delivery of the NMI causes a task switch that causes * a VM exit, virtual-NMI blocking is in effect before the VM exit * commences. * * Thus, virtual-NMI blocking is in effect at the time of the task * switch VM exit. */ /* * Treatment of virtual-NMI unblocking on IRET from NMI handler task. * * Section "Changes to Instruction Behavior in VMX Non-Root Operation" * If "virtual NMIs" control is 1 IRET removes any virtual-NMI blocking. * This unblocking of virtual-NMI occurs even if IRET causes a fault. * * Thus, virtual-NMI blocking is cleared at the time of the task switch * VM exit. */ /* * If the task switch was triggered by an event delivered through * the IDT then extinguish the pending event from the vcpu's * exitintinfo. */ if (task_switch->reason == TSR_IDT_GATE) { error = vm_set_intinfo(ctx, vcpu, 0); assert(error == 0); } /* * XXX should inject debug exception if 'T' bit is 1 */ done: return (VMEXIT_CONTINUE); }
/* * Validate the descriptor 'seg_desc' associated with 'segment'. * * Returns 0 on success. * Returns 1 if an exception was injected into the guest. * Returns -1 otherwise. */ static int validate_seg_desc(struct vmctx *ctx, int vcpu, struct vm_task_switch *ts, int segment, struct seg_desc *seg_desc) { struct vm_guest_paging sup_paging; struct user_segment_descriptor usd; int error, idtvec; int cpl, dpl, rpl; uint16_t sel, cs; bool ldtseg, codeseg, stackseg, dataseg, conforming; ldtseg = codeseg = stackseg = dataseg = false; switch (segment) { case VM_REG_GUEST_LDTR: ldtseg = true; break; case VM_REG_GUEST_CS: codeseg = true; break; case VM_REG_GUEST_SS: stackseg = true; break; case VM_REG_GUEST_DS: case VM_REG_GUEST_ES: case VM_REG_GUEST_FS: case VM_REG_GUEST_GS: dataseg = true; break; default: assert(0); } /* Get the segment selector */ sel = GETREG(ctx, vcpu, segment); /* LDT selector must point into the GDT */ if (ldtseg && ISLDT(sel)) { sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext); return (1); } /* Descriptor table limit check */ if (desc_table_limit_check(ctx, vcpu, sel)) { sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext); return (1); } /* NULL selector */ if (IDXSEL(sel) == 0) { /* Code and stack segment selectors cannot be NULL */ if (codeseg || stackseg) { sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext); return (1); } seg_desc->base = 0; seg_desc->limit = 0; seg_desc->access = 0x10000; /* unusable */ return (0); } /* Read the descriptor from the GDT/LDT */ sup_paging = ts->paging; sup_paging.cpl = 0; /* implicit supervisor mode */ error = desc_table_read(ctx, vcpu, &sup_paging, sel, &usd); if (error) return (error); /* Verify that the descriptor type is compatible with the segment */ if ((ldtseg && !ldt_desc(usd.sd_type)) || (codeseg && !code_desc(usd.sd_type)) || (dataseg && !data_desc(usd.sd_type)) || (stackseg && !stack_desc(usd.sd_type))) { sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext); return (1); } /* Segment must be marked present */ if (!usd.sd_p) { if (ldtseg) idtvec = IDT_TS; else if (stackseg) idtvec = IDT_SS; else idtvec = IDT_NP; sel_exception(ctx, vcpu, idtvec, sel, ts->ext); return (1); } cs = GETREG(ctx, vcpu, VM_REG_GUEST_CS); cpl = cs & SEL_RPL_MASK; rpl = sel & SEL_RPL_MASK; dpl = usd.sd_dpl; if (stackseg && (rpl != cpl || dpl != cpl)) { sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext); return (1); } if (codeseg) { conforming = (usd.sd_type & 0x4) ? true : false; if ((conforming && (cpl < dpl)) || (!conforming && (cpl != dpl))) { sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext); return (1); } } if (dataseg) { /* * A data segment is always non-conforming except when it's * descriptor is a readable, conforming code segment. */ if (code_desc(usd.sd_type) && (usd.sd_type & 0x4) != 0) conforming = true; else conforming = false; if (!conforming && (rpl > dpl || cpl > dpl)) { sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext); return (1); } } *seg_desc = usd_to_seg_desc(&usd); return (0); }
int i386_set_ldt(struct proc *p, void *args, register_t *retval) { int error, i, n; struct pcb *pcb = &p->p_addr->u_pcb; pmap_t pmap = p->p_vmspace->vm_map.pmap; struct i386_set_ldt_args ua; union descriptor *descv; size_t old_len, new_len, ldt_len; union descriptor *old_ldt, *new_ldt; if (user_ldt_enable == 0) return (ENOSYS); if ((error = copyin(args, &ua, sizeof(ua))) != 0) return (error); if (ua.start < 0 || ua.num < 0 || ua.start > 8192 || ua.num > 8192 || ua.start + ua.num > 8192) return (EINVAL); descv = malloc(sizeof (*descv) * ua.num, M_TEMP, M_NOWAIT); if (descv == NULL) return (ENOMEM); if ((error = copyin(ua.desc, descv, sizeof (*descv) * ua.num)) != 0) goto out; /* Check descriptors for access violations. */ for (i = 0; i < ua.num; i++) { union descriptor *desc = &descv[i]; switch (desc->sd.sd_type) { case SDT_SYSNULL: desc->sd.sd_p = 0; break; case SDT_SYS286CGT: case SDT_SYS386CGT: /* * Only allow call gates targeting a segment * in the LDT or a user segment in the fixed * part of the gdt. Segments in the LDT are * constrained (below) to be user segments. */ if (desc->gd.gd_p != 0 && !ISLDT(desc->gd.gd_selector) && ((IDXSEL(desc->gd.gd_selector) >= NGDT) || (gdt[IDXSEL(desc->gd.gd_selector)].sd.sd_dpl != SEL_UPL))) { error = EACCES; goto out; } break; case SDT_MEMEC: case SDT_MEMEAC: case SDT_MEMERC: case SDT_MEMERAC: /* Must be "present" if executable and conforming. */ if (desc->sd.sd_p == 0) { error = EACCES; goto out; } break; case SDT_MEMRO: case SDT_MEMROA: case SDT_MEMRW: case SDT_MEMRWA: case SDT_MEMROD: case SDT_MEMRODA: case SDT_MEMRWD: case SDT_MEMRWDA: case SDT_MEME: case SDT_MEMEA: case SDT_MEMER: case SDT_MEMERA: break; default: /* * Make sure that unknown descriptor types are * not marked present. */ if (desc->sd.sd_p != 0) { error = EACCES; goto out; } break; } if (desc->sd.sd_p != 0) { /* Only user (ring-3) descriptors may be present. */ if (desc->sd.sd_dpl != SEL_UPL) { error = EACCES; goto out; } } } /* allocate user ldt */ simple_lock(&pmap->pm_lock); if (pmap->pm_ldt == 0 || (ua.start + ua.num) > pmap->pm_ldt_len) { if (pmap->pm_flags & PMF_USER_LDT) ldt_len = pmap->pm_ldt_len; else ldt_len = 512; while ((ua.start + ua.num) > ldt_len) ldt_len *= 2; new_len = ldt_len * sizeof(union descriptor); simple_unlock(&pmap->pm_lock); new_ldt = km_alloc(round_page(new_len), &kv_any, &kp_dirty, &kd_nowait); if (new_ldt == NULL) { error = ENOMEM; goto out; } simple_lock(&pmap->pm_lock); if (pmap->pm_ldt != NULL && ldt_len <= pmap->pm_ldt_len) { /* * Another thread (re)allocated the LDT to * sufficient size while we were blocked in * km_alloc. Oh well. The new entries * will quite probably not be right, but * hey.. not our problem if user applications * have race conditions like that. */ km_free(new_ldt, round_page(new_len), &kv_any, &kp_dirty); goto copy; } old_ldt = pmap->pm_ldt; if (old_ldt != NULL) { old_len = pmap->pm_ldt_len * sizeof(union descriptor); } else { old_len = NLDT * sizeof(union descriptor); old_ldt = ldt; } memcpy(new_ldt, old_ldt, old_len); memset((caddr_t)new_ldt + old_len, 0, new_len - old_len); if (old_ldt != ldt) km_free(old_ldt, round_page(old_len), &kv_any, &kp_dirty); pmap->pm_ldt = new_ldt; pmap->pm_ldt_len = ldt_len; if (pmap->pm_flags & PMF_USER_LDT) ldt_free(pmap); else pmap->pm_flags |= PMF_USER_LDT; ldt_alloc(pmap, new_ldt, new_len); pcb->pcb_ldt_sel = pmap->pm_ldt_sel; if (pcb == curpcb) lldt(pcb->pcb_ldt_sel); } copy: /* Now actually replace the descriptors. */ for (i = 0, n = ua.start; i < ua.num; i++, n++) pmap->pm_ldt[n] = descv[i]; simple_unlock(&pmap->pm_lock); *retval = ua.start; out: free(descv, M_TEMP); return (error); }
/* * sysi86 */ int svr4_sys_sysarch(struct proc *p, void *v, register_t *retval) { struct svr4_sys_sysarch_args *uap = v; int error; #ifdef USER_LDT caddr_t sg = stackgap_init(p->p_emul); #endif *retval = 0; /* XXX: What to do */ switch (SCARG(uap, op)) { case SVR4_SYSARCH_FPHW: return 0; case SVR4_SYSARCH_DSCR: #ifdef USER_LDT if (user_ldt_enable == 0) return (ENOSYS); else { struct i386_set_ldt_args sa, *sap; struct sys_sysarch_args ua; struct svr4_ssd ssd; union descriptor bsd; if ((error = copyin(SCARG(uap, a1), &ssd, sizeof(ssd))) != 0) { printf("Cannot copy arg1\n"); return error; } printf("s=%x, b=%x, l=%x, a1=%x a2=%x\n", ssd.selector, ssd.base, ssd.limit, ssd.access1, ssd.access2); /* We can only set ldt's for now. */ if (!ISLDT(ssd.selector)) { printf("Not an ldt\n"); return EPERM; } /* Oh, well we don't cleanup either */ if (ssd.access1 == 0) return 0; bsd.sd.sd_lobase = ssd.base & 0xffffff; bsd.sd.sd_hibase = (ssd.base >> 24) & 0xff; bsd.sd.sd_lolimit = ssd.limit & 0xffff; bsd.sd.sd_hilimit = (ssd.limit >> 16) & 0xf; bsd.sd.sd_type = ssd.access1 & 0x1f; bsd.sd.sd_dpl = (ssd.access1 >> 5) & 0x3; bsd.sd.sd_p = (ssd.access1 >> 7) & 0x1; bsd.sd.sd_xx = ssd.access2 & 0x3; bsd.sd.sd_def32 = (ssd.access2 >> 2) & 0x1; bsd.sd.sd_gran = (ssd.access2 >> 3)& 0x1; sa.start = IDXSEL(ssd.selector); sa.desc = stackgap_alloc(&sg, sizeof(union descriptor)); sa.num = 1; sap = stackgap_alloc(&sg, sizeof(struct i386_set_ldt_args)); if ((error = copyout(&sa, sap, sizeof(sa))) != 0) { printf("Cannot copyout args\n"); return error; } SCARG(&ua, op) = I386_SET_LDT; SCARG(&ua, parms) = (char *) sap; if ((error = copyout(&bsd, sa.desc, sizeof(bsd))) != 0) { printf("Cannot copyout desc\n"); return error; } return sys_sysarch(p, &ua, retval); } #endif case SVR4_SYSARCH_GOSF: { /* just as SCO Openserver 5.0 says */ char features[] = {1,1,1,1,1,1,1,1,2,1,1,1}; if ((error = copyout(features, SCARG(uap, a1), sizeof(features))) != 0) { printf("Cannot copyout vector\n"); return error; } return 0; } default: printf("svr4_sysarch(%d), a1 %p\n", SCARG(uap, op), SCARG(uap, a1)); return 0; } }