示例#1
0
void CHostageImprov::__MAKE_VHOOK(StandUp)()
{
	if (!IsCrouching() || !m_minCrouchTimer.IsElapsed())
	{
		return;
	}

	int y;
	for (y = -24; y < 36; y += 12)
	{
		for (int x = -24; x < 36; x += 12)
		{
			TraceResult result;
			UTIL_TraceLine(GetFeet() + Vector(0, 0, 3), GetFeet() + Vector(x, y, 72), ignore_monsters, ignore_glass, m_hostage->edict(), &result);

			if (result.flFraction < 1.0f)
				return;
		}
	}

	// HalfHumanHeight
	if (y == 36)
	{
		m_animateState.Reset();
		UTIL_SetSize(m_hostage->pev, Vector(-10, -10, 0), Vector(10, 10, 62));
		m_isCrouching = false;
	}
}
示例#2
0
bool CHostageImprov::__MAKE_VHOOK(Jump)()
{
	if (IsCrouching() || g_pHostages->IsNearbyHostageJumping(this))
		return false;

	if (!m_jumpTimer.IsElapsed())
		return false;

	const float epsilon = 1.0f;

	m_hasJumped = false;
	m_moveFlags |= IN_JUMP;

	if (m_hostage->pev->velocity.LengthSquared() < epsilon)
	{
		const float fudge = 2.0f;
		m_hostage->pev->origin.z += fudge;
	}

	const float minJumpInterval = 3.0f;
	m_jumpTimer.Start(minJumpInterval);

	m_animateState.Reset();
	m_animateState.SetPerformance(HostageAnimateState::Jump);
	m_animateState.AddSequence(this, ACT_HOP);

	return true;
}
示例#3
0
void CHostageImprov::Afraid()
{
	char animInto[32];
	char animLoop[32];
	char animExit[32];

	if (IsCrouching())
		return;

	if (m_animateState.GetPerformance() == HostageAnimateState::Flinching ||
		m_animateState.GetPerformance() == HostageAnimateState::Afraid)
		return;

	if (!IsMoving())
	{
		m_animateState.Reset();
		m_animateState.SetPerformance(HostageAnimateState::Afraid);

		int which = RANDOM_LONG(0, 100) % 3 + 1;

		Q_sprintf(animInto, "cower_into_%d", which);
		Q_sprintf(animLoop, "cower_loop_%d", which);
		Q_sprintf(animExit, "cower_exit_%d", which);

		m_animateState.AddSequence(this, animInto);
		m_animateState.AddSequence(this, animLoop, RANDOM_FLOAT(3, 10));
		m_animateState.AddSequence(this, animExit);
	}
}
示例#4
0
void CHostageImprov::__MAKE_VHOOK(Crouch)()
{
	const float minCrouchTime = 1.0f;

	if (IsCrouching())
		return;

	m_isCrouching = true;
	m_minCrouchTimer.Start(minCrouchTime);
	UTIL_SetSize(m_hostage->pev, VEC_HOSTAGE_HULL_MIN, VEC_HOSTAGE_CROUCH);
}
示例#5
0
void CHostageImprov::Flinch(Activity activity)
{
	Chatter(HOSTAGE_CHATTER_PAIN, true);

	if (!IsCrouching() && !IsMoving())
	{
		m_animateState.Reset();
		m_animateState.SetPerformance(HostageAnimateState::Flinching);
		m_animateState.AddSequence(this, activity);
	}
}
示例#6
0
void CHostageImprov::SetKnownGoodPosition(const Vector &pos)
{
	if (IsJumping() || IsCrouching())
		return;

	if (m_hasKnownGoodPos)
	{
		if (m_priorKnownGoodPosTimer.IsElapsed())
		{
			m_hasPriorKnownGoodPos = true;
			m_priorKnownGoodPos = m_knownGoodPos;
			m_priorKnownGoodPosTimer.Start(1);
		}
	}

	m_hasKnownGoodPos = true;
	m_knownGoodPos = pos;
}
示例#7
0
void CCSBot::Wiggle()
{
	if (IsCrouching())
	{
		ResetStuckMonitor();
		return;
	}

	// for wiggling
	if (gpGlobals->time >= m_wiggleTimestamp)
	{
		m_wiggleDirection = (NavRelativeDirType)RANDOM_LONG(0, 3);
		m_wiggleTimestamp = RANDOM_FLOAT(0.5, 1.5) + gpGlobals->time;
	}

	// TODO: implement checking of the movement to fall down
	switch (m_wiggleDirection)
	{
	case LEFT:
		StrafeLeft();
		break;
	case RIGHT:
		StrafeRight();
		break;
	case FORWARD:
		MoveForward();
		break;
	case BACKWARD:
		MoveBackward();
		break;
	default:
		break;
	}

	if (gpGlobals->time >= m_stuckJumpTimestamp)
	{
		if (Jump())
		{
			m_stuckJumpTimestamp = RANDOM_FLOAT(1.0, 2.0) + gpGlobals->time;
		}
	}
}
示例#8
0
// Check if we need to jump due to height change
bool CHostageImprov::DiscontinuityJump(float ground, bool onlyJumpDown, bool mustJump)
{
	// Don't try to jump if in the air or crouching.
	if (IsJumping() || IsCrouching() || IsUsingLadder())
		return false;

	float dz = ground - GetFeet().z;

	if (dz > StepHeight && !onlyJumpDown)
	{
		Jump();
		return true;
	}
	else if (dz < -JumpHeight)
	{
		Jump();
		return true;
	}

	return false;
}
//-----------------------------------------------------------------------------
// Purpose: Translate base class activities into combot activites
//-----------------------------------------------------------------------------
Activity CNPC_CombineAce::NPC_TranslateActivity( Activity eNewActivity )
{
	// If the special ep2_outland_05 "use march" flag is set, use the more casual marching anim.
	if ( m_iUseMarch && eNewActivity == ACT_WALK )
	{
		eNewActivity = ACT_WALK_MARCH;
	}
	else if (eNewActivity == ACT_IDLE)
	{
		SetEyeState(ACE_EYE_DORMANT);

		if (!IsCrouching() && (m_NPCState == NPC_STATE_COMBAT || m_NPCState == NPC_STATE_ALERT))
		{
			SetEyeState(ACE_EYE_ACTIVATE);
			eNewActivity = ACT_IDLE_ANGRY;
		}
	}
	else if (eNewActivity == ACT_RANGE_ATTACK1)
	{
		SetEyeState(ACE_EYE_ACTIVATE);
	}
	else if (eNewActivity == ACT_RANGE_ATTACK2)
	{
		SetEyeState(ACE_EYE_ACTIVATE);

		// grunt is going to a secondary long range attack. This may be a thrown 
		// grenade or fired grenade, we must determine which and pick proper sequence
		if (Weapon_OwnsThisType("weapon_grenadelauncher"))
		{
			return (Activity)ACT_COMBINE_LAUNCH_GRENADE;
		}
		else
		{
			return (Activity)ACT_COMBINE_THROW_GRENADE;
		}
	}

	return BaseClass::NPC_TranslateActivity( eNewActivity );
}
示例#10
0
void CHostageImprov::MoveTowards(const Vector &pos, float deltaT)
{
	Vector move;
	float_precision accelRate;
	const float crouchWalkRate = 250.0f;

	// Jump up on ledges
	// Because we may not be able to get to our goal position and enter the next
	// area because our extent collides with a nearby vertical ledge, make sure
	// we look far enough ahead to avoid this situation.
	// Can't look too far ahead, or bots will try to jump up slopes.
	//
	// NOTE: We need to do this frequently to catch edges at the right time
	// TODO: Look ahead *along path* instead of straight line
	ClearPath();

	if ((m_lastKnownArea == NULL || !(m_lastKnownArea->GetAttributes() & NAV_NO_JUMP))
		&& !IsUsingLadder() && !IsJumping() && IsOnGround() && !IsCrouching())
	{
		float ground;
		Vector aheadRay(pos.x - GetFeet().x, pos.y - GetFeet().y, 0);
		aheadRay.NormalizeInPlace();

		bool jumped = false;
		if (IsRunning())
		{
			const float farLookAheadRange = 80.0f;
			Vector normal;
			Vector stepAhead = GetFeet() + farLookAheadRange * aheadRay;
			stepAhead.z += HumanHeight;

			if (GetSimpleGroundHeightWithFloor(&stepAhead, &ground, &normal ))
			{
				if (normal.z > 0.9f)
					jumped = DiscontinuityJump(ground, HOSTAGE_ONLY_JUMP_DOWN);
			}
		}

		if (!jumped)
		{
			// close up jumping
			// cant be less or will miss jumps over low walls
			const float lookAheadRange = 30.0f;
			Vector stepAhead = GetFeet() + lookAheadRange * aheadRay;
			stepAhead.z += HumanHeight;

			if (GetSimpleGroundHeightWithFloor(&stepAhead, &ground))
			{
				jumped = DiscontinuityJump(ground);
			}
		}

		if (!jumped)
		{
			// about to fall gap-jumping
			const float lookAheadRange = 10.0f;
			Vector stepAhead = GetFeet() + lookAheadRange * aheadRay;
			stepAhead.z += HumanHeight;

			if (GetSimpleGroundHeightWithFloor(&stepAhead, &ground))
			{
				jumped = DiscontinuityJump(ground, HOSTAGE_ONLY_JUMP_DOWN, HOSTAGE_MUST_JUMP);
			}
		}
	}

	move = (pos - GetFeet());
	move.z = 0;

	if (!move.IsZero())
	{
		move.NormalizeInPlace();
	}

	switch (m_moveType)
	{
	case Stopped:
		accelRate = 0;
		break;
	case Walking:
		if (IsCrouching())
			accelRate = crouchWalkRate;
		else
			accelRate = 400;
		break;
	case Running:
		if (IsCrouching())
			accelRate = crouchWalkRate;
		else
			accelRate = 1000;
		break;
	}

	m_vel.x = move.x * accelRate * deltaT + m_vel.x;
	m_vel.y = move.y * accelRate * deltaT + m_vel.y;
}
示例#11
0
void CHostageImprov::__MAKE_VHOOK(OnUpdate)(float deltaT)
{
	if (!IsAlive() || cv_hostage_stop.value > 0.0f)
		return;

	if (m_blinkTimer.IsElapsed())
	{
		if (m_scaredTimer.IsElapsed() && m_animateState.GetPerformance() != HostageAnimateState::Afraid)
		{
			m_blinkTimer.Start(RANDOM_FLOAT(3, 10));
			m_blinkCounter = RANDOM_LONG(2, 4);
		}
		else
		{
			m_blinkTimer.Start(RANDOM_FLOAT(0.5f, 2.0f));
			m_blinkCounter = RANDOM_LONG(1, 2);

		}
	}

	if (m_blinkCounter)
	{
		m_hostage->pev->body = 1;
		--m_blinkCounter;
	}
	else
	{
		m_hostage->pev->body = 0;
	}

	UpdateGrenadeReactions();
	UpdateDelayedChatter();
	UpdateVision();

	m_behavior.Update();

	m_actualVel.x = m_hostage->pev->origin.x - m_lastPosition.x;
	m_actualVel.y = m_hostage->pev->origin.y - m_lastPosition.y;

	const float runSpeed = 289.0f;
	const float walkSpeed = 9.0f;
	const float fallVelocity = -1000.0f;
	const float safeTime = 0.4f;

	if (IsOnGround())
	{
		if (IsCrouching())
		{
			if (m_actualVel.LengthSquared() > 9.0f)
			{
				if (m_animateState.GetPerformance() != HostageAnimateState::CrouchWalk)
				{
					m_animateState.Reset();
					m_animateState.SetPerformance(HostageAnimateState::CrouchWalk);

					ClearLookAt();
					if (m_scaredTimer.IsElapsed() && m_animateState.GetPerformance() != HostageAnimateState::Afraid)
						m_animateState.AddSequence(this, ACT_CROUCH_WALK, 99.9, 2.0);
					else
						m_animateState.AddSequence(this, ACT_CROUCH_WALK_SCARED, 99.9, 2.0);
				}
			}
			else if (m_animateState.GetPerformance() != HostageAnimateState::Crouch)
			{
				m_animateState.Reset();
				m_animateState.SetPerformance(HostageAnimateState::Crouch);

				if (m_scaredTimer.IsElapsed())
					m_animateState.AddSequence(this, ACT_CROUCH_IDLE, 99.9);
				else
					m_animateState.AddSequence(this, ACT_CROUCH_IDLE_SCARED);
			}
		}
		else
		{
			UTIL_MakeVectors(m_hostage->pev->angles);

			float dot = DotProduct2D(gpGlobals->v_forward, m_actualVel);

			if (dot < -3.0f)
			{
				if (m_animateState.GetPerformance() != HostageAnimateState::Walk)
				{
					m_animateState.Reset();
					m_animateState.SetPerformance(HostageAnimateState::Walk);
					ClearLookAt();

					float speed;
					if (m_actualVel.LengthSquared() > runSpeed)
						speed = 2.0f;
					else
						speed = 1.0f;

					m_animateState.AddSequence(this, ACT_WALK_BACK, 99.9, speed);
				}
			}
			else
			{
				if (m_actualVel.LengthSquared() > runSpeed)
				{
					if (m_animateState.GetPerformance() != HostageAnimateState::Run)
					{
						m_animateState.Reset();
						m_animateState.SetPerformance(HostageAnimateState::Run);
						ClearLookAt();

						if (m_scaredTimer.IsElapsed() && m_animateState.GetPerformance() != HostageAnimateState::Afraid && !m_behavior.IsState(&m_escapeState))
							m_animateState.AddSequence(this, ACT_RUN, 99.9, 2.0);
						else
							m_animateState.AddSequence(this, ACT_RUN_SCARED, 99.9, 2.0);
					}
				}
				else if (m_actualVel.LengthSquared() > walkSpeed)
				{
					if (m_animateState.GetPerformance() != HostageAnimateState::Walk)
					{
						m_animateState.Reset();
						m_animateState.SetPerformance(HostageAnimateState::Walk);
						ClearLookAt();

						if (m_behavior.IsState(&m_escapeState))
						{
							m_animateState.AddSequence(this, ACT_WALK_SNEAKY, 99.9, 1.5);
						}
						else if (m_scaredTimer.IsElapsed() && m_animateState.GetPerformance() != HostageAnimateState::Afraid)
						{
							m_animateState.AddSequence(this, ACT_WALK, 99.9, 1.5);
						}
						else
							m_animateState.AddSequence(this, ACT_WALK_SCARED, 99.9, 1.5);
					}
				}
				else
				{
					if (m_animateState.GetPerformance() == HostageAnimateState::Walk || m_animateState.GetPerformance() == HostageAnimateState::Run)
						m_animateState.Reset();

					UpdateStationaryAnimation();
				}
			}
		}
	}
	else if (m_hostage->pev->velocity.z < fallVelocity && m_animateState.GetPerformance() != HostageAnimateState::Fall)
	{
		m_animateState.Reset();
		m_animateState.SetPerformance(HostageAnimateState::Fall);
		m_animateState.AddSequence(this, ACT_FALL, 99.9);
	}

	if (!m_collisionTimer.HasStarted() || m_collisionTimer.IsGreaterThen(safeTime))
		SetKnownGoodPosition(m_lastPosition);

	m_lastPosition = m_hostage->pev->origin;
	m_animateState.OnUpdate(this);
}
示例#12
0
// Compute a point a fixed distance ahead along our path.
// Returns path index just after point.
int CCSBot::FindPathPoint(float aheadRange, Vector *point, int *prevIndex)
{
	// find path index just past aheadRange
	int afterIndex;

	// finds the closest point on local area of path, and returns the path index just prior to it
	Vector close;
	int startIndex = FindOurPositionOnPath(&close, true);

	if (prevIndex)
		*prevIndex = startIndex;

	if (startIndex <= 0)
	{
		// went off the end of the path
		// or next point in path is unwalkable (ie: jump-down)
		// keep same point
		return m_pathIndex;
	}

	// if we are crouching, just follow the path exactly
	if (IsCrouching())
	{
		// we want to move to the immediately next point along the path from where we are now
		int index = startIndex + 1;
		if (index >= m_pathLength)
			index = m_pathLength - 1;

		*point = m_path[index].pos;

		// if we are very close to the next point in the path, skip ahead to the next one to avoid wiggling
		// we must do a 2D check here, in case the goal point is floating in space due to jump down, etc
		const float closeEpsilon = 20.0f; // 10.0f
		while ((*point - close).Make2D().IsLengthLessThan(closeEpsilon))
		{
			index++;

			if (index >= m_pathLength)
			{
				index = m_pathLength - 1;
				break;
			}

			*point = m_path[index].pos;
		}

		return index;
	}

	// make sure we use a node a minimum distance ahead of us, to avoid wiggling
	while (startIndex < m_pathLength - 1)
	{
		Vector pos = m_path[startIndex + 1].pos;

		// we must do a 2D check here, in case the goal point is floating in space due to jump down, etc
		const float closeEpsilon = 20.0f;
		if ((pos - close).Make2D().IsLengthLessThan(closeEpsilon))
		{
			startIndex++;
		}
		else
		{
			break;
		}
	}

	// if we hit a ladder, stop, or jump area, must stop (dont use ladder behind us)
	if (startIndex > m_pathIndex && startIndex < m_pathLength
		&& (m_path[startIndex].ladder || (m_path[startIndex].area->GetAttributes() & NAV_JUMP)))
	{
		*point = m_path[startIndex].pos;
		return startIndex;
	}

	// we need the point just *ahead* of us
	if (++startIndex >= m_pathLength)
		startIndex = m_pathLength - 1;

	// if we hit a ladder, stop, or jump area, must stop
	if (startIndex < m_pathLength && (m_path[startIndex].ladder || (m_path[startIndex].area->GetAttributes() & NAV_JUMP)))
	{
		*point = m_path[startIndex].pos;
		return startIndex;
	}

	// note direction of path segment we are standing on
	Vector initDir = m_path[startIndex].pos - m_path[startIndex - 1].pos;
	initDir.NormalizeInPlace();

	Vector feet(pev->origin.x, pev->origin.y, GetFeetZ());
	Vector eyes = feet + Vector(0, 0, HalfHumanHeight);
	float rangeSoFar = 0;

	// this flag is true if our ahead point is visible
	bool visible = true;
	Vector prevDir = initDir;

	// step along the path until we pass aheadRange
	bool isCorner = false;
	int i;
	for (i = startIndex; i < m_pathLength; i++)
	{
		Vector pos = m_path[i].pos;
		Vector to = pos - m_path[i - 1].pos;
		Vector dir = to;
		dir.NormalizeInPlace();

		// don't allow path to double-back from our starting direction (going upstairs, down curved passages, etc)
		if (DotProduct(dir, initDir) < 0.0f) // -0.25f
		{
			i--;
			break;
		}

		// if the path turns a corner, we want to move towards the corner, not into the wall/stairs/etc
		if (DotProduct(dir, prevDir) < 0.5f)
		{
			isCorner = true;
			i--;
			break;
		}

		prevDir = dir;

		// don't use points we cant see
		Vector probe = pos + Vector(0, 0, HalfHumanHeight);
		if (!IsWalkableTraceLineClear(eyes, probe, WALK_THRU_BREAKABLES))
		{
			// presumably, the previous point is visible, so we will interpolate
			visible = false;
			break;
		}

		// if we encounter a ladder or jump area, we must stop
		if (i < m_pathLength && (m_path[i].ladder || (m_path[i].area->GetAttributes() & NAV_JUMP)))
			break;

		// Check straight-line path from our current position to this position
		// Test for un-jumpable height change, or unrecoverable fall
		if (!IsStraightLinePathWalkable(&pos))
		{
			i--;
			break;
		}

		Vector along = (i == startIndex) ? (pos - feet) : (pos - m_path[i - 1].pos);
		rangeSoFar += along.Length2D();

		// stop if we have gone farther than aheadRange
		if (rangeSoFar >= aheadRange)
			break;
	}

	if (i < startIndex)
		afterIndex = startIndex;
	else if (i < m_pathLength)
		afterIndex = i;
	else
		afterIndex = m_pathLength - 1;

	// compute point on the path at aheadRange
	if (afterIndex == 0)
	{
		*point = m_path[0].pos;
	}
	else
	{
		// interpolate point along path segment
		const Vector *afterPoint = &m_path[afterIndex].pos;
		const Vector *beforePoint = &m_path[afterIndex - 1].pos;

		Vector to = *afterPoint - *beforePoint;
		float length = to.Length2D();

		float t = 1.0f - ((rangeSoFar - aheadRange) / length);

		if (t < 0.0f)
			t = 0.0f;
		else if (t > 1.0f)
			t = 1.0f;

		*point = *beforePoint + t * to;

		// if afterPoint wasn't visible, slide point backwards towards beforePoint until it is
		if (!visible)
		{
			const float sightStepSize = 25.0f;
			float dt = sightStepSize / length;

			Vector probe = *point + Vector(0, 0, HalfHumanHeight);
			while (t > 0.0f && !IsWalkableTraceLineClear(eyes, probe, WALK_THRU_BREAKABLES))
			{
				t -= dt;
				*point = *beforePoint + t * to;
			}

			if (t <= 0.0f)
				*point = *beforePoint;
		}
	}

	// if position found is too close to us, or behind us, force it farther down the path so we don't stop and wiggle
	if (!isCorner)
	{
		const float epsilon = 50.0f;
		Vector2D toPoint;
		toPoint.x = point->x - pev->origin.x;
		toPoint.y = point->y - pev->origin.y;
		if (DotProduct(toPoint, initDir.Make2D()) < 0.0f || toPoint.IsLengthLessThan(epsilon))
		{
			int i;
			for (i = startIndex; i < m_pathLength; i++)
			{
				toPoint.x = m_path[i].pos.x - pev->origin.x;
				toPoint.y = m_path[i].pos.y - pev->origin.y;
				if (m_path[i].ladder || (m_path[i].area->GetAttributes() & NAV_JUMP) || toPoint.IsLengthGreaterThan(epsilon))
				{
					*point = m_path[i].pos;
					startIndex = i;
					break;
				}
			}

			if (i == m_pathLength)
			{
				*point = GetPathEndpoint();
				startIndex = m_pathLength - 1;
			}
		}
	}

	// m_pathIndex should always be the next point on the path, even if we're not moving directly towards it
	return startIndex;
}
示例#13
0
// Navigate our current ladder. Return true if we are doing ladder navigation.
// TODO: Need Push() and Pop() for run/walk context to keep ladder speed contained.
bool CCSBot::UpdateLadderMovement()
{
	if (!m_pathLadder)
		return false;

	bool giveUp = false;

	// check for timeout
	const float ladderTimeoutDuration = 10.0f;
	if (gpGlobals->time - m_pathLadderTimestamp > ladderTimeoutDuration)
	{
		PrintIfWatched("Ladder timeout!\n");
		giveUp = true;
	}

	else if (m_pathLadderState == APPROACH_ASCENDING_LADDER
		|| m_pathLadderState == APPROACH_DESCENDING_LADDER
		|| m_pathLadderState == ASCEND_LADDER
		|| m_pathLadderState == DESCEND_LADDER
		|| m_pathLadderState == DISMOUNT_ASCENDING_LADDER
		|| m_pathLadderState == MOVE_TO_DESTINATION)
	{
		if (m_isStuck)
		{
			PrintIfWatched("Giving up ladder - stuck\n");
			giveUp = true;
		}
	}

	if (giveUp)
	{
		// jump off ladder and give up
		Jump(MUST_JUMP);
		Wiggle();
		ResetStuckMonitor();
		DestroyPath();
		Run();
		return false;
	}

	ResetStuckMonitor();

	// check if somehow we totally missed the ladder
	switch (m_pathLadderState)
	{
	case MOUNT_ASCENDING_LADDER:
	case MOUNT_DESCENDING_LADDER:
	case ASCEND_LADDER:
	case DESCEND_LADDER:
	{
		const float farAway = 200.0f;
		Vector2D d = (m_pathLadder->m_top - pev->origin).Make2D();
		if (d.IsLengthGreaterThan(farAway))
		{
			PrintIfWatched("Missed ladder\n");
			Jump(MUST_JUMP);
			DestroyPath();
			Run();
			return false;
		}
		break;
	}
	}

	m_areaEnteredTimestamp = gpGlobals->time;

	const float tolerance = 10.0f;
	const float closeToGoal = 25.0f;

	switch (m_pathLadderState)
	{
	case APPROACH_ASCENDING_LADDER:
	{
		bool approached = false;
		Vector2D d(pev->origin.x - m_goalPosition.x, pev->origin.y - m_goalPosition.y);

		if (d.x * m_pathLadder->m_dirVector.x + d.y * m_pathLadder->m_dirVector.y < 0.0f)
		{
			Vector2D perp(-m_pathLadder->m_dirVector.y, m_pathLadder->m_dirVector.x);

#ifdef REGAMEDLL_FIXES
			if (Q_abs(d.x * perp.x + d.y * perp.y) < tolerance && d.Length() < closeToGoal)
#else
			if (Q_abs(int64(d.x * perp.x + d.y * perp.y)) < tolerance && d.Length() < closeToGoal)
#endif
				approached = true;
		}

		// small radius will just slow them down a little for more accuracy in hitting their spot
		const float walkRange = 50.0f;
		if (d.IsLengthLessThan(walkRange))
		{
			Walk();
			StandUp();
		}

		// TODO: Check that we are on the ladder we think we are
		if (IsOnLadder())
		{
			m_pathLadderState = ASCEND_LADDER;
			PrintIfWatched("ASCEND_LADDER\n");

			// find actual top in case m_pathLadder penetrates the ceiling
			ComputeLadderEndpoint(true);
		}
		else if (approached)
		{
			// face the m_pathLadder
			m_pathLadderState = FACE_ASCENDING_LADDER;
			PrintIfWatched("FACE_ASCENDING_LADDER\n");
		}
		else
		{
			// move toward ladder mount point
			MoveTowardsPosition(&m_goalPosition);
		}
		break;
	}
	case APPROACH_DESCENDING_LADDER:
	{
		// fall check
		if (GetFeetZ() <= m_pathLadder->m_bottom.z + HalfHumanHeight)
		{
			PrintIfWatched("Fell from ladder.\n");

			m_pathLadderState = MOVE_TO_DESTINATION;
			m_path[m_pathIndex].area->GetClosestPointOnArea(&m_pathLadder->m_bottom, &m_goalPosition);

			AddDirectionVector(&m_goalPosition, m_pathLadder->m_dir, HalfHumanWidth);
			PrintIfWatched("MOVE_TO_DESTINATION\n");
		}
		else
		{
			bool approached = false;
			Vector2D d(pev->origin.x - m_goalPosition.x, pev->origin.y - m_goalPosition.y);

			if (d.x * m_pathLadder->m_dirVector.x + d.y * m_pathLadder->m_dirVector.y > 0.0f)
			{
				Vector2D perp(-m_pathLadder->m_dirVector.y, m_pathLadder->m_dirVector.x);

				if (Q_abs(int64(d.x * perp.x + d.y * perp.y)) < tolerance && d.Length() < closeToGoal)
					approached = true;
			}

			// if approaching ladder from the side or "ahead", walk
			if (m_pathLadder->m_topBehindArea != m_lastKnownArea)
			{
				const float walkRange = 150.0f;
				if (!IsCrouching() && d.IsLengthLessThan(walkRange))
					Walk();
			}

			// TODO: Check that we are on the ladder we think we are
			if (IsOnLadder())
			{
				// we slipped onto the ladder - climb it
				m_pathLadderState = DESCEND_LADDER;
				Run();
				PrintIfWatched("DESCEND_LADDER\n");

				// find actual bottom in case m_pathLadder penetrates the floor
				ComputeLadderEndpoint(false);
			}
			else if (approached)
			{
				// face the ladder
				m_pathLadderState = FACE_DESCENDING_LADDER;
				PrintIfWatched("FACE_DESCENDING_LADDER\n");
			}
			else
			{
				// move toward ladder mount point
				MoveTowardsPosition(&m_goalPosition);
			}
		}
		break;
	}
	case FACE_ASCENDING_LADDER:
	{
		// find yaw to directly aim at ladder
		Vector to = m_pathLadder->m_bottom - pev->origin;
		Vector idealAngle = UTIL_VecToAngles(to);

		const float angleTolerance = 5.0f;
		if (AnglesAreEqual(pev->v_angle.y, idealAngle.y, angleTolerance))
		{
			// move toward ladder until we become "on" it
			Run();
			ResetStuckMonitor();
			m_pathLadderState = MOUNT_ASCENDING_LADDER;
			PrintIfWatched("MOUNT_ASCENDING_LADDER\n");
		}
		break;
	}
	case FACE_DESCENDING_LADDER:
	{
		// find yaw to directly aim at ladder
		Vector to = m_pathLadder->m_top - pev->origin;
		Vector idealAngle = UTIL_VecToAngles(to);

		const float angleTolerance = 5.0f;
		if (AnglesAreEqual(pev->v_angle.y, idealAngle.y, angleTolerance))
		{
			// move toward ladder until we become "on" it
			m_pathLadderState = MOUNT_DESCENDING_LADDER;
			ResetStuckMonitor();
			PrintIfWatched("MOUNT_DESCENDING_LADDER\n");
		}
		break;
	}
	case MOUNT_ASCENDING_LADDER:
	{
		if (IsOnLadder())
		{
			m_pathLadderState = ASCEND_LADDER;
			PrintIfWatched("ASCEND_LADDER\n");

			// find actual top in case m_pathLadder penetrates the ceiling
			ComputeLadderEndpoint(true);
		}

		MoveForward();
		break;
	}
	case MOUNT_DESCENDING_LADDER:
	{
		// fall check
		if (GetFeetZ() <= m_pathLadder->m_bottom.z + HalfHumanHeight)
		{
			PrintIfWatched("Fell from ladder.\n");

			m_pathLadderState = MOVE_TO_DESTINATION;
			m_path[m_pathIndex].area->GetClosestPointOnArea(&m_pathLadder->m_bottom, &m_goalPosition);

			AddDirectionVector(&m_goalPosition, m_pathLadder->m_dir, HalfHumanWidth);
			PrintIfWatched("MOVE_TO_DESTINATION\n");
		}
		else
		{
			if (IsOnLadder())
			{
				m_pathLadderState = DESCEND_LADDER;
				PrintIfWatched("DESCEND_LADDER\n");

				// find actual bottom in case m_pathLadder penetrates the floor
				ComputeLadderEndpoint(false);
			}

			// move toward ladder mount point
			MoveForward();
		}
		break;
	}
	case ASCEND_LADDER:
	{
		// run, so we can make our dismount jump to the side, if necessary
		Run();

		// if our destination area requires us to crouch, do it
		if (m_path[m_pathIndex].area->GetAttributes() & NAV_CROUCH)
			Crouch();

		// did we reach the top?
		if (GetFeetZ() >= m_pathLadderEnd)
		{
			// we reached the top - dismount
			m_pathLadderState = DISMOUNT_ASCENDING_LADDER;
			PrintIfWatched("DISMOUNT_ASCENDING_LADDER\n");

			if (m_path[m_pathIndex].area == m_pathLadder->m_topForwardArea)
				m_pathLadderDismountDir = FORWARD;
			else if (m_path[m_pathIndex].area == m_pathLadder->m_topLeftArea)
				m_pathLadderDismountDir = LEFT;
			else if (m_path[m_pathIndex].area == m_pathLadder->m_topRightArea)
				m_pathLadderDismountDir = RIGHT;

			m_pathLadderDismountTimestamp = gpGlobals->time;
		}
		else if (!IsOnLadder())
		{
			// we fall off the ladder, repath
			DestroyPath();
			return false;
		}

		// move up ladder
		MoveForward();
		break;
	}
	case DESCEND_LADDER:
	{
		Run();

		float destHeight = m_pathLadderEnd + HalfHumanHeight;
		if (!IsOnLadder() || GetFeetZ() <= destHeight)
		{
			// we reached the bottom, or we fell off - dismount
			m_pathLadderState = MOVE_TO_DESTINATION;
			m_path[m_pathIndex].area->GetClosestPointOnArea(&m_pathLadder->m_bottom, &m_goalPosition);

			AddDirectionVector(&m_goalPosition, m_pathLadder->m_dir, HalfHumanWidth);
			PrintIfWatched("MOVE_TO_DESTINATION\n");
		}

		// Move down ladder
		MoveForward();
		break;
	}
	case DISMOUNT_ASCENDING_LADDER:
	{
		if (gpGlobals->time - m_pathLadderDismountTimestamp >= 0.4f)
		{
			m_pathLadderState = MOVE_TO_DESTINATION;
			m_path[m_pathIndex].area->GetClosestPointOnArea(&pev->origin, &m_goalPosition);
			PrintIfWatched("MOVE_TO_DESTINATION\n");
		}

		// We should already be facing the dismount point
		if (m_pathLadderFaceIn)
		{
			switch (m_pathLadderDismountDir)
			{
			case LEFT:    StrafeLeft(); break;
			case RIGHT:   StrafeRight(); break;
			case FORWARD: MoveForward(); break;
			}
		}
		else
		{
			switch (m_pathLadderDismountDir)
			{
			case LEFT:    StrafeRight();  break;
			case RIGHT:   StrafeLeft();   break;
			case FORWARD: MoveBackward(); break;
			}
		}
		break;
	}
	case MOVE_TO_DESTINATION:
	{
		if (m_path[m_pathIndex].area->Contains(&pev->origin))
		{
			// successfully traversed ladder and reached destination area
			// exit ladder state machine
			PrintIfWatched("Ladder traversed.\n");
			m_pathLadder = nullptr;

			// incrememnt path index to next step beyond this ladder
			SetPathIndex(m_pathIndex + 1);

			return false;
		}

		MoveTowardsPosition(&m_goalPosition);
		break;
	}
	}

	return true;
}
示例#14
0
// Move along the path. Return false if end of path reached.
CCSBot::PathResult CCSBot::UpdatePathMovement(bool allowSpeedChange)
{
	if (m_pathLength == 0)
		return PATH_FAILURE;

	if (cv_bot_walk.value != 0.0f)
		Walk();

	// If we are navigating a ladder, it overrides all other path movement until complete
	if (UpdateLadderMovement())
		return PROGRESSING;

	// ladder failure can destroy the path
	if (m_pathLength == 0)
		return PATH_FAILURE;

	// we are not supposed to be on a ladder - if we are, jump off
	if (IsOnLadder())
		Jump(MUST_JUMP);

	assert(m_pathIndex < m_pathLength);

	// Check if reached the end of the path
	bool nearEndOfPath = false;
	if (m_pathIndex >= m_pathLength - 1)
	{
		Vector toEnd(pev->origin.x, pev->origin.y, GetFeetZ());
		Vector d = GetPathEndpoint() - toEnd; // can't use 2D because path end may be below us (jump down)

		const float walkRange = 200.0f;

		// walk as we get close to the goal position to ensure we hit it
		if (d.IsLengthLessThan(walkRange))
		{
			// don't walk if crouching - too slow
			if (allowSpeedChange && !IsCrouching())
				Walk();

			// note if we are near the end of the path
			const float nearEndRange = 50.0f;
			if (d.IsLengthLessThan(nearEndRange))
				nearEndOfPath = true;

			const float closeEpsilon = 20.0f;
			if (d.IsLengthLessThan(closeEpsilon))
			{
				// reached goal position - path complete
				DestroyPath();

				// TODO: We should push and pop walk state here, in case we want to continue walking after reaching goal
				if (allowSpeedChange)
					Run();

				return END_OF_PATH;
			}
		}
	}

	// To keep us moving smoothly, we will move towards
	// a point farther ahead of us down our path.
	int prevIndex = 0;				// closest index on path just prior to where we are now
	const float aheadRange = 300.0f;
	int newIndex = FindPathPoint(aheadRange, &m_goalPosition, &prevIndex);

	// BOTPORT: Why is prevIndex sometimes -1?
	if (prevIndex < 0)
		prevIndex = 0;

	// if goal position is near to us, we must be about to go around a corner - so look ahead!
	const float nearCornerRange = 100.0f;
	if (m_pathIndex < m_pathLength - 1 && (m_goalPosition - pev->origin).IsLengthLessThan(nearCornerRange))
	{
		ClearLookAt();
		InhibitLookAround(0.5f);
	}

	// if we moved to a new node on the path, setup movement
	if (newIndex > m_pathIndex)
	{
		SetPathIndex(newIndex);
	}

	if (!IsUsingLadder())
	{
		// Crouching

		// if we are approaching a crouch area, crouch
		// if there are no crouch areas coming up, stand
		const float crouchRange = 50.0f;
		bool didCrouch = false;
		for (int i = prevIndex; i < m_pathLength; i++)
		{
			const CNavArea *to = m_path[i].area;

			// if there is a jump area on the way to the crouch area, don't crouch as it messes up the jump
			// unless we are already higher than the jump area - we must've jumped already but not moved into next area
			if ((to->GetAttributes() & NAV_JUMP)/* && to->GetCenter()->z > GetFeetZ()*/)
				break;

			Vector close;
			to->GetClosestPointOnArea(&pev->origin, &close);

			if ((close - pev->origin).Make2D().IsLengthGreaterThan(crouchRange))
				break;

			if (to->GetAttributes() & NAV_CROUCH)
			{
				Crouch();
				didCrouch = true;
				break;
			}
		}

		if (!didCrouch && !IsJumping())
		{
			// no crouch areas coming up
			StandUp();
		}
		// end crouching logic
	}

	// compute our forward facing angle
	m_forwardAngle = UTIL_VecToYaw(m_goalPosition - pev->origin);

	// Look farther down the path to "lead" our view around corners
	Vector toGoal;

	if (m_pathIndex == 0)
	{
		toGoal = m_path[1].pos;
	}
	else if (m_pathIndex < m_pathLength)
	{
		toGoal = m_path[m_pathIndex].pos - pev->origin;

		// actually aim our view farther down the path
		const float lookAheadRange = 500.0f;
		if (!m_path[m_pathIndex].ladder && !IsNearJump() && toGoal.Make2D().IsLengthLessThan(lookAheadRange))
		{
			float along = toGoal.Length2D();
			int i;
			for (i = m_pathIndex + 1; i < m_pathLength; i++)
			{
				Vector delta = m_path[i].pos - m_path[i - 1].pos;
				float segmentLength = delta.Length2D();

				if (along + segmentLength >= lookAheadRange)
				{
					// interpolate between points to keep look ahead point at fixed distance
					float t = (lookAheadRange - along) / (segmentLength + along);
					Vector target;

					if (t <= 0.0f)
						target = m_path[i - 1].pos;
					else if (t >= 1.0f)
						target = m_path[i].pos;
					else
						target = m_path[i - 1].pos + t * delta;

					toGoal = target - pev->origin;
					break;
				}

				// if we are coming up to a ladder or a jump, look at it
				if (m_path[i].ladder || (m_path[i].area->GetAttributes() & NAV_JUMP))
				{
					toGoal = m_path[i].pos - pev->origin;
					break;
				}

				along += segmentLength;
			}

			if (i == m_pathLength)
			{
				toGoal = GetPathEndpoint() - pev->origin;
			}
		}
	}
	else
	{
		toGoal = GetPathEndpoint() - pev->origin;
	}

	m_lookAheadAngle = UTIL_VecToYaw(toGoal);

	// initialize "adjusted" goal to current goal
	Vector adjustedGoal = m_goalPosition;

	// Use short "feelers" to veer away from close-range obstacles
	// Feelers come from our ankles, just above StepHeight, so we avoid short walls, too
	// Don't use feelers if very near the end of the path, or about to jump
	// TODO: Consider having feelers at several heights to deal with overhangs, etc.
	if (!nearEndOfPath && !IsNearJump() && !IsJumping())
	{
		FeelerReflexAdjustment(&adjustedGoal);
	}

	// draw debug visualization
	if ((cv_bot_traceview.value == 1.0f && IsLocalPlayerWatchingMe()) || cv_bot_traceview.value == 10.0f)
	{
		DrawPath();

		const Vector *pos = &m_path[m_pathIndex].pos;
		UTIL_DrawBeamPoints(*pos, *pos + Vector(0, 0, 50), 1, 255, 255, 0);
		UTIL_DrawBeamPoints(adjustedGoal, adjustedGoal + Vector(0, 0, 50), 1, 255, 0, 255);
		UTIL_DrawBeamPoints(pev->origin, adjustedGoal + Vector(0, 0, 50), 1, 255, 0, 255);
	}

	// dont use adjustedGoal, as it can vary wildly from the feeler adjustment
	if (!IsAttacking() && IsFriendInTheWay(&m_goalPosition))
	{
		if (!m_isWaitingBehindFriend)
		{
			m_isWaitingBehindFriend = true;

			const float politeDuration = 5.0f - 3.0f * GetProfile()->GetAggression();
			m_politeTimer.Start(politeDuration);
		}
		else if (m_politeTimer.IsElapsed())
		{
			// we have run out of patience
			m_isWaitingBehindFriend = false;
			ResetStuckMonitor();

			// repath to avoid clump of friends in the way
			DestroyPath();
		}
	}
	else if (m_isWaitingBehindFriend)
	{
		// we're done waiting for our friend to move
		m_isWaitingBehindFriend = false;
		ResetStuckMonitor();
	}

	// Move along our path if there are no friends blocking our way,
	// or we have run out of patience
	if (!m_isWaitingBehindFriend || m_politeTimer.IsElapsed())
	{
		// Move along path
		MoveTowardsPosition(&adjustedGoal);

		// Stuck check
		if (m_isStuck && !IsJumping())
		{
			Wiggle();
		}
	}

	// if our goal is high above us, we must have fallen
	bool didFall = false;
	if (m_goalPosition.z - GetFeetZ() > JumpCrouchHeight)
	{
		const float closeRange = 75.0f;
		Vector2D to(pev->origin.x - m_goalPosition.x, pev->origin.y - m_goalPosition.y);
		if (to.IsLengthLessThan(closeRange))
		{
			// we can't reach the goal position
			// check if we can reach the next node, in case this was a "jump down" situation
			if (m_pathIndex < m_pathLength - 1)
			{
				if (m_path[m_pathIndex + 1].pos.z - GetFeetZ() > JumpCrouchHeight)
				{
					// the next node is too high, too - we really did fall of the path
					didFall = true;
				}
			}
			else
			{
				// fell trying to get to the last node in the path
				didFall = true;
			}
		}
	}

	// This timeout check is needed if the bot somehow slips way off
	// of its path and cannot progress, but also moves around
	// enough that it never becomes "stuck"
	const float giveUpDuration = 5.0f; // 4.0f
	if (didFall || gpGlobals->time - m_areaEnteredTimestamp > giveUpDuration)
	{
		if (didFall)
		{
			PrintIfWatched("I fell off!\n");
		}

		// if we havent made any progress in a long time, give up
		if (m_pathIndex < m_pathLength - 1)
		{
			PrintIfWatched("Giving up trying to get to area #%d\n", m_path[m_pathIndex].area->GetID());
		}
		else
		{
			PrintIfWatched("Giving up trying to get to end of path\n");
		}

		Run();
		StandUp();
		DestroyPath();

		return PATH_FAILURE;
	}

	return PROGRESSING;
}
示例#15
0
// Do reflex avoidance movements if our "feelers" are touched
void CCSBot::FeelerReflexAdjustment(Vector *goalPosition)
{
	// if we are in a "precise" area, do not do feeler adjustments
	if (m_lastKnownArea && (m_lastKnownArea->GetAttributes() & NAV_PRECISE))
		return;

	Vector dir(BotCOS(m_forwardAngle), BotSIN(m_forwardAngle), 0.0f);
	Vector lat(-dir.y, dir.x, 0.0f);

	const float feelerOffset = (IsCrouching()) ? 15.0f : 20.0f;
	const float feelerLengthRun = 50.0f; // 100 - too long for tight hallways (cs_747)
	const float feelerLengthWalk = 30.0f;
	const float feelerHeight = StepHeight + 0.1f; // if obstacle is lower than StepHeight, we'll walk right over it

	float feelerLength = (IsRunning()) ? feelerLengthRun : feelerLengthWalk;

	feelerLength = (IsCrouching()) ? 20.0f : feelerLength;

	// Feelers must follow floor slope
	float ground;
	Vector normal;

	//m_eyePos = EyePosition();
	m_eyePos.x = pev->origin.x + pev->view_ofs.x;
	m_eyePos.y = pev->origin.y + pev->view_ofs.y;
	m_eyePos.z = pev->origin.z + pev->view_ofs.z;

	if (GetSimpleGroundHeightWithFloor(&m_eyePos, &ground, &normal) == false)
		return;

	// get forward vector along floor
	dir = CrossProduct(lat, normal);

	// correct the sideways vector
	lat = CrossProduct(dir, normal);

	Vector feet(pev->origin.x, pev->origin.y, GetFeetZ());
	feet.z += feelerHeight;

	Vector from = feet + feelerOffset * lat;
	Vector to = from + feelerLength * dir;

	bool leftClear = IsWalkableTraceLineClear(from, to, WALK_THRU_EVERYTHING);

	// avoid ledges, too
	// use 'from' so it doesn't interfere with legitimate gap jumping (its at our feet)
	// TODO: Rethink this - it causes lots of wiggling when bots jump down from vents, etc
/*
	float ground;
	if (GetSimpleGroundHeightWithFloor(&from, &ground))
	{
		if (GetFeetZ() - ground > JumpHeight)
			leftClear = false;
	}
*/

	if ((cv_bot_traceview.value == 1.0f && IsLocalPlayerWatchingMe()) || cv_bot_traceview.value == 10.0f)
	{
		if (leftClear)
			UTIL_DrawBeamPoints(from, to, 1, 0, 255, 0);
		else
			UTIL_DrawBeamPoints(from, to, 1, 255, 0, 0);
	}

	from = feet - feelerOffset * lat;
	to = from + feelerLength * dir;

	bool rightClear = IsWalkableTraceLineClear(from, to, WALK_THRU_EVERYTHING);

/*
	// avoid ledges, too
	if (GetSimpleGroundHeightWithFloor(&from, &ground))
	{
		if (GetFeetZ() - ground > JumpHeight)
			rightClear = false;
	}
*/

	if ((cv_bot_traceview.value == 1.0f && IsLocalPlayerWatchingMe()) || cv_bot_traceview.value == 10.0f)
	{
		if (rightClear)
			UTIL_DrawBeamPoints(from, to, 1, 0, 255, 0);
		else
			UTIL_DrawBeamPoints(from, to, 1, 255, 0, 0);
	}

	const float avoidRange = (IsCrouching()) ? 150.0f : 300.0f; // 50.0f : 300.0f

	if (!rightClear)
	{
		if (leftClear)
		{
			// right hit, left clear - veer left
			*goalPosition = *goalPosition + avoidRange * lat;
		}
	}
	else if (!leftClear)
	{
		// right clear, left hit - veer right
		*goalPosition = *goalPosition - avoidRange * lat;
	}
}