示例#1
0
/**
 * Performs core leveling for the system.
 *
 * This function implements the AMD_CPU_EARLY_PARAMS.CoreLevelingMode parameter.
 * The possible modes are:
 *    -0    CORE_LEVEL_LOWEST            Level to lowest common denominator
 *    -1    CORE_LEVEL_TWO               Level to 2 cores
 *    -2    CORE_LEVEL_POWER_OF_TWO      Level to 1,2,4 or 8
 *    -3    CORE_LEVEL_NONE              Do no leveling
 *    -4    CORE_LEVEL_COMPUTE_UNIT      Level cores to one core per compute unit
 *
 * @param[in]  EntryPoint        Timepoint designator.
 * @param[in]  PlatformConfig    Contains the leveling mode parameter
 * @param[in]  StdHeader         Config handle for library and services
 *
 * @return       The most severe status of any family specific service.
 *
 */
AGESA_STATUS
CoreLevelingAtEarly (
  IN       UINT64                 EntryPoint,
  IN       PLATFORM_CONFIGURATION *PlatformConfig,
  IN       AMD_CONFIG_PARAMS      *StdHeader
  )
{
  UINT32    CoreNumPerComputeUnit;
  UINT32    MinNumOfComputeUnit;
  UINT32    EnabledComputeUnit;
  UINT32    Socket;
  UINT32    Module;
  UINT32    NumberOfSockets;
  UINT32    NumberOfModules;
  UINT32    MinCoreCountOnNode;
  UINT32    MaxCoreCountOnNode;
  UINT32    LowCore;
  UINT32    HighCore;
  UINT32    LeveledCores;
  UINT32    RequestedCores;
  UINT32    TotalEnabledCoresOnNode;
  BOOLEAN   RegUpdated;
  AP_MAIL_INFO ApMailboxInfo;
  CORE_LEVELING_TYPE  CoreLevelMode;
  CPU_CORE_LEVELING_FAMILY_SERVICES  *FamilySpecificServices;
  WARM_RESET_REQUEST Request;

  MaxCoreCountOnNode = 0;
  MinCoreCountOnNode = 0xFFFFFFFF;
  LeveledCores = 0;
  CoreNumPerComputeUnit = 1;
  MinNumOfComputeUnit = 0xFF;

  ASSERT (PlatformConfig->CoreLevelingMode < CoreLevelModeMax);

  // Get OEM IO core level mode
  CoreLevelMode = (CORE_LEVELING_TYPE) PlatformConfig->CoreLevelingMode;

  // Get socket count
  NumberOfSockets = GetPlatformNumberOfSockets ();
  GetApMailbox (&ApMailboxInfo.Info, StdHeader);
  NumberOfModules = ApMailboxInfo.Fields.ModuleType + 1;

  // Collect cpu core info
  for (Socket = 0; Socket < NumberOfSockets; Socket++) {
    if (IsProcessorPresent (Socket, StdHeader)) {
      for (Module = 0; Module < NumberOfModules; Module++) {
        if (GetGivenModuleCoreRange (Socket, Module, &LowCore, &HighCore, StdHeader)) {
          // Get the highest and lowest core count in all nodes
          TotalEnabledCoresOnNode = HighCore - LowCore + 1;
          if (TotalEnabledCoresOnNode < MinCoreCountOnNode) {
            MinCoreCountOnNode = TotalEnabledCoresOnNode;
          }
          if (TotalEnabledCoresOnNode > MaxCoreCountOnNode) {
            MaxCoreCountOnNode = TotalEnabledCoresOnNode;
          }
          EnabledComputeUnit = TotalEnabledCoresOnNode;
          switch (GetComputeUnitMapping (StdHeader)) {
          case AllCoresMapping:
            // All cores are in their own compute unit.
            break;
          case EvenCoresMapping:
            // Cores are paired in compute units.
            CoreNumPerComputeUnit = 2;
            EnabledComputeUnit = (TotalEnabledCoresOnNode / 2);
            break;
          default:
            ASSERT (FALSE);
          }
          // Get minimum of compute unit.  This will either be the minimum number of cores (AllCoresMapping),
          // or less (EvenCoresMapping).
          if (EnabledComputeUnit < MinNumOfComputeUnit) {
            MinNumOfComputeUnit = EnabledComputeUnit;
          }
        }
      }
    }
  }

  // Get LeveledCores
  switch (CoreLevelMode) {
  case CORE_LEVEL_LOWEST:
    if (MinCoreCountOnNode == MaxCoreCountOnNode) {
      return (AGESA_SUCCESS);
    }
    LeveledCores = (MinCoreCountOnNode / CoreNumPerComputeUnit) * CoreNumPerComputeUnit;
    break;
  case CORE_LEVEL_TWO:
    LeveledCores = 2 / NumberOfModules;
    if (LeveledCores != 0) {
      LeveledCores = (LeveledCores <= MinCoreCountOnNode) ? LeveledCores : MinCoreCountOnNode;
    } else {
      return (AGESA_WARNING);
    }
    if ((LeveledCores * NumberOfModules) != 2) {
      PutEventLog (
      AGESA_WARNING,
      CPU_WARNING_ADJUSTED_LEVELING_MODE,
      2, (LeveledCores * NumberOfModules), 0, 0, StdHeader
      );
    }
    break;
  case CORE_LEVEL_POWER_OF_TWO:
    // Level to power of 2 (1, 2, 4, 8...)
    LeveledCores = 1;
    while (MinCoreCountOnNode >= (LeveledCores * 2)) {
      LeveledCores = LeveledCores * 2;
    }
    break;
  case CORE_LEVEL_COMPUTE_UNIT:
    // Level cores to one core per compute unit, with additional reduction to level
    // all processors to match the processor with the minimum number of cores.
    if (CoreNumPerComputeUnit == 1) {
      // If there is one core per compute unit, this is the same as CORE_LEVEL_LOWEST.
      if (MinCoreCountOnNode == MaxCoreCountOnNode) {
        return (AGESA_SUCCESS);
      }
      LeveledCores = MinCoreCountOnNode;
    } else {
      // If there are more than one core per compute unit, level to the number of compute units.
      LeveledCores = MinNumOfComputeUnit;
    }
    break;
  case CORE_LEVEL_ONE:
    LeveledCores = 1;
    if (NumberOfModules > 1) {
      PutEventLog (
      AGESA_WARNING,
      CPU_WARNING_ADJUSTED_LEVELING_MODE,
      1, NumberOfModules, 0, 0, StdHeader
      );
    }
    break;
  case CORE_LEVEL_THREE:
  case CORE_LEVEL_FOUR:
  case CORE_LEVEL_FIVE:
  case CORE_LEVEL_SIX:
  case CORE_LEVEL_SEVEN:
  case CORE_LEVEL_EIGHT:
  case CORE_LEVEL_NINE:
  case CORE_LEVEL_TEN:
  case CORE_LEVEL_ELEVEN:
  case CORE_LEVEL_TWELVE:
  case CORE_LEVEL_THIRTEEN:
  case CORE_LEVEL_FOURTEEN:
  case CORE_LEVEL_FIFTEEN:
    // MCM processors can not have an odd number of cores. For an odd CORE_LEVEL_N, MCM processors will be
    // leveled as though CORE_LEVEL_N+1 was chosen.
    // Processors with compute units disable all cores in an entire compute unit at a time, or on an MCM processor,
    // two compute units at a time. For example, on an SCM processor with two cores per compute unit, the effective
    // explicit levels are CORE_LEVEL_ONE, CORE_LEVEL_TWO, CORE_LEVEL_FOUR, CORE_LEVEL_SIX, and
    // CORE_LEVEL_EIGHT. The same example for an MCM processor with two cores per compute unit has effective
    // explicit levels of CORE_LEVEL_TWO, CORE_LEVEL_FOUR, CORE_LEVEL_EIGHT, and CORE_LEVEL_TWELVE.
    RequestedCores = CoreLevelMode - CORE_LEVEL_THREE + 3;
    LeveledCores = (RequestedCores + NumberOfModules - 1) / NumberOfModules;
    LeveledCores = (LeveledCores / CoreNumPerComputeUnit) * CoreNumPerComputeUnit;
    LeveledCores = (LeveledCores <= MinCoreCountOnNode) ? LeveledCores : MinCoreCountOnNode;
    if (LeveledCores != 1) {
      LeveledCores = (LeveledCores / CoreNumPerComputeUnit) * CoreNumPerComputeUnit;
    }
    if ((LeveledCores * NumberOfModules * CoreNumPerComputeUnit) != RequestedCores) {
      PutEventLog (
      AGESA_WARNING,
      CPU_WARNING_ADJUSTED_LEVELING_MODE,
      RequestedCores, (LeveledCores * NumberOfModules * CoreNumPerComputeUnit), 0, 0, StdHeader
      );
    }
    break;
  default:
    ASSERT (FALSE);
  }

  // Set down core register
  for (Socket = 0; Socket < NumberOfSockets; Socket++) {
    if (IsProcessorPresent (Socket, StdHeader)) {
      GetFeatureServicesOfSocket (&CoreLevelingFamilyServiceTable, Socket, &FamilySpecificServices, StdHeader);
      if (FamilySpecificServices != NULL) {
        for (Module = 0; Module < NumberOfModules; Module++) {
          RegUpdated = FamilySpecificServices->SetDownCoreRegister (FamilySpecificServices, &Socket, &Module, &LeveledCores, CoreLevelMode, StdHeader);
          // If the down core register is updated, trigger a warm reset.
          if (RegUpdated) {
            GetWarmResetFlag (StdHeader, &Request);
            Request.RequestBit = TRUE;
            Request.StateBits = Request.PostStage - 1;
            SetWarmResetFlag (StdHeader, &Request);
          }
        }
      }
    }
  }

  return (AGESA_SUCCESS);
}
/**
 * Multisocket call to determine the frequency that the northbridges must run.
 *
 * This function loops through all possible socket locations, comparing the
 * maximum NB frequencies to determine the slowest.  This function also
 * determines if all coherent NB frequencies are equivalent.
 *
 * @param[in]  NbPstate                    NB P-state number to check (0 = fastest)
 * @param[in]  PlatformConfig              Platform profile/build option config structure.
 * @param[out] SystemNbCofNumerator        NB frequency numerator for the system in MHz
 * @param[out] SystemNbCofDenominator      NB frequency denominator for the system
 * @param[out] SystemNbCofsMatch           Whether or not all NB frequencies are equivalent
 * @param[out] NbPstateIsEnabledOnAllCPUs  Whether or not NbPstate is valid on all CPUs
 * @param[in]  StdHeader                   Config handle for library and services
 *
 * @retval     TRUE                        At least one processor has NbPstate enabled.
 * @retval     FALSE                       NbPstate is disabled on all CPUs
 *
 */
BOOLEAN
GetSystemNbCofMulti (
  IN       UINT32 NbPstate,
  IN       PLATFORM_CONFIGURATION *PlatformConfig,
     OUT   UINT32 *SystemNbCofNumerator,
     OUT   UINT32 *SystemNbCofDenominator,
     OUT   BOOLEAN *SystemNbCofsMatch,
     OUT   BOOLEAN *NbPstateIsEnabledOnAllCPUs,
  IN       AMD_CONFIG_PARAMS *StdHeader
  )
{
  UINT32   Socket;
  UINT8    Module;
  UINT32   CurrentNbCof;
  UINT32   CurrentDivisor;
  UINT32   CurrentFreq;
  UINT32   LowFrequency;
  UINT32   Ignored32;
  BOOLEAN  FirstCofNotFound;
  BOOLEAN  NbPstateDisabled;
  BOOLEAN  IsNbPstateEnabledOnAny;
  PCI_ADDR PciAddress;
  AGESA_STATUS Ignored;
  CPU_SPECIFIC_SERVICES *FamilySpecificServices;

  // Find the slowest NB COF in the system & whether or not all are equivalent
  LowFrequency = 0xFFFFFFFF;
  *SystemNbCofsMatch = TRUE;
  *NbPstateIsEnabledOnAllCPUs = FALSE;
  IsNbPstateEnabledOnAny = FALSE;
  FirstCofNotFound = TRUE;
  NbPstateDisabled = FALSE;
  for (Socket = 0; Socket < GetPlatformNumberOfSockets (); Socket++) {
    if (IsProcessorPresent (Socket, StdHeader)) {
      GetCpuServicesOfSocket (Socket, (CONST CPU_SPECIFIC_SERVICES **)&FamilySpecificServices, StdHeader);
      for (Module = 0; Module < GetPlatformNumberOfModules (); Module++) {
        if (GetPciAddress (StdHeader, Socket, Module, &PciAddress, &Ignored)) {
          break;
        }
      }
      if (FamilySpecificServices->GetNbPstateInfo (FamilySpecificServices,
                                                   PlatformConfig,
                                                   &PciAddress,
                                                   NbPstate,
                                                   &CurrentNbCof,
                                                   &CurrentDivisor,
                                                   &Ignored32,
                                                   StdHeader)) {
        ASSERT (CurrentDivisor != 0);
        CurrentFreq = (CurrentNbCof / CurrentDivisor);
        if (FirstCofNotFound) {
          *SystemNbCofNumerator = CurrentNbCof;
          *SystemNbCofDenominator = CurrentDivisor;
          LowFrequency = CurrentFreq;
          IsNbPstateEnabledOnAny = TRUE;
          if (!NbPstateDisabled) {
            *NbPstateIsEnabledOnAllCPUs = TRUE;
          }
          FirstCofNotFound = FALSE;
        } else {
          if (CurrentFreq != LowFrequency) {
            *SystemNbCofsMatch = FALSE;
            if (CurrentFreq < LowFrequency) {
              LowFrequency = CurrentFreq;
              *SystemNbCofNumerator = CurrentNbCof;
              *SystemNbCofDenominator = CurrentDivisor;
            }
          }
        }
      } else {
        NbPstateDisabled = TRUE;
        *NbPstateIsEnabledOnAllCPUs = FALSE;
      }
    }
  }
  return IsNbPstateEnabledOnAny;
}
示例#3
0
/**
 *  Enable the C6 C-state
 *
 * @param[in]    EntryPoint         Timepoint designator.
 * @param[in]    PlatformConfig     Contains the runtime modifiable feature input data.
 * @param[in]    StdHeader          Config Handle for library, services.
 *
 * @retval       AGESA_SUCCESS      Always succeeds.
 *
 */
AGESA_STATUS
STATIC
InitializeC6Feature (
  IN       UINT64                 EntryPoint,
  IN       PLATFORM_CONFIGURATION *PlatformConfig,
  IN       AMD_CONFIG_PARAMS      *StdHeader
  )
{
  UINT32  BscSocket;
  UINT32  Ignored;
  UINT32  BscCoreNum;
  UINT32  Core;
  UINT32  Socket;
  UINT32  NumberOfSockets;
  UINT32  NumberOfCores;
  AP_TASK TaskPtr;
  AMD_CPU_EARLY_PARAMS CpuEarlyParams;
  C6_FAMILY_SERVICES  *C6FamilyServices;
  AGESA_STATUS IgnoredSts;

  CpuEarlyParams.PlatformConfig = *PlatformConfig;

  TaskPtr.FuncAddress.PfApTaskIC = EnableC6OnSocket;
  TaskPtr.DataTransfer.DataSizeInDwords = 2;
  TaskPtr.DataTransfer.DataPtr = &EntryPoint;
  TaskPtr.DataTransfer.DataTransferFlags = 0;
  TaskPtr.ExeFlags = PASS_EARLY_PARAMS;
  OptionMultiSocketConfiguration.BscRunCodeOnAllSystemCore0s (&TaskPtr, StdHeader, &CpuEarlyParams);

  if ((EntryPoint & (CPU_FEAT_AFTER_POST_MTRR_SYNC | CPU_FEAT_AFTER_RESUME_MTRR_SYNC)) != 0) {
    // Load any required microcode patches on both normal boot and resume from S3.
    IdentifyCore (StdHeader, &BscSocket, &Ignored, &BscCoreNum, &IgnoredSts);
    GetFeatureServicesOfSocket (&C6FamilyServiceTable, BscSocket, (const VOID **)&C6FamilyServices, StdHeader);
    if (C6FamilyServices != NULL) {
      C6FamilyServices->ReloadMicrocodePatchAfterMemInit (StdHeader);
    }

    // run code on all APs
    TaskPtr.DataTransfer.DataSizeInDwords = 0;
    TaskPtr.ExeFlags = 0;

    NumberOfSockets = GetPlatformNumberOfSockets ();

    for (Socket = 0; Socket < NumberOfSockets; Socket++) {
      if (IsProcessorPresent (Socket, StdHeader)) {
        GetFeatureServicesOfSocket (&C6FamilyServiceTable, Socket, (const VOID **)&C6FamilyServices, StdHeader);
        if (C6FamilyServices != NULL) {
          // run code on all APs
          TaskPtr.FuncAddress.PfApTask = C6FamilyServices->ReloadMicrocodePatchAfterMemInit;
          if (GetActiveCoresInGivenSocket (Socket, &NumberOfCores, StdHeader)) {
            for (Core = 0; Core < NumberOfCores; Core++) {
              if ((Socket != BscSocket) || (Core != BscCoreNum)) {
                ApUtilRunCodeOnSocketCore ((UINT8) Socket, (UINT8) Core, &TaskPtr, StdHeader);
              }
            }
          }
        }
      }
    }
  }
  return AGESA_SUCCESS;
}
示例#4
0
/**
 *  Should message-based C1e be enabled
 *
 * @param[in]    PlatformConfig     Contains the runtime modifiable feature input data.
 * @param[in]    StdHeader          Config Handle for library, services.
 *
 * @retval       TRUE               Message-based C1e is supported.
 * @retval       FALSE              Message-based C1e cannot be enabled.
 *
 */
BOOLEAN
STATIC
IsMsgBasedC1eFeatureEnabled (
  IN       PLATFORM_CONFIGURATION *PlatformConfig,
  IN       AMD_CONFIG_PARAMS      *StdHeader
  )
{
  UINTN                         Link;
  UINTN                         LinkCount;
  UINT32                        Socket;
  UINT32                        Module;
  BOOLEAN                       IsEnabled;
  PCI_ADDR                      PciAddress;
  AGESA_STATUS                  AgesaStatus;
  HT_HOST_FEATS                 HtHostFeats;
  CPU_SPECIFIC_SERVICES         *CpuServices;
  MSG_BASED_C1E_FAMILY_SERVICES *FamilyServices;

  ASSERT (PlatformConfig->C1eMode < MaxC1eMode);

  IsEnabled = FALSE;
  if (PlatformConfig->C1eMode == C1eModeMsgBased) {
    ASSERT (PlatformConfig->C1ePlatformData < 0x10000);
    ASSERT (PlatformConfig->C1ePlatformData != 0);
    if ((PlatformConfig->C1ePlatformData != 0) && (PlatformConfig->C1ePlatformData < 0xFFFE)) {
      IsEnabled = TRUE;
      for (Socket = 0; Socket < GetPlatformNumberOfSockets (); Socket++) {
        if (IsProcessorPresent (Socket, StdHeader)) {
          GetFeatureServicesOfSocket (&MsgBasedC1eFamilyServiceTable, Socket, (CONST VOID **)&FamilyServices, StdHeader);
          if ((FamilyServices == NULL) || !FamilyServices->IsMsgBasedC1eSupported (FamilyServices, Socket, StdHeader)) {
            IsEnabled = FALSE;
            break;
          } else {
            // If the CPU revision supports message-based C1e, check whether the feature should
            // be disabled based on the speed of ncHT links (HT1).
            GetCpuServicesOfSocket (Socket, &CpuServices, StdHeader);
            for (Module = 0; Module < GetPlatformNumberOfModules (); Module++) {
              if (GetPciAddress (StdHeader, Socket, Module, &PciAddress, &AgesaStatus)) {
                HtHostFeats.HtHostValue = 0;
                for (LinkCount = 0; LinkCount < 8; LinkCount++) {
                  if (FindHtHostCapability (LinkCount, &PciAddress, StdHeader)) {
                    CpuServices->GetHtLinkFeatures (CpuServices, &Link, &PciAddress, &HtHostFeats, StdHeader);
                    if ((HtHostFeats.HtHostFeatures.NonCoherent == 1) && (HtHostFeats.HtHostFeatures.Ht1 == 1)) {
                      IsEnabled = FALSE;
                      break;
                    }
                  }
                }
              }
              // Exit for (Module = 0; Module < GetPlatformNumberOfModules; Module++)
              if (!IsEnabled) {
                break;
              }
            }
          }
        }
        // Exit for (Socket = 0; Socket < GetPlatformNumberOfSockets (); Socket++)
        if (!IsEnabled) {
          break;
        }
      }
    }
  }
  return IsEnabled;
}
示例#5
0
/**
 * Multisocket call to determine the most severe AGESA_STATUS return value after
 * processing the power management initialization tables.
 *
 * This function loops through all possible socket locations, collecting any
 * power management initialization errors that may have occurred.  These errors
 * are transferred from the core 0s of the socket in which the errors occurred
 * to the BSC's heap.  The BSC's heap is then searched for the most severe error
 * that occurred, and returns it.  This function must be called by the BSC only.
 *
 * @param[in]  StdHeader         Config handle for library and services
 *
 * @return     The most severe error code from power management init
 *
 */
AGESA_STATUS
GetEarlyPmErrorsMulti (
  IN       AMD_CONFIG_PARAMS *StdHeader
  )
{
  UINT16 i;
  UINT32 BscSocket;
  UINT32 BscModule;
  UINT32 BscCoreNum;
  UINT32 Socket;
  UINT32 NumberOfSockets;
  AP_TASK      TaskPtr;
  AGESA_EVENT  EventLogEntry;
  AGESA_STATUS ReturnCode;
  AGESA_STATUS DummyStatus;

  ASSERT (IsBsp (StdHeader, &ReturnCode));

  ReturnCode = AGESA_SUCCESS;
  EventLogEntry.EventClass = AGESA_SUCCESS;
  EventLogEntry.EventInfo = 0;
  EventLogEntry.DataParam1 = 0;
  EventLogEntry.DataParam2 = 0;
  EventLogEntry.DataParam3 = 0;
  EventLogEntry.DataParam4 = 0;

  NumberOfSockets = GetPlatformNumberOfSockets ();
  IdentifyCore (StdHeader, &BscSocket, &BscModule, &BscCoreNum, &DummyStatus);

  TaskPtr.FuncAddress.PfApTaskI = GetNextEvent;
  TaskPtr.DataTransfer.DataSizeInDwords = SIZE_IN_DWORDS (AGESA_EVENT);
  TaskPtr.DataTransfer.DataPtr = &EventLogEntry;
  TaskPtr.DataTransfer.DataTransferFlags = 0;
  TaskPtr.ExeFlags = WAIT_FOR_CORE | RETURN_PARAMS;
  for (Socket = 0; Socket < NumberOfSockets; Socket++) {
    if (Socket != BscSocket) {
      if (IsProcessorPresent (Socket, StdHeader)) {
        do {
          ApUtilRunCodeOnSocketCore ((UINT8)Socket, (UINT8) 0, &TaskPtr, StdHeader);
          if ((EventLogEntry.EventInfo & CPU_EVENT_PM_EVENT_MASK) == CPU_EVENT_PM_EVENT_CLASS) {
            PutEventLog (
              EventLogEntry.EventClass,
              EventLogEntry.EventInfo,
              EventLogEntry.DataParam1,
              EventLogEntry.DataParam2,
              EventLogEntry.DataParam3,
              EventLogEntry.DataParam4,
              StdHeader
              );
          }
        } while (EventLogEntry.EventInfo != 0);
      }
    }
  }

  for (i = 0; PeekEventLog (&EventLogEntry, i, StdHeader); i++) {
    if ((EventLogEntry.EventInfo & CPU_EVENT_PM_EVENT_MASK) == CPU_EVENT_PM_EVENT_CLASS) {
      if (EventLogEntry.EventClass > ReturnCode) {
        ReturnCode = EventLogEntry.EventClass;
      }
    }
  }
  return (ReturnCode);
}
示例#6
0
AGESA_STATUS
PcieConfigurationInit (
  IN       AMD_CONFIG_PARAMS               *StdHeader
  )
{

  AGESA_STATUS          Status;
  PCIe_PLATFORM_CONFIG  *Pcie;
  PCIe_SILICON_CONFIG   *Silicon;
  UINT8                 SocketId;
  UINTN                 CurrentComplexesDataLength;
  UINTN                 ComplexesDataLength;
  UINT8                 ComplexIndex;
  VOID                  *Buffer;
  ComplexesDataLength = 0;
  Status = AGESA_SUCCESS;
  IDS_HDT_CONSOLE (GNB_TRACE, "PcieConfigurationInit Enter\n");
  for (SocketId = 0; SocketId < GetPlatformNumberOfSockets (); SocketId++) {
    if (IsProcessorPresent (SocketId, StdHeader)) {
      Status = PcieFmGetComplexDataLength (SocketId, &CurrentComplexesDataLength, StdHeader);
      ASSERT (Status == AGESA_SUCCESS);
      ComplexesDataLength += CurrentComplexesDataLength;
    }
  }
  ComplexIndex = 0;
  Pcie = GnbAllocateHeapBufferAndClear (AMD_PCIE_COMPLEX_DATA_HANDLE, sizeof (PCIe_PLATFORM_CONFIG) + ComplexesDataLength, StdHeader);
  ASSERT (Pcie != NULL);
  if (Pcie != NULL) {
    PcieConfigAttachChild (&Pcie->Header, &Pcie->ComplexList[ComplexIndex].Header);
    PcieConfigSetDescriptorFlags (Pcie, DESCRIPTOR_PLATFORM | DESCRIPTOR_TERMINATE_LIST | DESCRIPTOR_TERMINATE_TOPOLOGY);
    Buffer = (UINT8 *) (Pcie) + sizeof (PCIe_PLATFORM_CONFIG);
    for (SocketId = 0; SocketId < GetPlatformNumberOfSockets (); SocketId++) {
      if (IsProcessorPresent (SocketId, StdHeader)) {
        Pcie->ComplexList[ComplexIndex].SocketId = SocketId;
        //Attache Comples to Silicon which will be created by PcieFmBuildComplexConfiguration
        PcieConfigAttachChild (&Pcie->ComplexList[ComplexIndex].Header, &((PCIe_SILICON_CONFIG *) Buffer)->Header);
        //Attach Comples to Pcie
        PcieConfigAttachParent (&Pcie->Header, &Pcie->ComplexList[ComplexIndex].Header);
        PcieConfigSetDescriptorFlags (&Pcie->ComplexList[ComplexIndex], DESCRIPTOR_COMPLEX | DESCRIPTOR_TERMINATE_LIST | DESCRIPTOR_TERMINATE_GNB | DESCRIPTOR_TERMINATE_TOPOLOGY);
        PcieFmBuildComplexConfiguration (SocketId, Buffer, StdHeader);
        Silicon = PcieConfigGetChildSilicon (&Pcie->ComplexList[ComplexIndex]);
        while (Silicon != NULL) {
          PcieConfigAttachParent (&Pcie->ComplexList[ComplexIndex].Header, &Silicon->Header);
          GetNodeId (SocketId, Silicon->SiliconId, &Silicon->NodeId, StdHeader);
          GnbFmGetLinkId ((GNB_HANDLE*) Silicon, &Silicon->LinkId, StdHeader);
          Silicon = (PCIe_SILICON_CONFIG *) PcieConfigGetNextTopologyDescriptor (Silicon, DESCRIPTOR_TERMINATE_TOPOLOGY);
        }

        if (ComplexIndex > 0) {
          PcieConfigAttachComplexes (&Pcie->ComplexList[ComplexIndex - 1], &Pcie->ComplexList[ComplexIndex]);
        }
        PcieFmGetComplexDataLength (SocketId, &CurrentComplexesDataLength, StdHeader);
        Buffer = (VOID *) ((UINT8 *) Buffer + CurrentComplexesDataLength);
        ComplexIndex++;
      }
    }
  } else {
    Status = AGESA_FATAL;
  }
  IDS_HDT_CONSOLE (GNB_TRACE, "PcieConfigurationInit Exit [0x%x]\n", Status);
  return Status;
}
示例#7
0
/**
 *  Enable L3 dependent features.
 *
 * L3 features initialization requires the following series of steps.
 *  1. Disable L3 and DRAM scrubbers on all nodes
 *  2. Wait 40us for outstanding scrub results to complete
 *  3. Disable all cache activity in the system
 *  4. Issue WBINVD on all active cores
 *  5. Initialize Probe Filter, if supported
 *  6. Initialize ATM Mode, if supported
 *  7. Enable all cache activity in the system
 *  8. Restore L3 and DRAM scrubber register values
 *
 * @param[in]    EntryPoint         Timepoint designator.
 * @param[in]    PlatformConfig     Contains the runtime modifiable feature input data.
 * @param[in]    StdHeader          Config Handle for library, services.
 *
 * @retval       AGESA_SUCCESS      Always succeeds.
 *
 */
AGESA_STATUS
STATIC
InitializeL3Feature (
  IN       UINT64                 EntryPoint,
  IN       PLATFORM_CONFIGURATION *PlatformConfig,
  IN       AMD_CONFIG_PARAMS      *StdHeader
  )
{
  UINT32                      CpuCount;
  UINT32                      Socket;
  BOOLEAN                     HtAssistEnabled;
  BOOLEAN                     AtmModeEnabled;
  AGESA_STATUS                AgesaStatus;
  AP_MAILBOXES                ApMailboxes;
  AP_EXE_PARAMS               ApParams;
  UINT32                      Scrubbers[MAX_SOCKETS_SUPPORTED][L3_SCRUBBER_CONTEXT_ARRAY_SIZE];
  L3_FEATURE_FAMILY_SERVICES  *FamilyServices[MAX_SOCKETS_SUPPORTED];

  AgesaStatus     = AGESA_SUCCESS;
  HtAssistEnabled = TRUE;
  AtmModeEnabled  = TRUE;

  IDS_HDT_CONSOLE (CPU_TRACE, "    Enabling L3 dependent features\n");

  // There are many family service call outs.  Initialize the family service array while
  // cache is still enabled.
  for (Socket = 0; Socket < MAX_SOCKETS_SUPPORTED; Socket++) {
    if (IsProcessorPresent (Socket, StdHeader)) {
      GetFeatureServicesOfSocket (&L3FeatureFamilyServiceTable, Socket, (const VOID **) &FamilyServices[Socket], StdHeader);
    } else {
      FamilyServices[Socket] = NULL;
    }
  }

  if (EntryPoint == CPU_FEAT_AFTER_POST_MTRR_SYNC) {
    // Check for optimal settings
    GetApMailbox (&ApMailboxes.ApMailInfo.Info, StdHeader);
    CpuCount = GetNumberOfProcessors (StdHeader);
    if (((CpuCount == 1) && (ApMailboxes.ApMailInfo.Fields.ModuleType == 1)) ||
        ((CpuCount == 2) && (ApMailboxes.ApMailInfo.Fields.ModuleType == 0))) {
      for (Socket = 0; Socket < GetPlatformNumberOfSockets (); Socket++) {
        // Only check for non-optimal HT Assist setting is if's supported.
        if ((FamilyServices[Socket] != NULL) &&
            (FamilyServices[Socket]->IsHtAssistSupported (FamilyServices[Socket], PlatformConfig, StdHeader))) {
          if (FamilyServices[Socket]->IsNonOptimalConfig (FamilyServices[Socket], Socket, StdHeader)) {
            // Non-optimal settings.  Log an event.
            AgesaStatus = AGESA_WARNING;
            PutEventLog (AgesaStatus, CPU_WARNING_NONOPTIMAL_HT_ASSIST_CFG, 0, 0, 0, 0, StdHeader);
            break;
          }
        }
      }
    }
  } else {
    // Disable the scrubbers.
    for (Socket = 0; Socket < GetPlatformNumberOfSockets (); Socket++) {
      if (FamilyServices[Socket] != NULL) {
        FamilyServices[Socket]->GetL3ScrubCtrl (FamilyServices[Socket], Socket, &Scrubbers[Socket][0], StdHeader);

        // If any node in the system does not support Probe Filter, disable it on the system
        if (!FamilyServices[Socket]->IsHtAssistSupported (FamilyServices[Socket], PlatformConfig, StdHeader)) {
          HtAssistEnabled = FALSE;
        }
        // If any node in the system does not support ATM mode, disable it on the system
        if (!FamilyServices[Socket]->IsAtmModeSupported (FamilyServices[Socket], PlatformConfig, StdHeader)) {
          AtmModeEnabled = FALSE;
        }
      }
    }

    // Wait for 40us
    WaitMicroseconds ((UINT32) 40, StdHeader);

    // Run DisableAllCaches on AP cores.
    ApParams.StdHeader = *StdHeader;
    ApParams.FunctionNumber = AP_LATE_TASK_DISABLE_CACHE;
    ApParams.RelatedDataBlock = (VOID *) &HtAssistEnabled;
    ApParams.RelatedBlockLength = sizeof (BOOLEAN);
    RunLateApTaskOnAllAPs (&ApParams, StdHeader);

    // Run DisableAllCaches on core 0.
    DisableAllCaches (&ApParams);

    // Family hook before initialization.
    for (Socket = 0; Socket < GetPlatformNumberOfSockets (); Socket++) {
      if (FamilyServices[Socket] != NULL) {
        FamilyServices[Socket]->HookBeforeInit (FamilyServices[Socket], Socket, StdHeader);
      }
    }

    // Activate Probe Filter & ATM mode.
    for (Socket = 0; Socket < GetPlatformNumberOfSockets (); Socket++) {
      if (FamilyServices[Socket] != NULL) {
        if (HtAssistEnabled) {
          FamilyServices[Socket]->HtAssistInit (FamilyServices[Socket], Socket, StdHeader);
        }
        if (AtmModeEnabled) {
          FamilyServices[Socket]->AtmModeInit (FamilyServices[Socket], Socket, StdHeader);
        }
      }
    }

    // Family hook after initialization.
    for (Socket = 0; Socket < GetPlatformNumberOfSockets (); Socket++) {
      if (FamilyServices[Socket] != NULL) {
        FamilyServices[Socket]->HookAfterInit (FamilyServices[Socket], Socket, StdHeader);
      }
    }

    // Run EnableAllCaches on core 0.
    EnableAllCaches (&ApParams);

    // Run EnableAllCaches on every core.
    ApParams.FunctionNumber = AP_LATE_TASK_ENABLE_CACHE;
    RunLateApTaskOnAllAPs (&ApParams, StdHeader);

    // Restore the scrubbers.
    for (Socket = 0; Socket < GetPlatformNumberOfSockets (); Socket++) {
      if (FamilyServices[Socket] != NULL) {
        FamilyServices[Socket]->SetL3ScrubCtrl (FamilyServices[Socket], Socket, &Scrubbers[Socket][0], StdHeader);
      }
    }
  }

  return AgesaStatus;
}