//*****************************************************************************
//
//! Control robot to go straight forward by following wall
//!
//!
//! \return true if left/right wall is detected
//!			false if no left/right wall is detected
//
static bool Forward()
{
	LED1_OFF();LED2_ON();LED3_OFF();
	//bluetooth_print("%d\r\n",avrSpeed);
	if ((!isWallLeft) || (!isWallRight))
	{
		forwardUpdateByWall();
		return true;
	}
	forwardUpdate();
	if (avrSpeed<AVG_SPEED_FWD_FAST-20)
		avrSpeed+=20;
	else if (avrSpeed>AVG_SPEED_FWD_FAST)
		avrSpeed=AVG_SPEED_FWD_FAST;

	if (isWallRight)
	{
		pid_wallfollow(leftError,rightError, avrSpeed,WALL_FOLLOW_RIGHT);
	}
	else if (isWallLeft)
	{
		pid_wallfollow(leftError,rightError, avrSpeed,WALL_FOLLOW_LEFT);
	}
	else
	{
		speed_set(MOTOR_RIGHT, avrSpeed);
		speed_set(MOTOR_LEFT, avrSpeed);
	}

	return false;
}
示例#2
0
void LED_SLOW(void)  //LED慢闪
{
	P0DIR &= ~0X80;       //set p0.7 output
	
  LED3_OFF();
	
 	P0DIR |= 0X80;       //关闭GPIO
}
示例#3
0
void LED_DOWN(void)          //LED灭
{
	P0DIR &= ~0X80;       //set p0.7 output
	
  LED3_OFF();
	
 	P0DIR |= 0X80;       //关闭GPIO
}
示例#4
0
void ButtonRightHandler(void)
{
	if (system_GetState() == SYSTEM_CALIB_SENSOR)
	{
		switch(IR_Calib_Step)
		{
			case 0:
				LED1_ON();
				LED2_OFF();
				LED3_OFF();
				IR_set_calib_value(IR_CALIB_BASE_LEFT);
				IR_set_calib_value(IR_CALIB_BASE_RIGHT);
				break;
			case 1:
				IR_set_calib_value(IR_CALIB_BASE_FRONT_LEFT);
				IR_set_calib_value(IR_CALIB_BASE_FRONT_RIGHT);
				LED1_OFF();
				LED2_ON();
				LED3_OFF();
				break;
			case 2:
				IR_set_calib_value(IR_CALIB_MAX_LEFT);
				LED1_ON();
				LED2_ON();
				LED3_OFF();
				break;
			case 3:
				IR_set_calib_value(IR_CALIB_MAX_RIGHT);
				LED1_OFF();
				LED2_OFF();
				LED3_ON();
				break;
			case 4:
				IR_set_calib_value(IR_CALIB_MAX_FRONT_LEFT);
				IR_set_calib_value(IR_CALIB_MAX_FRONT_RIGHT);
				LED1_ON();
				LED2_OFF();
				LED3_ON();
				break;
		}
		IR_Calib_Step++;
		IR_Calib_Step %= 4;
	}
}
示例#5
0
void LED_Display_init(void)
{
	ROM_SysCtlPeripheralEnable(LED1_PERIPHERAL);
	ROM_SysCtlPeripheralEnable(LED2_PERIPHERAL);
	ROM_SysCtlPeripheralEnable(LED3_PERIPHERAL);
	ROM_GPIOPinTypeGPIOOutput(LED1_PORT, LED1_PIN);
	ROM_GPIOPinTypeGPIOOutput(LED2_PORT, LED2_PIN);
	ROM_GPIOPinTypeGPIOOutput(LED3_PORT, LED3_PIN);

	LED1_OFF();
	LED2_OFF();
	LED3_OFF();
}
void system_Process_System_State(void)
{
	switch (system_GetState())
	{
		case SYSTEM_POWER_UP:
			break;
		case SYSTEM_INITIALIZE:
			break;
		case SYSTEM_CALIB_SENSOR:
			break;
		case SYSTEM_SAVE_CALIB_SENSOR:
			break;
		case SYSTEM_ESTIMATE_MOTOR_MODEL:
			ProcessSpeedControl();
			break;
		case SYSTEM_SAVE_MOTOR_MODEL:
			break;
		case SYSTEM_WAIT_TO_RUN:
			break;
		case SYSTEM_RUN_SOLVE_MAZE:
			pid_Wallfollow_process();
			ProcessSpeedControl();
			break;
		case SYSTEM_RUN_IMAGE_PROCESSING:
			LED1_ON();
			ProcessSpeedControl();
			break;
		case SYSTEM_ERROR:
			speed_Enable_Hbridge(false);
			system_Enable_BoostCircuit(false);
			IntMasterDisable();
			while (1)
			{
				LED1_ON();
				LED2_ON();
				LED3_ON();
				ROM_SysCtlDelay(ROM_SysCtlClockGet() / 3);
				LED1_OFF();
				LED2_OFF();
				LED3_OFF();
				ROM_SysCtlDelay(ROM_SysCtlClockGet() / 3);
			}
//			break;
	}
}
示例#7
0
void system_Process_System_State(void)
{
	switch (system_GetState())
	{
		case SYSTEM_POWER_UP:
			break;
		case SYSTEM_INITIALIZE:
			break;
		case SYSTEM_ESTIMATE_MOTOR_MODEL:
			break;
		case SYSTEM_SAVE_MOTOR_MODEL:
			break;
		case SYSTEM_WAIT_TO_RUN:
			break;
		case SYSTEM_RUN_BALANCE:
			loop();
			break;
		case SYSTEM_RUN_IMAGE_PROCESSING:
			LED1_ON();
			break;
		case SYSTEM_ERROR:
			speed_Enable_Hbridge(false);
			system_Enable_BoostCircuit(false);
			IntMasterDisable();
			while (1)
			{
				LED1_ON();
				LED2_ON();
				LED3_ON();
				ROM_SysCtlDelay(ROM_SysCtlClockGet() / 3);
				LED1_OFF();
				LED2_OFF();
				LED3_OFF();
				ROM_SysCtlDelay(ROM_SysCtlClockGet() / 3);
			}
	}
}
示例#8
0
int board_early_init_f(void)
{
	unsigned long sdrreg;
	/* TBS:	 Setup the GPIO access for the user LEDs */
	mfsdr(sdr_pfc0, sdrreg);
	mtsdr(sdr_pfc0, (sdrreg & ~0x00000100) | 0x00000E00);
	out32(CFG_GPIO_BASE + 0x018, (USR_LED0 | USR_LED1 | USR_LED2 | USR_LED3));
	LED0_OFF();
	LED1_OFF();
	LED2_OFF();
	LED3_OFF();

	/*--------------------------------------------------------------------
	 * Setup the external bus controller/chip selects
	 *-------------------------------------------------------------------*/

	/* set the bus controller */
	mtebc (pb0ap, 0x04055200);	/* FLASH/SRAM */
	mtebc (pb0cr, 0xfff18000);	/* BAS=0xfff 1MB R/W 8-bit */
	mtebc (pb1ap, 0x04055200);	/* FLASH/SRAM */
	mtebc (pb1cr, 0xfe098000);	/* BAS=0xff8 16MB R/W 8-bit */

	/*--------------------------------------------------------------------
	 * Setup the interrupt controller polarities, triggers, etc.
	 *-------------------------------------------------------------------*/
	mtdcr (uic0sr, 0xffffffff);	/* clear all */
	mtdcr (uic0er, 0x00000000);	/* disable all */
	mtdcr (uic0cr, 0x00000003);	/* SMI & UIC1 crit are critical */
	mtdcr (uic0pr, 0xfffffe00);	/* per ref-board manual */
	mtdcr (uic0tr, 0x01c00000);	/* per ref-board manual */
	mtdcr (uic0vr, 0x00000001);	/* int31 highest, base=0x000 */
	mtdcr (uic0sr, 0xffffffff);	/* clear all */

	mtdcr (uic1sr, 0xffffffff);	/* clear all */
	mtdcr (uic1er, 0x00000000);	/* disable all */
	mtdcr (uic1cr, 0x00000000);	/* all non-critical */
	mtdcr (uic1pr, 0xffffc0ff);	/* per ref-board manual */
	mtdcr (uic1tr, 0x00ff8000);	/* per ref-board manual */
	mtdcr (uic1vr, 0x00000001);	/* int31 highest, base=0x000 */
	mtdcr (uic1sr, 0xffffffff);	/* clear all */

	mtdcr (uic2sr, 0xffffffff);	/* clear all */
	mtdcr (uic2er, 0x00000000);	/* disable all */
	mtdcr (uic2cr, 0x00000000);	/* all non-critical */
	mtdcr (uic2pr, 0xffffffff);	/* per ref-board manual */
	mtdcr (uic2tr, 0x00ff8c0f);	/* per ref-board manual */
	mtdcr (uic2vr, 0x00000001);	/* int31 highest, base=0x000 */
	mtdcr (uic2sr, 0xffffffff);	/* clear all */

	mtdcr (uicb0sr, 0xfc000000); /* clear all */
	mtdcr (uicb0er, 0x00000000); /* disable all */
	mtdcr (uicb0cr, 0x00000000); /* all non-critical */
	mtdcr (uicb0pr, 0xfc000000); /* */
	mtdcr (uicb0tr, 0x00000000); /* */
	mtdcr (uicb0vr, 0x00000001); /* */

	LED0_ON();


	return 0;
}
//*****************************************************************************
//
//! Control two motor to make robot turn left 90 degree
//!
//! \param fwdPulse is the distance robot will go straight before turn right
//!, the robot will stand between the next cell of maze.
//! \param avrSpeedLeft is the speed of left motor.
//! \param avrSpeedRight is the speed of right motor.
//! \param turnPulse is the total pulse of two encoder after turn
//! \param resetEnc is reset value for encoder after turning 90 degree, ignore this if you don't want to estimate position
//! \return true if finish
//!			false if not
//
//*****************************************************************************
static bool TurnLeft(int fwdPulse,int avrSpeedLeft,int avrSpeedRight,int turnPulse,
		int resetEnc)
{
	static int vt,vp;
	LED1_ON();LED2_OFF();LED3_OFF();
//	bluetooth_print("LS %d\r\n",CtrlStep);
	switch (CtrlStep)
	{
	case 1:
		posLeftTmp=qei_getPosLeft();
		CtrlStep++;
		avrSpeedTmp=avrSpeed;
	case 2://go straight
		if ((abs(qei_getPosLeft()-posLeftTmp)<fwdPulse) ||
				(isWallFrontLeft && isWallFrontRight &&
				(IR_GetIrDetectorValue(3)>IR_get_calib_value(IR_CALIB_BASE_FRONT_RIGHT))&&
				(IR_GetIrDetectorValue(0)>IR_get_calib_value(IR_CALIB_BASE_FRONT_LEFT))))

		{
			if (qei_getPosLeft()<fwdPulse+posLeftTmp)
				avrSpeed = ((abs(fwdPulse + posLeftTmp - qei_getPosLeft()) / (fwdPulse / avrSpeedTmp)) / 2)
					+ (abs(avrSpeedLeft) + abs(avrSpeedRight)) / 2;
			else
				avrSpeed = (abs(avrSpeedLeft) + abs(avrSpeedRight)) / 2;

			if (isWallRight)
				pid_wallfollow(leftError,rightError,avrSpeed,WALL_FOLLOW_RIGHT);
			else
			{
				speed_set(MOTOR_RIGHT, avrSpeed);
				speed_set(MOTOR_LEFT, avrSpeed);
			}
		}
		else
		{
#ifdef TEST_TURNLEFT_MOVE1
		speed_Enable_Hbridge(false);
#endif

			pid_reset(&pid_wall_right);
			pid_reset(&pid_wall_left);
			forwardUpdate();
			CtrlStep++;
			avrSpeed=avrSpeedTmp;
		}
		break;
	case 3:
		posLeftTmp=qei_getPosLeft();
		posRightTmp=qei_getPosRight();
		CtrlStep++;
		vp=1;
		vt=1;
	case 4://turn 90 degree

		if (abs(qei_getPosLeft()-posLeftTmp) + abs(qei_getPosRight()-posRightTmp) < turnPulse)

		{
			speed_set(MOTOR_RIGHT, avrSpeedRight);
			speed_set(MOTOR_LEFT, -avrSpeedLeft);
			if((abs(qei_getPosRight()-posRightTmp)>(turnPulse*0.8*vp/8)) && (vp<9))
			{
				if (avrSpeedRight>=24)
					avrSpeedRight-=24;
				vp++;

			}
			if((abs(qei_getPosLeft()-posLeftTmp)>(turnPulse*0.2*vt/8)) && (vt<9))
			{
				if (avrSpeedLeft>=4)
					avrSpeedLeft-=4;
				vt++;
			}
		}
		else
		{
#ifdef TEST_TURNLEFT_TURN
		speed_Enable_Hbridge(false);
#endif
			currentDir=(currentDir+3)%4;
			clearPosition();
			qei_setPosLeft(resetEnc);
			qei_setPosRight(resetEnc);
			forwardUpdate();
			CtrlStep=1;
			pid_reset(&pid_wall_left);
			pid_reset(&pid_wall_right);
			speed_set(MOTOR_LEFT, avrSpeed);
			speed_set(MOTOR_RIGHT, avrSpeed);
			return true;
		}
		break;
	}
	return false;

}
示例#10
0
文件: main.c 项目: kaiman1234/a-culfw
//------------------------------------------------------------------------------
/// Application entry point. Configures the DBGU, PIT, TC0, LEDs and buttons
/// and makes LED\#1 blink in its infinite loop, using the Wait function.
/// \return Unused (ANSI-C compatibility).
//------------------------------------------------------------------------------
int main(void)
{


  // DBGU configuration
  TRACE_CONFIGURE(DBGU_STANDARD, 115200, BOARD_MCK);
  TRACE_INFO_WP("\n\r");
  TRACE_INFO("Getting new Started Project --\n\r");
  TRACE_INFO("%s\n\r", BOARD_NAME);
  TRACE_INFO("Compiled: %s %s --\n\r", __DATE__, __TIME__);

  //Configure Reset Controller
  AT91C_BASE_RSTC->RSTC_RMR= 0xa5<<24;

  // Configure EMAC PINS
  PIO_Configure(emacRstPins, PIO_LISTSIZE(emacRstPins));

  // Execute reset
  RSTC_SetExtResetLength(0xd);
  RSTC_ExtReset();

  // Wait for end hardware reset
  while (!RSTC_GetNrstLevel());

  TRACE_INFO("init Flash\n\r");
  flash_init();

  TRACE_INFO("init Timer\n\r");
  // Configure timer 0
  ticks=0;
  extern void ISR_Timer0();
  AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0);
  AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
  AT91C_BASE_TC0->TC_IDR = 0xFFFFFFFF;
  AT91C_BASE_TC0->TC_SR;
  AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV5_CLOCK | AT91C_TC_CPCTRG;
  AT91C_BASE_TC0->TC_RC = 375;
  AT91C_BASE_TC0->TC_IER = AT91C_TC_CPCS;
  AIC_ConfigureIT(AT91C_ID_TC0, AT91C_AIC_PRIOR_LOWEST, ISR_Timer0);
  AIC_EnableIT(AT91C_ID_TC0);
  AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;

  // Configure timer 1
  extern void ISR_Timer1();
  AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
  AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;	//Stop clock
  AT91C_BASE_TC1->TC_IDR = 0xFFFFFFFF;		//Disable Interrupts
  AT91C_BASE_TC1->TC_SR;						//Read Status register
  AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV4_CLOCK | AT91C_TC_CPCTRG;  // Timer1: 2,666us = 48MHz/128
  AT91C_BASE_TC1->TC_RC = 0xffff;
  AT91C_BASE_TC1->TC_IER = AT91C_TC_CPCS;
  AIC_ConfigureIT(AT91C_ID_TC1, 1, ISR_Timer1);
  AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;

  led_init();

  TRACE_INFO("init EEprom\n\r");
  eeprom_init();

  rb_reset(&TTY_Rx_Buffer);
  rb_reset(&TTY_Tx_Buffer);

  input_handle_func = analyze_ttydata;

  LED_OFF();
  LED2_OFF();
  LED3_OFF();

  spi_init();
  fht_init();
  tx_init();

  #ifdef HAS_ETHERNET

  ethernet_init();

  #endif

  TRACE_INFO("init USB\n\r");
  CDCDSerialDriver_Initialize();
  USBD_Connect();

  wdt_enable(WDTO_2S);

  fastrf_on=0;

  display_channel = DISPLAY_USB;

  TRACE_INFO("init Complete\n\r");

  checkFrequency();

  // Main loop
  while (1) {

    CDC_Task();
    Minute_Task();
    RfAnalyze_Task();

    #ifdef HAS_FASTRF
      FastRF_Task();
    #endif
    #ifdef HAS_RF_ROUTER
      rf_router_task();
    #endif
    #ifdef HAS_ASKSIN
      rf_asksin_task();
    #endif
    #ifdef HAS_MORITZ
      rf_moritz_task();
    #endif
    #ifdef HAS_RWE
      rf_rwe_task();
    #endif
    #ifdef HAS_MBUS
      rf_mbus_task();
    #endif
    #ifdef HAS_MAICO
      rf_maico_task();
    #endif

    #ifdef HAS_ETHERNET
      Ethernet_Task();
    #endif

#ifdef DBGU_UNIT_IN
    if(DBGU_IsRxReady()){
      unsigned char volatile * const ram = (unsigned char *) AT91C_ISRAM;
      unsigned char x;

      x=DBGU_GetChar();
      switch(x) {

      case 'd':
        puts("USB disconnect\n\r");
        USBD_Disconnect();
        break;
      case 'c':
        USBD_Connect();
        puts("USB Connect\n\r");
        break;
      case 'r':
        //Configure Reset Controller
        AT91C_BASE_RSTC->RSTC_RMR=AT91C_RSTC_URSTEN | 0xa5<<24;
        break;
      case 'S':
        USBD_Disconnect();

        my_delay_ms(250);
        my_delay_ms(250);

        //Reset
        *ram = 0xaa;
        AT91C_BASE_RSTC->RSTC_RCR = AT91C_RSTC_PROCRST | AT91C_RSTC_PERRST | AT91C_RSTC_EXTRST   | 0xA5<<24;
        while (1);
        break;
      default:
        rb_put(&TTY_Tx_Buffer, x);
      }
    }
#endif

    if (USBD_GetState() == USBD_STATE_CONFIGURED) {
      if( USBState == STATE_IDLE ) {
        CDCDSerialDriver_Read(usbBuffer,
                              DATABUFFERSIZE,
                              (TransferCallback) UsbDataReceived,
                              0);
        LED3_ON();
        USBState=STATE_RX;
      }
    }
    if( USBState == STATE_SUSPEND ) {
      TRACE_INFO("suspend  !\n\r");
      USBState = STATE_IDLE;
    }
    if( USBState == STATE_RESUME ) {
      TRACE_INFO("resume !\n\r");
      USBState = STATE_IDLE;
    }

  }
}
示例#11
0
文件: main.c 项目: kaiman1234/a-culfw
//------------------------------------------------------------------------------
/// Invoked when the USB device gets suspended. By default, turns off all LEDs.
//------------------------------------------------------------------------------
void USBDCallbacks_Suspended(void)
{
  LED3_OFF();
  USBState = STATE_SUSPEND;
}
示例#12
0
int board_early_init_f(void)
{
	unsigned long sdrreg;

	/*
	 * Enable GPIO for pins 18 - 24
	 * 18 = SEEPROM_WP
	 * 19 = #M_RST
	 * 20 = #MONARCH
	 * 21 = #LED_ALARM
	 * 22 = #LED_ACT
	 * 23 = #LED_STATUS1
	 * 24 = #LED_STATUS2
	 */
	mfsdr(SDR0_PFC0, sdrreg);
	mtsdr(SDR0_PFC0, (sdrreg & ~SDR0_PFC0_TRE_ENABLE) | 0x00003e00);
	out32(CONFIG_SYS_GPIO_BASE + 0x018, (USR_LED0 | USR_LED1 | USR_LED2 | USR_LED3));
	LED0_OFF();
	LED1_OFF();
	LED2_OFF();
	LED3_OFF();

	/* Setup the external bus controller/chip selects */
	mtebc(PB0AP, 0x04055200);	/* 16MB Strata FLASH */
	mtebc(PB0CR, 0xff098000);	/* BAS=0xff0 16MB R/W 8-bit */
	mtebc(PB1AP, 0x04055200);	/* 512KB Socketed AMD FLASH */
	mtebc(PB1CR, 0xfe018000);	/* BAS=0xfe0 1MB R/W 8-bit */
	mtebc(PB6AP, 0x05006400);	/* 32-64MB AMD MirrorBit FLASH */
	mtebc(PB6CR, 0xf00da000);	/* BAS=0xf00 64MB R/W i6-bit */
	mtebc(PB7AP, 0x05006400);	/* 32-64MB AMD MirrorBit FLASH */
	mtebc(PB7CR, 0xf40da000);	/* BAS=0xf40 64MB R/W 16-bit */

	/*
	 * Setup the interrupt controller polarities, triggers, etc.
	 *
	 * Because of the interrupt handling rework to handle 440GX interrupts
	 * with the common code, we needed to change names of the UIC registers.
	 * Here the new relationship:
	 *
	 * U-Boot name	440GX name
	 * -----------------------
	 * UIC0		UICB0
	 * UIC1		UIC0
	 * UIC2		UIC1
	 * UIC3		UIC2
	 */
	mtdcr(UIC1SR, 0xffffffff);	/* clear all */
	mtdcr(UIC1ER, 0x00000000);	/* disable all */
	mtdcr(UIC1CR, 0x00000003);	/* SMI & UIC1 crit are critical */
	mtdcr(UIC1PR, 0xfffffe00);	/* per ref-board manual */
	mtdcr(UIC1TR, 0x01c00000);	/* per ref-board manual */
	mtdcr(UIC1VR, 0x00000001);	/* int31 highest, base=0x000 */
	mtdcr(UIC1SR, 0xffffffff);	/* clear all */

	mtdcr(UIC2SR, 0xffffffff);	/* clear all */
	mtdcr(UIC2ER, 0x00000000);	/* disable all */
	mtdcr(UIC2CR, 0x00000000);	/* all non-critical */
	mtdcr(UIC2PR, 0xffffc0ff);	/* per ref-board manual */
	mtdcr(UIC2TR, 0x00ff8000);	/* per ref-board manual */
	mtdcr(UIC2VR, 0x00000001);	/* int31 highest, base=0x000 */
	mtdcr(UIC2SR, 0xffffffff);	/* clear all */

	mtdcr(UIC3SR, 0xffffffff);	/* clear all */
	mtdcr(UIC3ER, 0x00000000);	/* disable all */
	mtdcr(UIC3CR, 0x00000000);	/* all non-critical */
	mtdcr(UIC3PR, 0xffffffff);	/* per ref-board manual */
	mtdcr(UIC3TR, 0x00ff8c0f);	/* per ref-board manual */
	mtdcr(UIC3VR, 0x00000001);	/* int31 highest, base=0x000 */
	mtdcr(UIC3SR, 0xffffffff);	/* clear all */

	mtdcr(UIC0SR, 0xfc000000);	/* clear all */
	mtdcr(UIC0ER, 0x00000000);	/* disable all */
	mtdcr(UIC0CR, 0x00000000);	/* all non-critical */
	mtdcr(UIC0PR, 0xfc000000);	/* */
	mtdcr(UIC0TR, 0x00000000);	/* */
	mtdcr(UIC0VR, 0x00000001);	/* */

	LED0_ON();

	return 0;
}
示例#13
0
文件: main.c 项目: onitake/aversive
int main(void)
{
#ifndef HOST_VERSION
	/* brake */
	BRAKE_DDR();
	BRAKE_OFF();

	/* CPLD reset on PG3 */
	DDRG |= 1<<3;
	PORTG &= ~(1<<3); /* implicit */

	/* LEDS */
	DDRJ |= 0x0c;
	DDRL = 0xc0;
	LED1_OFF();
	LED2_OFF();
	LED3_OFF();
	LED4_OFF();
#endif

	memset(&gen, 0, sizeof(gen));
	memset(&mainboard, 0, sizeof(mainboard));
	mainboard.flags = DO_ENCODERS | DO_CS | DO_RS |
		DO_POS | DO_POWER | DO_BD | DO_ERRBLOCKING;
	ballboard.lcob = I2C_COB_NONE;
	ballboard.rcob = I2C_COB_NONE;

	/* UART */
	uart_init();
	uart_register_rx_event(CMDLINE_UART, emergency);
#ifndef HOST_VERSION
#if CMDLINE_UART == 3
 	fdevopen(uart3_dev_send, uart3_dev_recv);
#elif CMDLINE_UART == 1
 	fdevopen(uart1_dev_send, uart1_dev_recv);
#endif

	/* check eeprom to avoid to run the bad program */
	if (eeprom_read_byte(EEPROM_MAGIC_ADDRESS) !=
	    EEPROM_MAGIC_MAINBOARD) {
		int c;
		sei();
		printf_P(PSTR("Bad eeprom value ('f' to force)\r\n"));
		c = uart_recv(CMDLINE_UART);
		if (c == 'f')
			eeprom_write_byte(EEPROM_MAGIC_ADDRESS, EEPROM_MAGIC_MAINBOARD);
		wait_ms(100);
		bootloader();
	}
#endif /* ! HOST_VERSION */

	/* LOGS */
	error_register_emerg(mylog);
	error_register_error(mylog);
	error_register_warning(mylog);
	error_register_notice(mylog);
	error_register_debug(mylog);

#ifndef HOST_VERSION
	/* SPI + ENCODERS */
	encoders_spi_init(); /* this will also init spi hardware */

	/* I2C */
	i2c_init(I2C_MODE_MASTER, I2C_MAINBOARD_ADDR);
	i2c_protocol_init();
	i2c_register_recv_event(i2c_recvevent);
	i2c_register_send_event(i2c_sendevent);

	/* TIMER */
	timer_init();
	timer0_register_OV_intr(main_timer_interrupt);

	/* PWM */
	PWM_NG_TIMER_16BITS_INIT(1, TIMER_16_MODE_PWM_10,
				 TIMER1_PRESCALER_DIV_1);
	PWM_NG_TIMER_16BITS_INIT(4, TIMER_16_MODE_PWM_10,
				 TIMER4_PRESCALER_DIV_1);

	PWM_NG_INIT16(&gen.pwm1_4A, 4, A, 10, PWM_NG_MODE_SIGNED,
		      &PORTD, 4);
	PWM_NG_INIT16(&gen.pwm2_4B, 4, B, 10, PWM_NG_MODE_SIGNED |
		      PWM_NG_MODE_SIGN_INVERTED, &PORTD, 5);
	PWM_NG_INIT16(&gen.pwm3_1A, 1, A, 10, PWM_NG_MODE_SIGNED,
		      &PORTD, 6);
	PWM_NG_INIT16(&gen.pwm4_1B, 1, B, 10, PWM_NG_MODE_SIGNED,
		      &PORTD, 7);


	/* servos */
	PWM_NG_TIMER_16BITS_INIT(3, TIMER_16_MODE_PWM_10,
				 TIMER1_PRESCALER_DIV_256);
	PWM_NG_INIT16(&gen.servo1, 3, C, 10, PWM_NG_MODE_NORMAL,
		      NULL, 0);
	PWM_NG_TIMER_16BITS_INIT(5, TIMER_16_MODE_PWM_10,
				 TIMER1_PRESCALER_DIV_256);
	PWM_NG_INIT16(&gen.servo2, 5, A, 10, PWM_NG_MODE_NORMAL,
		      NULL, 0);
	PWM_NG_INIT16(&gen.servo3, 5, B, 10, PWM_NG_MODE_NORMAL,
		      NULL, 0);
	PWM_NG_INIT16(&gen.servo4, 5, C, 10, PWM_NG_MODE_NORMAL,
		      NULL, 0);
	support_balls_deploy(); /* init pwm for servos */
#endif /* !HOST_VERSION */

	/* SCHEDULER */
	scheduler_init();
#ifdef HOST_VERSION
	hostsim_init();
	robotsim_init();
#endif

#ifndef HOST_VERSION
	scheduler_add_periodical_event_priority(do_led_blink, NULL,
						100000L / SCHEDULER_UNIT,
						LED_PRIO);
#endif /* !HOST_VERSION */

	/* all cs management */
	microb_cs_init();

	/* TIME */
	time_init(TIME_PRIO);

	/* sensors, will also init hardware adc */
	sensor_init();

#ifndef HOST_VERSION
	/* start i2c slave polling */
	scheduler_add_periodical_event_priority(i2c_poll_slaves, NULL,
						8000L / SCHEDULER_UNIT, I2C_POLL_PRIO);
#endif /* !HOST_VERSION */

	/* strat */
 	gen.logs[0] = E_USER_STRAT;
 	gen.log_level = 5;

	/* strat-related event */
	scheduler_add_periodical_event_priority(strat_event, NULL,
						25000L / SCHEDULER_UNIT,
						STRAT_PRIO);

#ifndef HOST_VERSION
	/* eeprom time monitor */
	scheduler_add_periodical_event_priority(do_time_monitor, NULL,
						1000000L / SCHEDULER_UNIT,
						EEPROM_TIME_PRIO);
#endif /* !HOST_VERSION */

	sei();

	strat_db_init();

	printf_P(PSTR("\r\n"));
	printf_P(PSTR("Respect et robustesse.\r\n"));
#ifndef HOST_VERSION
	{
		uint16_t seconds;
		seconds = eeprom_read_word(EEPROM_TIME_ADDRESS);
		printf_P(PSTR("Running since %d mn %d\r\n"), seconds/60, seconds%60);
	}
#endif

#ifdef HOST_VERSION
	strat_reset_pos(400, COLOR_Y(400), COLOR_A(-90));
#endif

	cmdline_interact();

	return 0;
}