示例#1
0
/*----------------------------------------------------------------------------*/
  static void
  entry_init(entry_t *e)
  {
    memset(e, 0, sizeof(*e));
    e->stats.ttl = 0;
    e->stats.count = 0; 
    LIST_STRUCT_INIT(e, windows);
    LIST_STRUCT_INIT(e, actions);
  }
示例#2
0
/*---------------------------------------------------------------------------*/
rpl_dag_t *
rpl_alloc_dag(uint8_t instance_id, uip_ipaddr_t *dag_id)
{
  rpl_dag_t *dag, *end;
  rpl_instance_t *instance;

  instance = rpl_get_instance(instance_id);
  if(instance == NULL) {
    instance = rpl_alloc_instance(instance_id);
    if(instance == NULL) {
      RPL_STAT(rpl_stats.mem_overflows++);
      return NULL;
    }
  }

  for(dag = &instance->dag_table[0], end = dag + RPL_MAX_DAG_PER_INSTANCE; dag < end; ++dag) {
    if(!dag->used) {
      memset(dag, 0, sizeof(*dag));
      LIST_STRUCT_INIT(dag, parents);
      dag->used = 1;
      dag->rank = INFINITE_RANK;
      dag->min_rank = INFINITE_RANK;
      dag->instance = instance;
      return dag;
    }
  }

  RPL_STAT(rpl_stats.mem_overflows++);
  rpl_free_instance(instance);
  return NULL;
}
/* Adds and returns a slotframe (NULL if failure) */
struct tsch_slotframe *
tsch_schedule_add_slotframe(uint16_t handle, uint16_t size)
{
  if(size == 0) {
    return NULL;
  }

  if(tsch_schedule_get_slotframe_by_handle(handle)) {
    /* A slotframe with this handle already exists */
    return NULL;
  }

  if(tsch_get_lock()) {
    struct tsch_slotframe *sf = memb_alloc(&slotframe_memb);
    if(sf != NULL) {
      /* Initialize the slotframe */
      sf->handle = handle;
      ASN_DIVISOR_INIT(sf->size, size);
      LIST_STRUCT_INIT(sf, links_list);
      /* Add the slotframe to the global list */
      list_add(slotframe_list, sf);
    }
    PRINTF("TSCH-schedule: add_slotframe %u %u\n",
           handle, size);
    tsch_release_lock();
    return sf;
  }
  return NULL;
}
示例#4
0
/*---------------------------------------------------------------------------*/
void
collect_neighbor_list_new(struct collect_neighbor_list *neighbors_list)
{
    LIST_STRUCT_INIT(neighbors_list, list);
    list_init(neighbors_list->list);
    ctimer_set(&neighbors_list->periodic, CLOCK_SECOND, periodic, neighbors_list);
}
/*!
 * \breif Init a task struct
 *
 * Initializes the is_list field of the task
 *
 * @param task - the task to be initialized
 */
static void
task_init(tres_res_t *task)
{
  LIST_STRUCT_INIT(task, is_list);
  task_reset_state(task);
  task_od_reset(task);
}
示例#6
0
文件: relation.c 项目: 1uk3/contiki
static void
relation_clear(relation_t *rel)
{
  memset(rel, 0, sizeof(*rel));
  rel->tuple_storage = -1;
  rel->cardinality = INVALID_TUPLE;
  rel->dir = DB_STORAGE;
  LIST_STRUCT_INIT(rel, attributes);
}
示例#7
0
int mqtt_sn_create_socket(struct mqtt_sn_connection *mqc, uint16_t local_port, uip_ipaddr_t *remote_addr, uint16_t remote_port)
{
  simple_udp_register(&(mqc->sock), local_port, remote_addr, remote_port, mqtt_sn_receiver);
  mqc->stat = MQTTSN_DISCONNECTED;
  mqc->keep_alive=0;
  mqc->next_message_id = 1;
  mqc->connection_retries = 0;
  LIST_STRUCT_INIT(mqc,requests);
  mqtt_sn_request_event = process_alloc_event();
  process_start(&mqtt_sn_process, NULL);
  return 0;
}
示例#8
0
/*----------------------------------------------------------------------------*/
  static action_t *
  action_allocate(void)
  {
    action_t *a;
    a = memb_alloc(&actions_memb);
    if(a == NULL) {
      PRINTF("[FLT]: Failed to allocate an action\n");
      return NULL;
    }
    memset(a, 0, sizeof(*a));
    LIST_STRUCT_INIT(a, bytes);
    return a;
  }
示例#9
0
/*---------------------------------------------------------------------------*/
void
init_runqueues() {
	//run_queue_init stored the data, and run_queues points to it.
	uint8_t i;
	
	/*
	struct sch_add_process 	add = {11, 11, 0, 0, 0, 0};
	struct process 					old = {NULL, "HI", NULL};
	struct sch_process	pvalue = {NULL, NULL, NULL};
	struct sch_process	processvalue = 
		{(struct process *)&old, (struct sch_add_process *)&add};

	struct sch_process	*p = &pvalue;
	struct sch_process	*process = &processvalue;
*/
	run_queue_init.active = &run_queue_init.arrays[0];
	run_queue_init.expired= &run_queue_init.arrays[1];
	run_queue_init.arrays[0].nr_active = 0;
	run_queue_init.arrays[0].map 			 = 0;
	run_queue_init.arrays[1].nr_active = 0;
	run_queue_init.arrays[1].map 			 = 0;
	for (i = 0; i <= 15; ++i) {
		LIST_STRUCT_INIT(&(run_queue_init.arrays[0].queue[i]), list);
		LIST_STRUCT_INIT(&(run_queue_init.arrays[1].queue[i]), list);
	}

	run_queues = &run_queue_init;
	/*
printf("pushing...\n");
	list_add(run_queues->arrays[0].queue[0].list, process);

	p = list_head(run_queues->arrays[0].queue[0].list);
printf("head -- prio:%d correct:%d\n", p->add->prio, process->add->prio);
	p = list_pop(run_queues->arrays[0].queue[0].list);
printf("pop  -- prio:%d correct:%d\n", p->add->prio, process->add->prio);
*/
}
示例#10
0
/*---------------------------------------------------------------------------*/
static void
send_packet(mac_callback_t sent, void *ptr)
{
  struct rdc_buf_list *q;
  struct neighbor_queue *n;
  static uint8_t initialized = 0;
  static uint16_t seqno;
  const rimeaddr_t *addr = packetbuf_addr(PACKETBUF_ADDR_RECEIVER);

  if(!initialized) {
    initialized = 1;
    /* Initialize the sequence number to a random value as per 802.15.4. */
    seqno = random_rand();
  }

  if(seqno == 0) {
    /* PACKETBUF_ATTR_MAC_SEQNO cannot be zero, due to a pecuilarity
       in framer-802154.c. */
    seqno++;
  }
  packetbuf_set_attr(PACKETBUF_ATTR_MAC_SEQNO, seqno++);

  /* Look for the neighbor entry */
  n = neighbor_queue_from_addr(addr);
  if(n == NULL) {
    /* Allocate a new neighbor entry */
    n = memb_alloc(&neighbor_memb);
    if(n != NULL) {
      /* Init neighbor entry */
      rimeaddr_copy(&n->addr, addr);
      n->transmissions = 0;
      n->collisions = 0;
      n->deferrals = 0;
      /* Init packet list for this neighbor */
      LIST_STRUCT_INIT(n, queued_packet_list);
      /* Add neighbor to the list */
      list_add(neighbor_list, n);
    }
  }

  if(n != NULL) {
    /* Add packet to the neighbor's queue */
    q = memb_alloc(&packet_memb);
    if(q != NULL) {
      q->ptr = memb_alloc(&metadata_memb);
      if(q->ptr != NULL) {
	q->buf = queuebuf_new_from_packetbuf();
	if(q->buf != NULL) {
	  struct qbuf_metadata *metadata = (struct qbuf_metadata *)q->ptr;
	  /* Neighbor and packet successfully allocated */
	  if(packetbuf_attr(PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS) == 0) {
	    /* Use default configuration for max transmissions */
	    metadata->max_transmissions = CSMA_MAX_MAC_TRANSMISSIONS;
	  } else {
	    metadata->max_transmissions =
                  packetbuf_attr(PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS);
	  }
	  metadata->sent = sent;
	  metadata->cptr = ptr;

	  if(packetbuf_attr(PACKETBUF_ATTR_PACKET_TYPE) ==
	     PACKETBUF_ATTR_PACKET_TYPE_ACK) {
	    list_push(n->queued_packet_list, q);
	  } else {
	    list_add(n->queued_packet_list, q);
	  }

	  /* If q is the first packet in the neighbor's queue, send asap */
	  if(list_head(n->queued_packet_list) == q) {
	    ctimer_set(&n->transmit_timer, 0, transmit_packet_list, n);
	  }
	  return;
	}
	memb_free(&metadata_memb, q->ptr);
	PRINTF("csma: could not allocate queuebuf, dropping packet\n");
      }
      memb_free(&packet_memb, q);
      PRINTF("csma: could not allocate queuebuf, dropping packet\n");
    }
    /* The packet allocation failed. Remove and free neighbor entry if empty. */
    if(list_length(n->queued_packet_list) == 0) {
      list_remove(neighbor_list, n);
      memb_free(&neighbor_memb, n);
    }
    PRINTF("csma: could not allocate packet, dropping packet\n");
  } else {
    PRINTF("csma: could not allocate neighbor, dropping packet\n");
  }
  mac_call_sent_callback(sent, ptr, MAC_TX_ERR, 1);
}
示例#11
0
/*---------------------------------------------------------------------------*/
uip_ds6_route_t *
uip_ds6_route_add(uip_ipaddr_t *ipaddr, uint8_t length,
		  uip_ipaddr_t *nexthop)
{
  uip_ds6_route_t *r;
  struct uip_ds6_route_neighbor_route *nbrr;

#if DEBUG != DEBUG_NONE
  assert_nbr_routes_list_sane();
#endif /* DEBUG != DEBUG_NONE */

  /* Get link-layer address of next hop, make sure it is in neighbor table */
  const uip_lladdr_t *nexthop_lladdr = uip_ds6_nbr_lladdr_from_ipaddr(nexthop);
  if(nexthop_lladdr == NULL) {
    PRINTF("uip_ds6_route_add: neighbor link-local address unknown for ");
    PRINT6ADDR(nexthop);
    PRINTF("\n");
    return NULL;
  }

  /* First make sure that we don't add a route twice. If we find an
     existing route for our destination, we'll delete the old
     one first. */
  r = uip_ds6_route_lookup(ipaddr);
  if(r != NULL) {
    PRINTF("uip_ds6_route_add: old route for ");
    PRINT6ADDR(ipaddr);
    PRINTF(" found, deleting it\n");
    uip_ds6_route_rm(r);
  }
  {
    struct uip_ds6_route_neighbor_routes *routes;
    /* If there is no routing entry, create one. We first need to
       check if we have room for this route. If not, we remove the
       least recently used one we have. */

    if(uip_ds6_route_num_routes() == UIP_DS6_ROUTE_NB) {
      /* Removing the oldest route entry from the route table. The
         least recently used route is the first route on the list. */
      uip_ds6_route_t *oldest;

      oldest = list_tail(routelist); /* uip_ds6_route_head(); */
      PRINTF("uip_ds6_route_add: dropping route to ");
      PRINT6ADDR(&oldest->ipaddr);
      PRINTF("\n");
      uip_ds6_route_rm(oldest);
    }


    /* Every neighbor on our neighbor table holds a struct
       uip_ds6_route_neighbor_routes which holds a list of routes that
       go through the neighbor. We add our route entry to this list.

       We first check to see if we already have this neighbor in our
       nbr_route table. If so, the neighbor already has a route entry
       list.
    */
    routes = nbr_table_get_from_lladdr(nbr_routes,
                                       (linkaddr_t *)nexthop_lladdr);

    if(routes == NULL) {
      /* If the neighbor did not have an entry in our neighbor table,
         we create one. The nbr_table_add_lladdr() function returns a
         pointer to a pointer that we may use for our own purposes. We
         initialize this pointer with the list of routing entries that
         are attached to this neighbor. */
      routes = nbr_table_add_lladdr(nbr_routes,
                                    (linkaddr_t *)nexthop_lladdr);
      if(routes == NULL) {
        /* This should not happen, as we explicitly deallocated one
           route table entry above. */
        PRINTF("uip_ds6_route_add: could not allocate neighbor table entry\n");
        return NULL;
      }
      LIST_STRUCT_INIT(routes, route_list);
    }

    /* Allocate a routing entry and populate it. */
    r = memb_alloc(&routememb);

    if(r == NULL) {
      /* This should not happen, as we explicitly deallocated one
         route table entry above. */
      PRINTF("uip_ds6_route_add: could not allocate route\n");
      return NULL;
    }

    /* add new routes first - assuming that there is a reason to add this
       and that there is a packet coming soon. */
    list_push(routelist, r);

    nbrr = memb_alloc(&neighborroutememb);
    if(nbrr == NULL) {
      /* This should not happen, as we explicitly deallocated one
         route table entry above. */
      PRINTF("uip_ds6_route_add: could not allocate neighbor route list entry\n");
      memb_free(&routememb, r);
      return NULL;
    }

    nbrr->route = r;
    /* Add the route to this neighbor */
    list_add(routes->route_list, nbrr);
    r->neighbor_routes = routes;
    num_routes++;

    PRINTF("uip_ds6_route_add num %d\n", num_routes);
  }

  uip_ipaddr_copy(&(r->ipaddr), ipaddr);
  r->length = length;

#ifdef UIP_DS6_ROUTE_STATE_TYPE
  memset(&r->state, 0, sizeof(UIP_DS6_ROUTE_STATE_TYPE));
#endif

  PRINTF("uip_ds6_route_add: adding route: ");
  PRINT6ADDR(ipaddr);
  PRINTF(" via ");
  PRINT6ADDR(nexthop);
  PRINTF("\n");
  ANNOTATE("#L %u 1;blue\n", nexthop->u8[sizeof(uip_ipaddr_t) - 1]);

#if UIP_DS6_NOTIFICATIONS
  call_route_callback(UIP_DS6_NOTIFICATION_ROUTE_ADD, ipaddr, nexthop);
#endif

#if DEBUG != DEBUG_NONE
  assert_nbr_routes_list_sane();
#endif /* DEBUG != DEBUG_NONE */
  return r;
}
示例#12
0
文件: csma.c 项目: cetic/6lbr
/*---------------------------------------------------------------------------*/
static void
packet_sent(void *ptr, int status, int num_transmissions)
{
  struct neighbor_queue *n;
  struct rdc_buf_list *q;

  n = ptr;
  if(n == NULL) {
    return;
  }

  /* Find out what packet this callback refers to */
  for(q = list_head(n->queued_packet_list);
      q != NULL; q = list_item_next(q)) {
#if CETIC_6LBR_MULTI_RADIO
    if(queuebuf_attr(q->buf, PACKETBUF_ATTR_MAC_SEQNO) ==
       packetbuf_attr(PACKETBUF_ATTR_MAC_SEQNO) &&
       (q->ptr == NULL ||
        ((struct qbuf_metadata *)q->ptr)->ifindex == multi_radio_input_ifindex)) {
#else
    if(queuebuf_attr(q->buf, PACKETBUF_ATTR_MAC_SEQNO) ==
       packetbuf_attr(PACKETBUF_ATTR_MAC_SEQNO)) {
#endif
      break;
    }
  }

  if(q == NULL) {
    PRINTF("csma: seqno %d not found\n",
           packetbuf_attr(PACKETBUF_ATTR_MAC_SEQNO));
    return;
  } else if(q->ptr == NULL) {
    PRINTF("csma: no metadata\n");
    return;
  }

  switch(status) {
  case MAC_TX_OK:
    tx_ok(q, n, num_transmissions);
    break;
  case MAC_TX_NOACK:
    noack(q, n, num_transmissions);
    break;
  case MAC_TX_COLLISION:
    collision(q, n, num_transmissions);
    break;
  case MAC_TX_DEFERRED:
    break;
  default:
    tx_done(status, q, n);
    break;
  }
}
/*---------------------------------------------------------------------------*/
static void
send_packet(mac_callback_t sent, void *ptr)
{
  struct rdc_buf_list *q;
  struct neighbor_queue *n;
  const linkaddr_t *addr = packetbuf_addr(PACKETBUF_ADDR_RECEIVER);

  /* Look for the neighbor entry */
  n = neighbor_queue_from_addr(addr);
  if(n == NULL) {
    /* Allocate a new neighbor entry */
    n = memb_alloc(&neighbor_memb);
    if(n != NULL) {
      /* Init neighbor entry */
      linkaddr_copy(&n->addr, addr);
      n->transmissions = 0;
      n->collisions = CSMA_MIN_BE;
      /* Init packet list for this neighbor */
      LIST_STRUCT_INIT(n, queued_packet_list);
      /* Add neighbor to the list */
      list_add(neighbor_list, n);
    }
  }

  if(n != NULL) {
    /* Add packet to the neighbor's queue */
    if(list_length(n->queued_packet_list) < CSMA_MAX_PACKET_PER_NEIGHBOR) {
      q = memb_alloc(&packet_memb);
      if(q != NULL) {
        q->ptr = memb_alloc(&metadata_memb);
        if(q->ptr != NULL) {
          q->buf = queuebuf_new_from_packetbuf();
          if(q->buf != NULL) {
            struct qbuf_metadata *metadata = (struct qbuf_metadata *)q->ptr;
            /* Neighbor and packet successfully allocated */
            if(packetbuf_attr(PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS) == 0) {
              /* Use default configuration for max transmissions */
              metadata->max_transmissions = CSMA_MAX_MAX_FRAME_RETRIES + 1;
            } else {
              metadata->max_transmissions =
                packetbuf_attr(PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS);
            }
            metadata->sent = sent;
            metadata->cptr = ptr;
#if CETIC_6LBR_MULTI_RADIO
            metadata->ifindex = multi_radio_output_ifindex;
#endif
#if PACKETBUF_WITH_PACKET_TYPE
            if(packetbuf_attr(PACKETBUF_ATTR_PACKET_TYPE) ==
               PACKETBUF_ATTR_PACKET_TYPE_ACK) {
              list_push(n->queued_packet_list, q);
            } else
#endif
            {
              list_add(n->queued_packet_list, q);
            }

            PRINTF("csma: send_packet, queue length %d, free packets %d\n",
                   list_length(n->queued_packet_list), memb_numfree(&packet_memb));
            /* If q is the first packet in the neighbor's queue, send asap */
            if(list_head(n->queued_packet_list) == q) {
              schedule_transmission(n);
            }
            return;
          }
          memb_free(&metadata_memb, q->ptr);
          PRINTF("csma: could not allocate queuebuf, dropping packet\n");
        }
        memb_free(&packet_memb, q);
        PRINTF("csma: could not allocate queuebuf, dropping packet\n");
      }
      /* The packet allocation failed. Remove and free neighbor entry if empty. */
      if(list_length(n->queued_packet_list) == 0) {
        list_remove(neighbor_list, n);
        memb_free(&neighbor_memb, n);
      }
    } else {
      PRINTF("csma: Neighbor queue full\n");
    }
    PRINTF("csma: could not allocate packet, dropping packet\n");
    csma_packet_overflow++;
  } else {
    PRINTF("csma: could not allocate neighbor, dropping packet\n");
    csma_neighbor_overflow++;
  }
  mac_call_sent_callback(sent, ptr, MAC_TX_ERR, 1);
}
/*---------------------------------------------------------------------------*/
static void
input_packet(void)
{
  csma_received_packets++;
  NETSTACK_LLSEC.input();
}
示例#13
0
/*---------------------------------------------------------------------------*/
uip_ds6_route_t *
uip_ds6_route_add(uip_ipaddr_t *ipaddr, uint8_t length,
		  uip_ipaddr_t *nexthop)
{
  uip_ds6_route_t *r;

#if DEBUG != DEBUG_NONE
  assert_nbr_routes_list_sane();
#endif /* DEBUG != DEBUG_NONE */

  /* Get link-layer address of next hop, make sure it is in neighbor table */
  const uip_lladdr_t *nexthop_lladdr = uip_ds6_nbr_lladdr_from_ipaddr(nexthop);
  if(nexthop_lladdr == NULL) {
    PRINTF("uip_ds6_route_add: neighbor link-local address unknown ");
    PRINT6ADDR(ipaddr);
    PRINTF("\n");
    return NULL;
  }

  /* First make sure that we don't add a route twice. If we find an
     existing route for our destination, we'll just update the old
     one. */
  r = uip_ds6_route_lookup(ipaddr);
  if(r != NULL) {
    PRINTF("uip_ds6_route_add: old route already found, updating this one instead: ");
    PRINT6ADDR(ipaddr);
    PRINTF("\n");
  } else {
    struct uip_ds6_route_neighbor_routes *routes;
    /* If there is no routing entry, create one */

    /* Every neighbor on our neighbor table holds a struct
       uip_ds6_route_neighbor_routes which holds a list of routes that
       go through the neighbor. We add our route entry to this list.

       We first check to see if we already have this neighbor in our
       nbr_route table. If so, the neighbor already has a route entry
       list.
    */
    routes = nbr_table_get_from_lladdr(nbr_routes,
                                       (rimeaddr_t *)nexthop_lladdr);

    if(routes == NULL) {
      /* If the neighbor did not have an entry in our neighbor table,
         we create one. The nbr_table_add_lladdr() function returns a
         pointer to a pointer that we may use for our own purposes. We
         initialize this pointer with the list of routing entries that
         are attached to this neighbor. */
      routes = nbr_table_add_lladdr(nbr_routes,
                                    (rimeaddr_t *)nexthop_lladdr);
      if(routes == NULL) {
        PRINTF("uip_ds6_route_add: could not allocate a neighbor table entri for new route to ");
        PRINT6ADDR(ipaddr);
        PRINTF(", dropping it\n");
        return NULL;
      }
      LIST_STRUCT_INIT(routes, route_list);
    }

    /* Allocate a routing entry and populate it. */
    r = memb_alloc(&routememb);

    if(r == NULL) {
      PRINTF("uip_ds6_route_add: could not allocate memory for new route to ");
      PRINT6ADDR(ipaddr);
      PRINTF(", dropping it\n");
      return NULL;
    }


    /* Add the route to this neighbor */
    list_add(routes->route_list, r);
    num_routes++;

    PRINTF("uip_ds6_route_add num %d\n", num_routes);
    r->routes = routes;
  }

  uip_ipaddr_copy(&(r->ipaddr), ipaddr);
  r->length = length;

#ifdef UIP_DS6_ROUTE_STATE_TYPE
  memset(&r->state, 0, sizeof(UIP_DS6_ROUTE_STATE_TYPE));
#endif

  PRINTF("uip_ds6_route_add: adding route: ");
  PRINT6ADDR(ipaddr);
  PRINTF(" via ");
  PRINT6ADDR(nexthop);
  PRINTF("\n");
  ANNOTATE("#L %u 1;blue\n", nexthop->u8[sizeof(uip_ipaddr_t) - 1]);

#if UIP_DS6_NOTIFICATIONS
  call_route_callback(UIP_DS6_NOTIFICATION_ROUTE_ADD, ipaddr, nexthop);
#endif

#if DEBUG != DEBUG_NONE
  assert_nbr_routes_list_sane();
#endif /* DEBUG != DEBUG_NONE */
  return r;
}
示例#14
0
/*---------------------------------------------------------------------------*/
static void
packet_sent(void *ptr, int status, int num_transmissions)
{
  struct neighbor_queue *n;
  struct rdc_buf_list *q;
  struct qbuf_metadata *metadata;
  clock_time_t time = 0;
  mac_callback_t sent;
  void *cptr;
  int num_tx;
  int backoff_transmissions;

  n = ptr;
  if(n == NULL) {
    return;
  }
  switch(status) {
  case MAC_TX_OK:
  case MAC_TX_NOACK:
    n->transmissions++;
    break;
  case MAC_TX_COLLISION:
    n->collisions++;
    break;
  case MAC_TX_DEFERRED:
    n->deferrals++;
    break;
  }

  for(q = list_head(n->queued_packet_list);
      q != NULL; q = list_item_next(q)) {
    if(queuebuf_attr(q->buf, PACKETBUF_ATTR_MAC_SEQNO) ==
       packetbuf_attr(PACKETBUF_ATTR_MAC_SEQNO)) {
      break;
    }
  }

  if(q != NULL) {
    metadata = (struct qbuf_metadata *)q->ptr;

    if(metadata != NULL) {
      sent = metadata->sent;
      cptr = metadata->cptr;
#if CSMA_ADVANCED
      num_tx = n->transmissions + n->collisions/8;
#else
      num_tx = n->transmissions;
#endif

      if(status == MAC_TX_COLLISION ||
           status == MAC_TX_NOACK) {
        /* If the transmission was not performed because of a
           collision or noack, we must retransmit the packet. */

        switch(status) {
        case MAC_TX_COLLISION:
          PRINTF("csma: rexmit collision %d\n", n->transmissions);
          break;
        case MAC_TX_NOACK:
          PRINTF("csma: rexmit noack %d\n", n->transmissions);
          break;
        case MAC_TX_DEFERRED:
          PRINTF("phase deferred\n");
          break;
        default:
          PRINTF("csma: rexmit err %d, %d\n", status, n->transmissions);
        }
#if CSMA_ADVANCED
          int i;
          /* The retransmission time must be proportional to the channel
           check interval of the underlying radio duty cycling layer. */
          time = default_timebase() / 3;

          /* The retransmission time uses a linear backoff so that the
           interval between the transmissions increase with each
           retransmit. */
          backoff_transmissions = 1;
          for(i=0; i<num_tx-1; i++) {
            backoff_transmissions *= 3;
          }

          /* Clamp the number of backoffs so that we don't get a too long
           timeout here, since that will delay all packets in the
           queue. */
          if(backoff_transmissions > 3 * 3) {
            backoff_transmissions = 3 * 3;
          }

          time = default_timebase() + (random_rand() % (backoff_transmissions * time));

        if(num_tx < metadata->max_transmissions) {
#else
        /* The retransmission time must be proportional to the channel
           check interval of the underlying radio duty cycling layer. */
        time = default_timebase();

        /* The retransmission time uses a linear backoff so that the
           interval between the transmissions increase with each
           retransmit. */
        backoff_transmissions = n->transmissions + 1;

        /* Clamp the number of backoffs so that we don't get a too long
           timeout here, since that will delay all packets in the
           queue. */
        if(backoff_transmissions > 3) {
          backoff_transmissions = 3;
        }

        time = time + (random_rand() % (backoff_transmissions * time));
        if(n->transmissions < metadata->max_transmissions) {
#endif
          PRINTF("csma: retransmitting with time %lu %p\n", time, q);
          ctimer_set(&n->transmit_timer, time,
                     transmit_packet_list, n);
          /* This is needed to correctly attribute energy that we spent
             transmitting this packet. */
          queuebuf_update_attr_from_packetbuf(q->buf);
        } else {
          if(!rimeaddr_cmp(packetbuf_addr(PACKETBUF_ADDR_RECEIVER),
                                 &rimeaddr_null)) {
            LOG_FROM_PACKETBUF("csma: drop with status %d after %d transmissions, %d collisions",
                               status, n->transmissions, n->collisions);
          }
          free_packet(n, q);
          mac_call_sent_callback(sent, cptr, status, num_tx);
        }
      } else {
        if(status == MAC_TX_OK) {
          if(!rimeaddr_cmp(packetbuf_addr(PACKETBUF_ADDR_RECEIVER),
                                 &rimeaddr_null)) {
          LOG_FROM_PACKETBUF("csma: rexmit ok after %d transmissions, %d collisions", n->transmissions, n->collisions);
          }
        } else {
          //LOG_FROM_PACKETBUF("csma: rexmit failed %d: %d\n", n->transmissions, status);
        }
        free_packet(n, q);
        mac_call_sent_callback(sent, cptr, status, num_tx);
      }
    }
  }
}
/*---------------------------------------------------------------------------*/
static void
send_packet(mac_callback_t sent, void *ptr)
{
  struct rdc_buf_list *q;
  struct neighbor_queue *n;
  static uint16_t seqno;
  const rimeaddr_t *addr = packetbuf_addr(PACKETBUF_ADDR_RECEIVER);

  if(seqno == 0) {
    /* PACKETBUF_ATTR_MAC_SEQNO cannot be zero, due to a pecuilarity
       in framer-802154.c. */
    seqno++;
  }
  packetbuf_set_attr(PACKETBUF_ATTR_MAC_SEQNO, seqno++);

  /* Look for the neighbor entry */
  n = neighbor_queue_from_addr(addr);
  if(n == NULL) {
    /* Allocate a new neighbor entry */
    n = memb_alloc(&neighbor_memb);
    if(n != NULL) {
      /* Init neighbor entry */
      rimeaddr_copy(&n->addr, addr);
      n->transmissions = 0;
      n->collisions = 0;
      n->deferrals = 0;
      /* Init packet list for this neighbor */
      LIST_STRUCT_INIT(n, queued_packet_list);
      /* Add neighbor to the list */
      list_add(neighbor_list, n);
    }
  }

  if(n != NULL) {
    /* Add packet to the neighbor's queue */
    q = memb_alloc(&packet_memb);
    if(q != NULL) {
      q->ptr = memb_alloc(&metadata_memb);
      if(q->ptr != NULL) {
	q->buf = queuebuf_new_from_packetbuf();
	if(q->buf != NULL) {
	  struct qbuf_metadata *metadata = (struct qbuf_metadata *)q->ptr;
	  /* Neighbor and packet successfully allocated */
	  if(packetbuf_attr(PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS) == 0) {
	    /* Use default configuration for max transmissions */
	    metadata->max_transmissions = CSMA_MAX_MAC_TRANSMISSIONS;
	  } else {
	    metadata->max_transmissions =
                  packetbuf_attr(PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS);
	  }
	  metadata->sent = sent;
	  metadata->cptr = ptr;

	  if(packetbuf_attr(PACKETBUF_ATTR_PACKET_TYPE) ==
	     PACKETBUF_ATTR_PACKET_TYPE_ACK) {
	    list_push(n->queued_packet_list, q);
	  } else {
	    list_add(n->queued_packet_list, q);
	  }

	  /* If q is the first packet in the neighbor's queue, send asap */
	  if(list_head(n->queued_packet_list) == q) {
	    ctimer_set(&n->transmit_timer, 0, transmit_packet_list, n);
	  }
	  return;
	}
	memb_free(&metadata_memb, q->ptr);
	PRINTF("csma: could not allocate queuebuf, dropping packet\n");
      }
      memb_free(&packet_memb, q);
      PRINTF("csma: could not allocate queuebuf, dropping packet\n");
    }
    /* The packet allocation failed. Remove and free neighbor entry if empty. */
    if(list_length(n->queued_packet_list) == 0) {
      list_remove(neighbor_list, n);
      memb_free(&neighbor_memb, n);
    }
    PRINTF("csma: could not allocate packet, dropping packet\n");
  } else {
    PRINTF("csma: could not allocate neighbor, dropping packet\n");
  }
  mac_call_sent_callback(sent, ptr, MAC_TX_ERR, 1);
}
/*---------------------------------------------------------------------------*/
static void
input_packet(void)
{
  NETSTACK_NETWORK.input();
}
/*---------------------------------------------------------------------------*/
static int
on(void)
{
  return NETSTACK_RDC.on();
}
/*---------------------------------------------------------------------------*/
static int
off(int keep_radio_on)
{
  return NETSTACK_RDC.off(keep_radio_on);
}
/*---------------------------------------------------------------------------*/
static unsigned short
channel_check_interval(void)
{
  if(NETSTACK_RDC.channel_check_interval) {
    return NETSTACK_RDC.channel_check_interval();
  }
  return 0;
}
/*---------------------------------------------------------------------------*/
static void
init(void)
{
  memb_init(&packet_memb);
  memb_init(&metadata_memb);
  memb_init(&neighbor_memb);
}
示例#15
0
文件: csma.c 项目: hpiseth/contiki
/*---------------------------------------------------------------------------*/
static void
send_packet(mac_callback_t sent, void *ptr)
{
  struct rdc_buf_list *q;
  struct neighbor_queue *n;
  const linkaddr_t *addr = packetbuf_addr(PACKETBUF_ADDR_RECEIVER);

  /* Look for the neighbor entry */
  n = neighbor_queue_from_addr(addr);
  if(n == NULL) {
    /* Allocate a new neighbor entry */
    n = memb_alloc(&neighbor_memb);
    if(n != NULL) {
      /* Init neighbor entry */
      linkaddr_copy(&n->addr, addr);
      n->transmissions = 0;
      n->collisions = 0;
      n->deferrals = 0;
      /* Init packet list for this neighbor */
      LIST_STRUCT_INIT(n, queued_packet_list);
      /* Add neighbor to the list */
      list_add(neighbor_list, n);
    }
  }

  if(n != NULL) {
    /* Add packet to the neighbor's queue */
    if(list_length(n->queued_packet_list) < CSMA_MAX_PACKET_PER_NEIGHBOR) {
      q = memb_alloc(&packet_memb);
      if(q != NULL) {
        q->ptr = memb_alloc(&metadata_memb);
        if(q->ptr != NULL) {
          q->buf = queuebuf_new_from_packetbuf();
          if(q->buf != NULL) {
            struct qbuf_metadata *metadata = (struct qbuf_metadata *)q->ptr;
            /* Neighbor and packet successfully allocated */
            if(packetbuf_attr(PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS) == 0) {
              /* Use default configuration for max transmissions */
              metadata->max_transmissions = CSMA_MAX_MAC_TRANSMISSIONS;
            } else {
              metadata->max_transmissions =
                packetbuf_attr(PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS);
            }
            metadata->sent = sent;
            metadata->cptr = ptr;
#if PACKETBUF_WITH_PACKET_TYPE
            if(packetbuf_attr(PACKETBUF_ATTR_PACKET_TYPE) ==
               PACKETBUF_ATTR_PACKET_TYPE_ACK) {
              list_push(n->queued_packet_list, q);
            } else
#endif
            {
              list_add(n->queued_packet_list, q);
            }

            PRINTF("csma: send_packet, queue length %d, free packets %d\n",
                   list_length(n->queued_packet_list), memb_numfree(&packet_memb));
            /* If q is the first packet in the neighbor's queue, send asap */
            if(list_head(n->queued_packet_list) == q) {
              ctimer_set(&n->transmit_timer, 0, transmit_packet_list, n);
            }
            return;
          }
          memb_free(&metadata_memb, q->ptr);
          PRINTF("csma: could not allocate queuebuf, dropping packet\n");
        }
        memb_free(&packet_memb, q);
        PRINTF("csma: could not allocate queuebuf, dropping packet\n");
      }
      /* The packet allocation failed. Remove and free neighbor entry if empty. */
      if(list_length(n->queued_packet_list) == 0) {
        list_remove(neighbor_list, n);
        memb_free(&neighbor_memb, n);
      }
    } else {
      PRINTF("csma: Neighbor queue full\n");
    }
    PRINTF("csma: could not allocate packet, dropping packet\n");
  } else {
    PRINTF("csma: could not allocate neighbor, dropping packet\n");
  }
  mac_call_sent_callback(sent, ptr, MAC_TX_ERR, 1);
}
示例#16
0
文件: csma.c 项目: 32bitmicro/zephyr
/*---------------------------------------------------------------------------*/
static uint8_t
send_packet(struct net_buf *buf, mac_callback_t sent, bool last_fragment, void *ptr)
{
  struct rdc_buf_list *q;
  struct neighbor_queue *n;
  static uint8_t initialized = 0;
  static uint16_t seqno;
  const linkaddr_t *addr = packetbuf_addr(buf, PACKETBUF_ADDR_RECEIVER);

  if (!buf) {
    UIP_LOG("csma: send_packet(): net_buf is NULL, cannot send packet");
    return 0;
  }

  if(!initialized) {
    initialized = 1;
    /* Initialize the sequence number to a random value as per 802.15.4. */
    seqno = random_rand();
  }

  if(seqno == 0) {
    /* PACKETBUF_ATTR_MAC_SEQNO cannot be zero, due to a pecuilarity
       in framer-802154.c. */
    seqno++;
  }
  packetbuf_set_attr(buf, PACKETBUF_ATTR_MAC_SEQNO, seqno++);

  /* Look for the neighbor entry */
  n = neighbor_queue_from_addr(buf, addr);
  if(n == NULL) {
    /* Allocate a new neighbor entry */
    n = memb_alloc(&neighbor_memb);
    if(n != NULL) {
      /* Init neighbor entry */
      linkaddr_copy(&n->addr, addr);
      n->transmissions = 0;
      n->collisions = 0;
      n->deferrals = 0;
      /* Init packet list for this neighbor */
      LIST_STRUCT_INIT(n, queued_packet_list);
      /* Add neighbor to the list */
      list_add(uip_neighbor_list(buf), n);
    }
  }

  if(n != NULL) {
    /* Add packet to the neighbor's queue */
    if(list_length(n->queued_packet_list) < CSMA_MAX_PACKET_PER_NEIGHBOR) {
      q = memb_alloc(&packet_memb);
      if(q != NULL) {
        q->ptr = memb_alloc(&metadata_memb);
        if(q->ptr != NULL) {
          q->buf = queuebuf_new_from_packetbuf(buf);
          if(q->buf != NULL) {
            struct qbuf_metadata *metadata = (struct qbuf_metadata *)q->ptr;
            /* Neighbor and packet successfully allocated */
            if(packetbuf_attr(buf, PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS) == 0) {
              /* Use default configuration for max transmissions */
              metadata->max_transmissions = CSMA_MAX_MAC_TRANSMISSIONS;
            } else {
              metadata->max_transmissions =
                packetbuf_attr(buf, PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS);
            }
            metadata->sent = sent;
            metadata->cptr = ptr;

            if(packetbuf_attr(buf, PACKETBUF_ATTR_PACKET_TYPE) ==
               PACKETBUF_ATTR_PACKET_TYPE_ACK) {
              list_push(n->queued_packet_list, q);
            } else {
              list_add(n->queued_packet_list, q);
            }

            PRINTF("csma: send_packet, queue length %d, free packets %d\n",
                   list_length(n->queued_packet_list), memb_numfree(&packet_memb));
            /* if received packet is last fragment/only one packet start sending
             * packets in list, do not start any timer.*/
            if (last_fragment) {
               transmit_packet_list(buf, n);
            }
            return 1;
          }
          memb_free(&metadata_memb, q->ptr);
          PRINTF("csma: could not allocate queuebuf, dropping packet\n");
        }
        memb_free(&packet_memb, q);
        PRINTF("csma: could not allocate queuebuf, dropping packet\n");
      }
      /* The packet allocation failed. Remove and free neighbor entry if empty. */
      if(list_length(n->queued_packet_list) == 0) {
        list_remove(uip_neighbor_list(buf), n);
        memb_free(&neighbor_memb, n);
      }
    } else {
      PRINTF("csma: Neighbor queue full\n");
    }
    PRINTF("csma: could not allocate packet, dropping packet\n");
  } else {
    PRINTF("csma: could not allocate neighbor, dropping packet\n");
  }
  mac_call_sent_callback(buf, sent, ptr, MAC_TX_ERR, 1);
  return 0;
}