示例#1
0
static void number_conversion(compile_t* c, num_conv_t* from, num_conv_t* to,
  bool native128)
{
  if(!native128 &&
    ((from->is_float && (to->size > 64)) ||
    (to->is_float && (from->size > 64)))
    )
  {
    return;
  }

  reach_type_t* t = reach_type_name(c->reach, from->type_name);

  if(t == NULL)
    return;

  FIND_METHOD(to->fun_name);
  start_function(c, m, to->type, &from->type, 1);

  LLVMValueRef arg = LLVMGetParam(m->func, 0);
  LLVMValueRef result;

  if(from->is_float)
  {
    if(to->is_float)
    {
      if(from->size < to->size)
        result = LLVMBuildFPExt(c->builder, arg, to->type, "");
      else if(from->size > to->size)
        result = LLVMBuildFPTrunc(c->builder, arg, to->type, "");
      else
        result = arg;
    } else if(to->is_signed) {
      result = LLVMBuildFPToSI(c->builder, arg, to->type, "");
    } else {
      result = LLVMBuildFPToUI(c->builder, arg, to->type, "");
    }
  } else if(to->is_float) {
    if(from->is_signed)
      result = LLVMBuildSIToFP(c->builder, arg, to->type, "");
    else
      result = LLVMBuildUIToFP(c->builder, arg, to->type, "");
  } else if(from->size > to->size) {
      result = LLVMBuildTrunc(c->builder, arg, to->type, "");
  } else if(from->size < to->size) {
    if(from->is_signed)
      result = LLVMBuildSExt(c->builder, arg, to->type, "");
    else
      result = LLVMBuildZExt(c->builder, arg, to->type, "");
  } else {
    result = arg;
  }

  LLVMBuildRet(c->builder, result);
  codegen_finishfun(c);

  BOX_FUNCTION();
}
/**
 * Truncate or expand the bitwidth.
 *
 * NOTE: Getting the right sign flags is crucial here, as we employ some
 * intrinsics that do saturation.
 */
void
lp_build_resize(struct gallivm_state *gallivm,
                struct lp_type src_type,
                struct lp_type dst_type,
                const LLVMValueRef *src, unsigned num_srcs,
                LLVMValueRef *dst, unsigned num_dsts)
{
   LLVMBuilderRef builder = gallivm->builder;
   LLVMValueRef tmp[LP_MAX_VECTOR_LENGTH];
   unsigned i;

   /*
    * We don't support float <-> int conversion here. That must be done
    * before/after calling this function.
    */
   assert(src_type.floating == dst_type.floating);

   /*
    * We don't support double <-> float conversion yet, although it could be
    * added with little effort.
    */
   assert((!src_type.floating && !dst_type.floating) ||
          src_type.width == dst_type.width);

   /* We must not loose or gain channels. Only precision */
   assert(src_type.length * num_srcs == dst_type.length * num_dsts);

   /* We don't support M:N conversion, only 1:N, M:1, or 1:1 */
   assert(num_srcs == 1 || num_dsts == 1);

   assert(src_type.length <= LP_MAX_VECTOR_LENGTH);
   assert(dst_type.length <= LP_MAX_VECTOR_LENGTH);
   assert(num_srcs <= LP_MAX_VECTOR_LENGTH);
   assert(num_dsts <= LP_MAX_VECTOR_LENGTH);

   if (src_type.width > dst_type.width) {
      /*
       * Truncate bit width.
       */

      assert(num_dsts == 1);

      if (src_type.width * src_type.length == dst_type.width * dst_type.length) {
        /*
         * Register width remains constant -- use vector packing intrinsics
         */
         tmp[0] = lp_build_pack(gallivm, src_type, dst_type, TRUE, src, num_srcs);
      }
      else {
         if (src_type.width / dst_type.width > num_srcs) {
            /*
            * First change src vectors size (with shuffle) so they have the
            * same size as the destination vector, then pack normally.
            * Note: cannot use cast/extract because llvm generates atrocious code.
            */
            unsigned size_ratio = (src_type.width * src_type.length) /
                                  (dst_type.length * dst_type.width);
            unsigned new_length = src_type.length / size_ratio;

            for (i = 0; i < size_ratio * num_srcs; i++) {
               unsigned start_index = (i % size_ratio) * new_length;
               tmp[i] = lp_build_extract_range(gallivm, src[i / size_ratio],
                                               start_index, new_length);
            }
            num_srcs *= size_ratio;
            src_type.length = new_length;
            tmp[0] = lp_build_pack(gallivm, src_type, dst_type, TRUE, tmp, num_srcs);
         }
         else {
            /*
             * Truncate bit width but expand vector size - first pack
             * then expand simply because this should be more AVX-friendly
             * for the cases we probably hit.
             */
            unsigned size_ratio = (dst_type.width * dst_type.length) /
                                  (src_type.length * src_type.width);
            unsigned num_pack_srcs = num_srcs / size_ratio;
            dst_type.length = dst_type.length / size_ratio;

            for (i = 0; i < size_ratio; i++) {
               tmp[i] = lp_build_pack(gallivm, src_type, dst_type, TRUE,
                                      &src[i*num_pack_srcs], num_pack_srcs);
            }
            tmp[0] = lp_build_concat(gallivm, tmp, dst_type, size_ratio);
         }
      }
   }
   else if (src_type.width < dst_type.width) {
      /*
       * Expand bit width.
       */

      assert(num_srcs == 1);

      if (src_type.width * src_type.length == dst_type.width * dst_type.length) {
         /*
          * Register width remains constant -- use vector unpack intrinsics
          */
         lp_build_unpack(gallivm, src_type, dst_type, src[0], tmp, num_dsts);
      }
      else {
         /*
          * Do it element-wise.
          */
         assert(src_type.length * num_srcs == dst_type.length * num_dsts);

         for (i = 0; i < num_dsts; i++) {
            tmp[i] = lp_build_undef(gallivm, dst_type);
         }

         for (i = 0; i < src_type.length; ++i) {
            unsigned j = i / dst_type.length;
            LLVMValueRef srcindex = lp_build_const_int32(gallivm, i);
            LLVMValueRef dstindex = lp_build_const_int32(gallivm, i % dst_type.length);
            LLVMValueRef val = LLVMBuildExtractElement(builder, src[0], srcindex, "");

            if (src_type.sign && dst_type.sign) {
               val = LLVMBuildSExt(builder, val, lp_build_elem_type(gallivm, dst_type), "");
            } else {
               val = LLVMBuildZExt(builder, val, lp_build_elem_type(gallivm, dst_type), "");
            }
            tmp[j] = LLVMBuildInsertElement(builder, tmp[j], val, dstindex, "");
         }
      }
   }
   else {
      /*
       * No-op
       */

      assert(num_srcs == 1);
      assert(num_dsts == 1);

      tmp[0] = src[0];
   }

   for(i = 0; i < num_dsts; ++i)
      dst[i] = tmp[i];
}
示例#3
0
/*
 * gen_fetch
 *
 * Generates a load operation for a fetch expression.
 */
static LLVMValueRef
gen_fetch (gencodectx_t gctx, expr_node_t *rhs, LLVMTypeRef neededtype)
{
    LLVMBuilderRef builder = gctx->curfn->builder;
    llvm_accinfo_t accinfo;
    LLVMValueRef addr, val;
    LLVMTypeRef type;
    int shifts_required = 0;
    int signext;

    // For field references with non-zero bit position, or with
    // non-CTCE size, we'll have to do bit shifting to extract
    // the field.
    addr = llvmgen_addr_expression(gctx, rhs, &accinfo);
    if (accinfo.posval != 0 || accinfo.sizeval != 0) {
        type = gctx->fullwordtype;
        if ((accinfo.flags & LLVMGEN_M_ACC_CONSTSIZ)) {
            accinfo.sizeval = LLVMConstInt(gctx->fullwordtype, accinfo.size, 0);
        }
        shifts_required = 1;
    } else if ((accinfo.flags & LLVMGEN_M_ACC_CONSTSIZ)) {
        if (accinfo.size == 0) {
            // XXX signal invalid size
            type = gctx->int1type;
        } else {
            type = LLVMIntTypeInContext(gctx->llvmctx, accinfo.size);
        }
    } else {
        type = gctx->fullwordtype;
    }
    signext = ((accinfo.flags & LLVMGEN_M_SEG_SIGNEXT) != 0);

    // If we're fetching from a register, there's no load intruction
    // required - EXCEPT if this was a scalar BIND, where the BIND

    if ((accinfo.segclass == LLVM_REG &&
        (accinfo.flags & LLVMGEN_M_SEG_DEREFED) == 0) &&
        (accinfo.flags & LLVMGEN_M_SEG_BINDPTR) == 0) {
        val = llvmgen_adjustval(gctx, addr, type, signext);
    } else {
        addr = llvmgen_adjustval(gctx, addr, LLVMPointerType(type, 0), 0);
        val = LLVMBuildLoad(builder, addr, llvmgen_temp(gctx));
        if ((accinfo.flags & LLVMGEN_M_SEG_VOLATILE) != 0) LLVMSetVolatile(val, 1);
    }
    if (shifts_required) {
        val = llvmgen_adjustval(gctx, val, gctx->fullwordtype, signext);
        if (signext) {
            val = LLVMBuildAShr(builder, val, accinfo.posval, llvmgen_temp(gctx));
        } else {
            val = LLVMBuildLShr(builder, val, accinfo.posval, llvmgen_temp(gctx));
        }

        if ((accinfo.flags & LLVMGEN_M_ACC_CONSTSIZ) != 0) {
            LLVMTypeRef trunctype = LLVMIntTypeInContext(gctx->llvmctx, accinfo.size);
            val = llvmgen_adjustval(gctx, val, trunctype, signext);
        } else {
            LLVMValueRef neg1 = LLVMConstAllOnes(gctx->fullwordtype);
            LLVMValueRef mask;

            mask = LLVMBuildShl(builder, neg1, accinfo.sizeval, llvmgen_temp(gctx));
            mask = LLVMBuildNeg(builder, mask, llvmgen_temp(gctx));
            val = LLVMBuildAnd(builder, val, mask, llvmgen_temp(gctx));
            if (signext) {
                val = LLVMBuildSExt(builder, val, gctx->fullwordtype, llvmgen_temp(gctx));
            }
        }
    }

    return llvmgen_adjustval(gctx, val, neededtype, signext);

} /* gen_fetch */
/**
 * Build code to compare two values 'a' and 'b' of 'type' using the given func.
 * \param func  one of PIPE_FUNC_x
 * The result values will be 0 for false or ~0 for true.
 */
LLVMValueRef
lp_build_compare(struct gallivm_state *gallivm,
                 const struct lp_type type,
                 unsigned func,
                 LLVMValueRef a,
                 LLVMValueRef b)
{
   LLVMBuilderRef builder = gallivm->builder;
   LLVMTypeRef int_vec_type = lp_build_int_vec_type(gallivm, type);
   LLVMValueRef zeros = LLVMConstNull(int_vec_type);
   LLVMValueRef ones = LLVMConstAllOnes(int_vec_type);
   LLVMValueRef cond;
   LLVMValueRef res;

   assert(func >= PIPE_FUNC_NEVER);
   assert(func <= PIPE_FUNC_ALWAYS);
   assert(lp_check_value(type, a));
   assert(lp_check_value(type, b));

   if(func == PIPE_FUNC_NEVER)
      return zeros;
   if(func == PIPE_FUNC_ALWAYS)
      return ones;

#if defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64)
   /*
    * There are no unsigned integer comparison instructions in SSE.
    */

   if (!type.floating && !type.sign &&
       type.width * type.length == 128 &&
       util_cpu_caps.has_sse2 &&
       (func == PIPE_FUNC_LESS ||
        func == PIPE_FUNC_LEQUAL ||
        func == PIPE_FUNC_GREATER ||
        func == PIPE_FUNC_GEQUAL) &&
       (gallivm_debug & GALLIVM_DEBUG_PERF)) {
         debug_printf("%s: inefficient <%u x i%u> unsigned comparison\n",
                      __FUNCTION__, type.length, type.width);
   }
#endif

#if HAVE_LLVM < 0x0207
#if defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64)
   if(type.width * type.length == 128) {
      if(type.floating && util_cpu_caps.has_sse) {
         /* float[4] comparison */
         LLVMTypeRef vec_type = lp_build_vec_type(gallivm, type);
         LLVMValueRef args[3];
         unsigned cc;
         boolean swap;

         swap = FALSE;
         switch(func) {
         case PIPE_FUNC_EQUAL:
            cc = 0;
            break;
         case PIPE_FUNC_NOTEQUAL:
            cc = 4;
            break;
         case PIPE_FUNC_LESS:
            cc = 1;
            break;
         case PIPE_FUNC_LEQUAL:
            cc = 2;
            break;
         case PIPE_FUNC_GREATER:
            cc = 1;
            swap = TRUE;
            break;
         case PIPE_FUNC_GEQUAL:
            cc = 2;
            swap = TRUE;
            break;
         default:
            assert(0);
            return lp_build_undef(gallivm, type);
         }

         if(swap) {
            args[0] = b;
            args[1] = a;
         }
         else {
            args[0] = a;
            args[1] = b;
         }

         args[2] = LLVMConstInt(LLVMInt8TypeInContext(gallivm->context), cc, 0);
         res = lp_build_intrinsic(builder,
                                  "llvm.x86.sse.cmp.ps",
                                  vec_type,
                                  args, 3);
         res = LLVMBuildBitCast(builder, res, int_vec_type, "");
         return res;
      }
      else if(util_cpu_caps.has_sse2) {
         /* int[4] comparison */
         static const struct {
            unsigned swap:1;
            unsigned eq:1;
            unsigned gt:1;
            unsigned not:1;
         } table[] = {
            {0, 0, 0, 1}, /* PIPE_FUNC_NEVER */
            {1, 0, 1, 0}, /* PIPE_FUNC_LESS */
            {0, 1, 0, 0}, /* PIPE_FUNC_EQUAL */
            {0, 0, 1, 1}, /* PIPE_FUNC_LEQUAL */
            {0, 0, 1, 0}, /* PIPE_FUNC_GREATER */
            {0, 1, 0, 1}, /* PIPE_FUNC_NOTEQUAL */
            {1, 0, 1, 1}, /* PIPE_FUNC_GEQUAL */
            {0, 0, 0, 0}  /* PIPE_FUNC_ALWAYS */
         };
         const char *pcmpeq;
         const char *pcmpgt;
         LLVMValueRef args[2];
         LLVMValueRef res;
         LLVMTypeRef vec_type = lp_build_vec_type(gallivm, type);

         switch (type.width) {
         case 8:
            pcmpeq = "llvm.x86.sse2.pcmpeq.b";
            pcmpgt = "llvm.x86.sse2.pcmpgt.b";
            break;
         case 16:
            pcmpeq = "llvm.x86.sse2.pcmpeq.w";
            pcmpgt = "llvm.x86.sse2.pcmpgt.w";
            break;
         case 32:
            pcmpeq = "llvm.x86.sse2.pcmpeq.d";
            pcmpgt = "llvm.x86.sse2.pcmpgt.d";
            break;
         default:
            assert(0);
            return lp_build_undef(gallivm, type);
         }

         /* There are no unsigned comparison instructions. So flip the sign bit
          * so that the results match.
          */
         if (table[func].gt && !type.sign) {
            LLVMValueRef msb = lp_build_const_int_vec(gallivm, type, (unsigned long long)1 << (type.width - 1));
            a = LLVMBuildXor(builder, a, msb, "");
            b = LLVMBuildXor(builder, b, msb, "");
         }

         if(table[func].swap) {
            args[0] = b;
            args[1] = a;
         }
         else {
            args[0] = a;
            args[1] = b;
         }

         if(table[func].eq)
            res = lp_build_intrinsic(builder, pcmpeq, vec_type, args, 2);
         else if (table[func].gt)
            res = lp_build_intrinsic(builder, pcmpgt, vec_type, args, 2);
         else
            res = LLVMConstNull(vec_type);

         if(table[func].not)
            res = LLVMBuildNot(builder, res, "");

         return res;
      }
   } /* if (type.width * type.length == 128) */
#endif
#endif /* HAVE_LLVM < 0x0207 */

   /* XXX: It is not clear if we should use the ordered or unordered operators */

   if(type.floating) {
      LLVMRealPredicate op;
      switch(func) {
      case PIPE_FUNC_NEVER:
         op = LLVMRealPredicateFalse;
         break;
      case PIPE_FUNC_ALWAYS:
         op = LLVMRealPredicateTrue;
         break;
      case PIPE_FUNC_EQUAL:
         op = LLVMRealUEQ;
         break;
      case PIPE_FUNC_NOTEQUAL:
         op = LLVMRealUNE;
         break;
      case PIPE_FUNC_LESS:
         op = LLVMRealULT;
         break;
      case PIPE_FUNC_LEQUAL:
         op = LLVMRealULE;
         break;
      case PIPE_FUNC_GREATER:
         op = LLVMRealUGT;
         break;
      case PIPE_FUNC_GEQUAL:
         op = LLVMRealUGE;
         break;
      default:
         assert(0);
         return lp_build_undef(gallivm, type);
      }

#if HAVE_LLVM >= 0x0207
      cond = LLVMBuildFCmp(builder, op, a, b, "");
      res = LLVMBuildSExt(builder, cond, int_vec_type, "");
#else
      if (type.length == 1) {
         cond = LLVMBuildFCmp(builder, op, a, b, "");
         res = LLVMBuildSExt(builder, cond, int_vec_type, "");
      }
      else {
         unsigned i;

         res = LLVMGetUndef(int_vec_type);

         debug_printf("%s: warning: using slow element-wise float"
                      " vector comparison\n", __FUNCTION__);
         for (i = 0; i < type.length; ++i) {
            LLVMValueRef index = lp_build_const_int32(gallivm, i);
            cond = LLVMBuildFCmp(builder, op,
                                 LLVMBuildExtractElement(builder, a, index, ""),
                                 LLVMBuildExtractElement(builder, b, index, ""),
                                 "");
            cond = LLVMBuildSelect(builder, cond,
                                   LLVMConstExtractElement(ones, index),
                                   LLVMConstExtractElement(zeros, index),
                                   "");
            res = LLVMBuildInsertElement(builder, res, cond, index, "");
         }
      }
#endif
   }
   else {
      LLVMIntPredicate op;
      switch(func) {
      case PIPE_FUNC_EQUAL:
         op = LLVMIntEQ;
         break;
      case PIPE_FUNC_NOTEQUAL:
         op = LLVMIntNE;
         break;
      case PIPE_FUNC_LESS:
         op = type.sign ? LLVMIntSLT : LLVMIntULT;
         break;
      case PIPE_FUNC_LEQUAL:
         op = type.sign ? LLVMIntSLE : LLVMIntULE;
         break;
      case PIPE_FUNC_GREATER:
         op = type.sign ? LLVMIntSGT : LLVMIntUGT;
         break;
      case PIPE_FUNC_GEQUAL:
         op = type.sign ? LLVMIntSGE : LLVMIntUGE;
         break;
      default:
         assert(0);
         return lp_build_undef(gallivm, type);
      }

#if HAVE_LLVM >= 0x0207
      cond = LLVMBuildICmp(builder, op, a, b, "");
      res = LLVMBuildSExt(builder, cond, int_vec_type, "");
#else
      if (type.length == 1) {
         cond = LLVMBuildICmp(builder, op, a, b, "");
         res = LLVMBuildSExt(builder, cond, int_vec_type, "");
      }
      else {
         unsigned i;

         res = LLVMGetUndef(int_vec_type);

         if (gallivm_debug & GALLIVM_DEBUG_PERF) {
            debug_printf("%s: using slow element-wise int"
                         " vector comparison\n", __FUNCTION__);
         }

         for(i = 0; i < type.length; ++i) {
            LLVMValueRef index = lp_build_const_int32(gallivm, i);
            cond = LLVMBuildICmp(builder, op,
                                 LLVMBuildExtractElement(builder, a, index, ""),
                                 LLVMBuildExtractElement(builder, b, index, ""),
                                 "");
            cond = LLVMBuildSelect(builder, cond,
                                   LLVMConstExtractElement(ones, index),
                                   LLVMConstExtractElement(zeros, index),
                                   "");
            res = LLVMBuildInsertElement(builder, res, cond, index, "");
         }
      }
#endif
   }

   return res;
}
示例#5
0
/**
 * Generate code for performing depth and/or stencil tests.
 * We operate on a vector of values (typically n 2x2 quads).
 *
 * \param depth  the depth test state
 * \param stencil  the front/back stencil state
 * \param type  the data type of the fragment depth/stencil values
 * \param format_desc  description of the depth/stencil surface
 * \param mask  the alive/dead pixel mask for the quad (vector)
 * \param stencil_refs  the front/back stencil ref values (scalar)
 * \param z_src  the incoming depth/stencil values (n 2x2 quad values, float32)
 * \param zs_dst  the depth/stencil values in framebuffer
 * \param face  contains boolean value indicating front/back facing polygon
 */
void
lp_build_depth_stencil_test(struct gallivm_state *gallivm,
                            const struct pipe_depth_state *depth,
                            const struct pipe_stencil_state stencil[2],
                            struct lp_type z_src_type,
                            const struct util_format_description *format_desc,
                            struct lp_build_mask_context *mask,
                            LLVMValueRef stencil_refs[2],
                            LLVMValueRef z_src,
                            LLVMValueRef z_fb,
                            LLVMValueRef s_fb,
                            LLVMValueRef face,
                            LLVMValueRef *z_value,
                            LLVMValueRef *s_value,
                            boolean do_branch)
{
   LLVMBuilderRef builder = gallivm->builder;
   struct lp_type z_type;
   struct lp_build_context z_bld;
   struct lp_build_context s_bld;
   struct lp_type s_type;
   unsigned z_shift = 0, z_width = 0, z_mask = 0;
   LLVMValueRef z_dst = NULL;
   LLVMValueRef stencil_vals = NULL;
   LLVMValueRef z_bitmask = NULL, stencil_shift = NULL;
   LLVMValueRef z_pass = NULL, s_pass_mask = NULL;
   LLVMValueRef orig_mask = lp_build_mask_value(mask);
   LLVMValueRef front_facing = NULL;
   boolean have_z, have_s;

   /*
    * Depths are expected to be between 0 and 1, even if they are stored in
    * floats. Setting these bits here will ensure that the lp_build_conv() call
    * below won't try to unnecessarily clamp the incoming values.
    */
   if(z_src_type.floating) {
      z_src_type.sign = FALSE;
      z_src_type.norm = TRUE;
   }
   else {
      assert(!z_src_type.sign);
      assert(z_src_type.norm);
   }

   /* Pick the type matching the depth-stencil format. */
   z_type = lp_depth_type(format_desc, z_src_type.length);

   /* Pick the intermediate type for depth operations. */
   z_type.width = z_src_type.width;
   assert(z_type.length == z_src_type.length);

   /* FIXME: for non-float depth/stencil might generate better code
    * if we'd always split it up to use 128bit operations.
    * For stencil we'd almost certainly want to pack to 8xi16 values,
    * for z just run twice.
    */

   /* Sanity checking */
   {
      const unsigned z_swizzle = format_desc->swizzle[0];
      const unsigned s_swizzle = format_desc->swizzle[1];

      assert(z_swizzle != UTIL_FORMAT_SWIZZLE_NONE ||
             s_swizzle != UTIL_FORMAT_SWIZZLE_NONE);

      assert(depth->enabled || stencil[0].enabled);

      assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS);
      assert(format_desc->block.width == 1);
      assert(format_desc->block.height == 1);

      if (stencil[0].enabled) {
         assert(s_swizzle < 4);
         assert(format_desc->channel[s_swizzle].type == UTIL_FORMAT_TYPE_UNSIGNED);
         assert(format_desc->channel[s_swizzle].pure_integer);
         assert(!format_desc->channel[s_swizzle].normalized);
         assert(format_desc->channel[s_swizzle].size == 8);
      }

      if (depth->enabled) {
         assert(z_swizzle < 4);
         if (z_type.floating) {
            assert(z_swizzle == 0);
            assert(format_desc->channel[z_swizzle].type ==
                   UTIL_FORMAT_TYPE_FLOAT);
            assert(format_desc->channel[z_swizzle].size == 32);
         }
         else {
            assert(format_desc->channel[z_swizzle].type ==
                   UTIL_FORMAT_TYPE_UNSIGNED);
            assert(format_desc->channel[z_swizzle].normalized);
            assert(!z_type.fixed);
         }
      }
   }


   /* Setup build context for Z vals */
   lp_build_context_init(&z_bld, gallivm, z_type);

   /* Setup build context for stencil vals */
   s_type = lp_int_type(z_type);
   lp_build_context_init(&s_bld, gallivm, s_type);

   /* Compute and apply the Z/stencil bitmasks and shifts.
    */
   {
      unsigned s_shift, s_mask;

      z_dst = z_fb;
      stencil_vals = s_fb;

      have_z = get_z_shift_and_mask(format_desc, &z_shift, &z_width, &z_mask);
      have_s = get_s_shift_and_mask(format_desc, &s_shift, &s_mask);

      if (have_z) {
         if (z_mask != 0xffffffff) {
            z_bitmask = lp_build_const_int_vec(gallivm, z_type, z_mask);
         }

         /*
          * Align the framebuffer Z 's LSB to the right.
          */
         if (z_shift) {
            LLVMValueRef shift = lp_build_const_int_vec(gallivm, z_type, z_shift);
            z_dst = LLVMBuildLShr(builder, z_dst, shift, "z_dst");
         } else if (z_bitmask) {
            z_dst = LLVMBuildAnd(builder, z_dst, z_bitmask, "z_dst");
         } else {
            lp_build_name(z_dst, "z_dst");
         }
      }

      if (have_s) {
         if (s_shift) {
            LLVMValueRef shift = lp_build_const_int_vec(gallivm, s_type, s_shift);
            stencil_vals = LLVMBuildLShr(builder, stencil_vals, shift, "");
            stencil_shift = shift;  /* used below */
         }

         if (s_mask != 0xffffffff) {
            LLVMValueRef mask = lp_build_const_int_vec(gallivm, s_type, s_mask);
            stencil_vals = LLVMBuildAnd(builder, stencil_vals, mask, "");
         }

         lp_build_name(stencil_vals, "s_dst");
      }
   }

   if (stencil[0].enabled) {

      if (face) {
         LLVMValueRef zero = lp_build_const_int32(gallivm, 0);

         /* front_facing = face != 0 ? ~0 : 0 */
         front_facing = LLVMBuildICmp(builder, LLVMIntNE, face, zero, "");
         front_facing = LLVMBuildSExt(builder, front_facing,
                                      LLVMIntTypeInContext(gallivm->context,
                                             s_bld.type.length*s_bld.type.width),
                                      "");
         front_facing = LLVMBuildBitCast(builder, front_facing,
                                         s_bld.int_vec_type, "");
      }

      /* convert scalar stencil refs into vectors */
      stencil_refs[0] = lp_build_broadcast_scalar(&s_bld, stencil_refs[0]);
      stencil_refs[1] = lp_build_broadcast_scalar(&s_bld, stencil_refs[1]);

      s_pass_mask = lp_build_stencil_test(&s_bld, stencil,
                                          stencil_refs, stencil_vals,
                                          front_facing);

      /* apply stencil-fail operator */
      {
         LLVMValueRef s_fail_mask = lp_build_andnot(&s_bld, orig_mask, s_pass_mask);
         stencil_vals = lp_build_stencil_op(&s_bld, stencil, S_FAIL_OP,
                                            stencil_refs, stencil_vals,
                                            s_fail_mask, front_facing);
      }
   }

   if (depth->enabled) {
      /*
       * Convert fragment Z to the desired type, aligning the LSB to the right.
       */

      assert(z_type.width == z_src_type.width);
      assert(z_type.length == z_src_type.length);
      assert(lp_check_value(z_src_type, z_src));
      if (z_src_type.floating) {
         /*
          * Convert from floating point values
          */

         if (!z_type.floating) {
            z_src = lp_build_clamped_float_to_unsigned_norm(gallivm,
                                                            z_src_type,
                                                            z_width,
                                                            z_src);
         }
      } else {
         /*
          * Convert from unsigned normalized values.
          */

         assert(!z_src_type.sign);
         assert(!z_src_type.fixed);
         assert(z_src_type.norm);
         assert(!z_type.floating);
         if (z_src_type.width > z_width) {
            LLVMValueRef shift = lp_build_const_int_vec(gallivm, z_src_type,
                                                        z_src_type.width - z_width);
            z_src = LLVMBuildLShr(builder, z_src, shift, "");
         }
      }
      assert(lp_check_value(z_type, z_src));

      lp_build_name(z_src, "z_src");

      /* compare src Z to dst Z, returning 'pass' mask */
      z_pass = lp_build_cmp(&z_bld, depth->func, z_src, z_dst);

      if (!stencil[0].enabled) {
         /* We can potentially skip all remaining operations here, but only
          * if stencil is disabled because we still need to update the stencil
          * buffer values.  Don't need to update Z buffer values.
          */
         lp_build_mask_update(mask, z_pass);

         if (do_branch) {
            lp_build_mask_check(mask);
            do_branch = FALSE;
         }
      }

      if (depth->writemask) {
         LLVMValueRef zselectmask;

         /* mask off bits that failed Z test */
         zselectmask = LLVMBuildAnd(builder, orig_mask, z_pass, "");

         /* mask off bits that failed stencil test */
         if (s_pass_mask) {
            zselectmask = LLVMBuildAnd(builder, zselectmask, s_pass_mask, "");
         }

         /* Mix the old and new Z buffer values.
          * z_dst[i] = zselectmask[i] ? z_src[i] : z_dst[i]
          */
         z_dst = lp_build_select(&z_bld, zselectmask, z_src, z_dst);
      }

      if (stencil[0].enabled) {
         /* update stencil buffer values according to z pass/fail result */
         LLVMValueRef z_fail_mask, z_pass_mask;

         /* apply Z-fail operator */
         z_fail_mask = lp_build_andnot(&s_bld, orig_mask, z_pass);
         stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_FAIL_OP,
                                            stencil_refs, stencil_vals,
                                            z_fail_mask, front_facing);

         /* apply Z-pass operator */
         z_pass_mask = LLVMBuildAnd(builder, orig_mask, z_pass, "");
         stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_PASS_OP,
                                            stencil_refs, stencil_vals,
                                            z_pass_mask, front_facing);
      }
   }
   else {
      /* No depth test: apply Z-pass operator to stencil buffer values which
       * passed the stencil test.
       */
      s_pass_mask = LLVMBuildAnd(builder, orig_mask, s_pass_mask, "");
      stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_PASS_OP,
                                         stencil_refs, stencil_vals,
                                         s_pass_mask, front_facing);
   }

   /* Put Z and stencil bits in the right place */
   if (have_z && z_shift) {
      LLVMValueRef shift = lp_build_const_int_vec(gallivm, z_type, z_shift);
      z_dst = LLVMBuildShl(builder, z_dst, shift, "");
   }
   if (stencil_vals && stencil_shift)
      stencil_vals = LLVMBuildShl(builder, stencil_vals,
                                  stencil_shift, "");

   /* Finally, merge the z/stencil values */
   if (format_desc->block.bits <= 32) {
      if (have_z && have_s)
         *z_value = LLVMBuildOr(builder, z_dst, stencil_vals, "");
      else if (have_z)
         *z_value = z_dst;
      else
         *z_value = stencil_vals;
      *s_value = *z_value;
   }
   else {
      *z_value = z_dst;
      *s_value = stencil_vals;
   }

   if (s_pass_mask)
      lp_build_mask_update(mask, s_pass_mask);

   if (depth->enabled && stencil[0].enabled)
      lp_build_mask_update(mask, z_pass);
}
示例#6
0
struct cl2llvm_val_t *llvm_type_cast(struct cl2llvm_val_t * original_val, 
	struct cl2llvmTypeWrap *totype_w_sign)
{
	struct cl2llvm_val_t *llvm_val = cl2llvm_val_create();

	int i;
	struct cl2llvmTypeWrap *elem_type;
	struct cl2llvm_val_t *cast_original_val;
	LLVMValueRef index;
	LLVMValueRef vector_addr;
	LLVMValueRef vector;
	LLVMValueRef const_elems[16];
	LLVMTypeRef fromtype = cl2llvmTypeWrapGetLlvmType(original_val->type);
	LLVMTypeRef totype = cl2llvmTypeWrapGetLlvmType(totype_w_sign);
	int fromsign = cl2llvmTypeWrapGetSign(original_val->type);
	int tosign = cl2llvmTypeWrapGetSign(totype_w_sign);

	/*By default the return value is the same as the original_val*/
	llvm_val->val = original_val->val;
	cl2llvmTypeWrapSetLlvmType(llvm_val->type, cl2llvmTypeWrapGetLlvmType(original_val->type));
	cl2llvmTypeWrapSetSign(llvm_val->type, cl2llvmTypeWrapGetSign(original_val->type));
	
	snprintf(temp_var_name, sizeof temp_var_name,
		"tmp_%d", temp_var_count++);
		
	/* Check that fromtype is not a vector, unless both types are identical. */
	if (LLVMGetTypeKind(fromtype) == LLVMVectorTypeKind)
	{
		if ((LLVMGetVectorSize(fromtype) != LLVMGetVectorSize(totype) 
			|| LLVMGetElementType(fromtype) 
			!= LLVMGetElementType(totype)) 
			|| fromsign != tosign)
		{
			if (LLVMGetTypeKind(totype) == LLVMVectorTypeKind)
				cl2llvm_yyerror("Casts between vector types are forbidden");
			cl2llvm_yyerror("A vector may not be cast to any other type.");
		}
	}

	/* If totype is a vector, create a vector whose components are equal to 
	original_val */

	if (LLVMGetTypeKind(totype) == LLVMVectorTypeKind
		&& LLVMGetTypeKind(fromtype) != LLVMVectorTypeKind)
	{
		/*Go to entry block and declare vector*/
		LLVMPositionBuilder(cl2llvm_builder, cl2llvm_current_function->entry_block,
			cl2llvm_current_function->branch_instr);
		
		snprintf(temp_var_name, sizeof temp_var_name,
			"tmp_%d", temp_var_count++);
			
		vector_addr = LLVMBuildAlloca(cl2llvm_builder, 
			totype, temp_var_name);
		LLVMPositionBuilderAtEnd(cl2llvm_builder, current_basic_block);

		/* Load vector */
		snprintf(temp_var_name, sizeof temp_var_name,
			"tmp_%d", temp_var_count++);
	
		vector = LLVMBuildLoad(cl2llvm_builder, vector_addr, temp_var_name);
		
		/* Create object to represent element type of totype */
		elem_type = cl2llvmTypeWrapCreate(LLVMGetElementType(totype), tosign);

		/* If original_val is constant create a constant vector */
		if (LLVMIsConstant(original_val->val))
		{
			cast_original_val = llvm_type_cast(original_val, elem_type);
			for (i = 0; i < LLVMGetVectorSize(totype); i++)
				const_elems[i] = cast_original_val->val;

			vector = LLVMConstVector(const_elems, 	
				LLVMGetVectorSize(totype));
			llvm_val->val = vector;

			cl2llvm_val_free(cast_original_val);
		}
		/* If original value is not constant insert elements */
		else
		{
			for (i = 0; i < LLVMGetVectorSize(totype); i++)
			{
				index = LLVMConstInt(LLVMInt32Type(), i, 0);
				cast_original_val = llvm_type_cast(original_val, elem_type);
				snprintf(temp_var_name, sizeof temp_var_name,
					"tmp_%d", temp_var_count++);
	
				vector = LLVMBuildInsertElement(cl2llvm_builder, 
					vector, cast_original_val->val, index, temp_var_name);
				cl2llvm_val_free(cast_original_val);
			}
		}
		cl2llvmTypeWrapFree(elem_type);
		llvm_val->val = vector;
	}


	if (fromtype == LLVMInt64Type())
	{
		if (totype == LLVMDoubleType())
		{
			if (fromsign)
			{
				llvm_val->val =
						LLVMBuildSIToFP(cl2llvm_builder,
						  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMFloatType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMHalfType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMInt64Type())
		{
			if (tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
			temp_var_count--;
		}
		else if (totype == LLVMInt32Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				  original_val->val, LLVMInt32Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt16Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				  original_val->val, LLVMInt16Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt8Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				  original_val->val, LLVMInt8Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt1Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				  original_val->val, LLVMInt1Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
			
	}
	else if (fromtype == LLVMInt32Type())
	{
		if (totype == LLVMDoubleType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMFloatType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMHalfType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMInt64Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt64Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt64Type(),
					temp_var_name);
			}
			if (tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt32Type())
		{
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
			temp_var_count--;
		}
		else if (totype == LLVMInt16Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				  original_val->val, LLVMInt16Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt8Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				 original_val->val, LLVMInt8Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt1Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				  original_val->val, LLVMInt1Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
			
	}
	else if (fromtype == LLVMInt16Type())
	{
		if (totype == LLVMDoubleType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMFloatType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMHalfType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMInt64Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt64Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt64Type(),
					temp_var_name);
			}
			if (tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt32Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt32Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt32Type(),
					temp_var_name);
			}
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt16Type())
		{
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
			temp_var_count--;
		}
		else if (totype == LLVMInt8Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				  original_val->val, LLVMInt8Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt1Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				  original_val->val, LLVMInt1Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
			
	}
	else if (fromtype == LLVMInt8Type())
	{
		if (totype == LLVMDoubleType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMFloatType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMHalfType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMInt64Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt64Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt64Type(),
					temp_var_name);
			}
			if (tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt32Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt32Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt32Type(),
					temp_var_name);
			}
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt16Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt16Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt16Type(),
					temp_var_name);
			}
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt8Type())
		{
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
			temp_var_count--;
		}
		else if (totype == LLVMInt1Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				  original_val->val, LLVMInt1Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
			
	}
	else if (fromtype == LLVMInt1Type())
	{
		if (totype == LLVMDoubleType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMFloatType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMHalfType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMInt64Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt64Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt64Type(),
					temp_var_name);
			}
			if (tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt32Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt32Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt32Type(),
					temp_var_name);
			}
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt16Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt16Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt16Type(),
					temp_var_name);
			}
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt8Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt8Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt8Type(),
					temp_var_name);
			}
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt1Type())
		{
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
			temp_var_count--;
		}			
	}

	/*We now know that from type must be a floating point.*/

	/*Floating point to signed integer conversions*/
	else if (tosign && LLVMGetTypeKind(totype) == 8)
	{
		if (totype == LLVMInt64Type())
		{
			llvm_val->val = LLVMBuildFPToSI(cl2llvm_builder, 
				  original_val->val, LLVMInt64Type(), temp_var_name);
		}
		else if (totype == LLVMInt32Type())
		{
			llvm_val->val = LLVMBuildFPToSI(cl2llvm_builder, 
				  original_val->val, LLVMInt32Type(), temp_var_name);
		}
		else if (totype == LLVMInt16Type())
		{
			llvm_val->val = LLVMBuildFPToSI(cl2llvm_builder, 
				  original_val->val, LLVMInt16Type(), temp_var_name);
		}
		else if (totype == LLVMInt8Type())
		{
			llvm_val->val = LLVMBuildFPToSI(cl2llvm_builder, 
				  original_val->val, LLVMInt8Type(), temp_var_name);
		}
		else if (totype == LLVMInt1Type())
		{
			llvm_val->val = LLVMBuildFPToSI(cl2llvm_builder, 
				  original_val->val, LLVMInt1Type(), temp_var_name);
		}
		cl2llvmTypeWrapSetSign(llvm_val->type, 1);
	}
	/*Floating point to unsigned integer conversions*/
	else if (!tosign)
	{
		if (totype == LLVMInt64Type())
		{
			llvm_val->val = LLVMBuildFPToUI(cl2llvm_builder, 
				  original_val->val, LLVMInt64Type(), temp_var_name);
		}
		else if (totype == LLVMInt32Type())
		{
			llvm_val->val = LLVMBuildFPToUI(cl2llvm_builder, 
				  original_val->val, LLVMInt32Type(), temp_var_name);
		}
		else if (totype == LLVMInt16Type())
		{
			llvm_val->val = LLVMBuildFPToUI(cl2llvm_builder, 
				  original_val->val, LLVMInt16Type(), temp_var_name);
		}
		else if (totype == LLVMInt8Type())
		{
			llvm_val->val = LLVMBuildFPToUI(cl2llvm_builder, 
				  original_val->val, LLVMInt8Type(), temp_var_name);
		}
		else if (totype == LLVMInt1Type())
		{
			llvm_val->val = LLVMBuildFPToUI(cl2llvm_builder, 
				  original_val->val, LLVMInt1Type(), temp_var_name);
		}
		cl2llvmTypeWrapSetSign(llvm_val->type, 0);
	}
	else if (totype == LLVMDoubleType())
	{
		llvm_val->val = LLVMBuildFPExt(cl2llvm_builder, 
			  original_val->val, LLVMDoubleType(), temp_var_name);
		cl2llvmTypeWrapSetSign(llvm_val->type, 1);
	}
	else if (totype == LLVMFloatType())
	{
		if (fromtype == LLVMDoubleType())
		{
			llvm_val->val = LLVMBuildFPTrunc(cl2llvm_builder, 
				  original_val->val, LLVMFloatType(), temp_var_name);
		}
		else if (fromtype == LLVMHalfType())
		{
			llvm_val->val = LLVMBuildFPExt(cl2llvm_builder, 
				  original_val->val, LLVMFloatType(), temp_var_name);
		}
		cl2llvmTypeWrapSetSign(llvm_val->type, 1);
	}
	else if (totype == LLVMHalfType())
	{
		llvm_val->val = LLVMBuildFPTrunc(cl2llvm_builder, 
			  original_val->val, LLVMHalfType(), temp_var_name);
		cl2llvmTypeWrapSetSign(llvm_val->type, 1);
	}
	cl2llvmTypeWrapSetLlvmType(llvm_val->type, totype);
	cl2llvmTypeWrapSetSign(llvm_val->type, tosign);
	
	return llvm_val;
}
示例#7
0
/* This function will take a bool and sign extend it to a specified bitwidth.
   It will also perform i1 to floating point conversions if necessary. All vector
   components that are equal to 1 will be converted to -1 in accordance with the 
   OpenCL standard. */
struct cl2llvm_val_t *cl2llvm_bool_ext(struct cl2llvm_val_t *bool_val,
	struct cl2llvmTypeWrap *type)
{
	struct cl2llvm_val_t *value;
	struct cl2llvmTypeWrap *switch_type;
	LLVMTypeRef totype;
	int vec_length;

	switch_type = cl2llvmTypeWrapCreate(cl2llvmTypeWrapGetLlvmType(type), cl2llvmTypeWrapGetSign(type));

	if (LLVMGetTypeKind(cl2llvmTypeWrapGetLlvmType(type)) == LLVMVectorTypeKind)		
		cl2llvmTypeWrapSetLlvmType(switch_type, LLVMGetElementType(cl2llvmTypeWrapGetLlvmType(type)));
		

	if (LLVMGetTypeKind(cl2llvmTypeWrapGetLlvmType(type)) == LLVMVectorTypeKind)
	{
		vec_length = LLVMGetVectorSize(cl2llvmTypeWrapGetLlvmType(type));
		switch (LLVMGetTypeKind(cl2llvmTypeWrapGetLlvmType(switch_type)))
		{
		case LLVMIntegerTypeKind:
			totype = cl2llvmTypeWrapGetLlvmType(type);
			break;
		case LLVMFloatTypeKind:
			totype = LLVMVectorType(LLVMInt32Type(), vec_length);
			break;
		case LLVMDoubleTypeKind:
			totype = LLVMVectorType(LLVMInt64Type(), vec_length);
			break;
		case LLVMHalfTypeKind:
			totype = LLVMVectorType(LLVMInt16Type(), vec_length);
			break;
		default:
			cl2llvm_yyerror("unreachable code reached");
			break;
		}
	}
	else
		totype = LLVMInt32Type();
	
	value = cl2llvm_val_create();

	snprintf(temp_var_name, sizeof temp_var_name,
		"tmp_%d", temp_var_count++);

	/* Build sign extension */
	value->val = LLVMBuildSExt(cl2llvm_builder, 
		bool_val->val, totype, temp_var_name);	
	cl2llvmTypeWrapSetLlvmType(value->type, totype);
	cl2llvmTypeWrapSetSign(value->type, 1);

	/* if value is a vector, change 1's to -1's */
	if (LLVMGetTypeKind(cl2llvmTypeWrapGetLlvmType(type)) == LLVMVectorTypeKind)
	{
		snprintf(temp_var_name, sizeof temp_var_name,
			"tmp_%d", temp_var_count++);

		value->val = LLVMBuildNeg(cl2llvm_builder, 
			value->val, temp_var_name);
	}

	cl2llvmTypeWrapFree(switch_type);

	return value;
}