示例#1
0
static LLVMValueRef
emit_fetch_immediate(
	struct lp_build_tgsi_context *bld_base,
	const struct tgsi_full_src_register *reg,
	enum tgsi_opcode_type type,
	unsigned swizzle)
{
	LLVMTypeRef ctype;
	LLVMContextRef ctx = bld_base->base.gallivm->context;

	switch (type) {
	case TGSI_TYPE_UNSIGNED:
	case TGSI_TYPE_SIGNED:
		ctype = LLVMInt32TypeInContext(ctx);
		break;
	case TGSI_TYPE_UNTYPED:
	case TGSI_TYPE_FLOAT:
		ctype = LLVMFloatTypeInContext(ctx);
		break;
	default:
		ctype = 0;
		break;
	}

	struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
	return LLVMConstBitCast(bld->immediates[reg->Register.Index][swizzle], ctype);
}
示例#2
0
文件: types.c 项目: ksandstr/muidl
/* returns a LLVM representation corresponding to the C translation of the
 * given IDL type.
 */
LLVMTypeRef llvm_value_type(struct llvm_ctx *ctx, IDL_tree type)
{
	if(type == NULL) return LLVMVoidTypeInContext(ctx->ctx);
	switch(IDL_NODE_TYPE(type)) {
		case IDLN_TYPE_INTEGER: {
			static short bitlens[] = {
				[IDL_INTEGER_TYPE_SHORT] = 16,
				[IDL_INTEGER_TYPE_LONG] = 32,
				[IDL_INTEGER_TYPE_LONGLONG] = 64,
			};
			int t = IDL_TYPE_INTEGER(type).f_type;
			assert(t < G_N_ELEMENTS(bitlens));
			return LLVMIntTypeInContext(ctx->ctx, bitlens[t]);
		}

		case IDLN_NATIVE: {
			/* each of these is the size of a single word, which is all LLVM
			 * wants to know.
			 */
			if(IS_WORD_TYPE(type) || IS_FPAGE_TYPE(type)
				|| IS_TIME_TYPE(type))
			{
				return ctx->wordt;
			} else {
				fprintf(stderr, "%s: native type `%s' not supported\n",
					__FUNCTION__, NATIVE_NAME(type));
				abort();
			}
			break;
		}

		case IDLN_TYPE_FLOAT:
			switch(IDL_TYPE_FLOAT(type).f_type) {
				case IDL_FLOAT_TYPE_FLOAT:
					return LLVMFloatTypeInContext(ctx->ctx);
				case IDL_FLOAT_TYPE_DOUBLE:
					return LLVMDoubleTypeInContext(ctx->ctx);
				case IDL_FLOAT_TYPE_LONGDOUBLE:
					return LLVMFP128TypeInContext(ctx->ctx);
			}
			g_assert_not_reached();

		case IDLN_TYPE_BOOLEAN:
		case IDLN_TYPE_OCTET:
		case IDLN_TYPE_CHAR:
			return LLVMInt8TypeInContext(ctx->ctx);

		case IDLN_TYPE_WIDE_CHAR:
			return ctx->i32t;

		case IDLN_TYPE_ENUM: return LLVMInt16TypeInContext(ctx->ctx);

		default:
			NOTDEFINED(type);
	}
}
示例#3
0
LLVMTypeRef
lp_build_elem_type(struct gallivm_state *gallivm, struct lp_type type)
{
   if (type.floating) {
      switch(type.width) {
      case 32:
         return LLVMFloatTypeInContext(gallivm->context);
         break;
      case 64:
         return LLVMDoubleTypeInContext(gallivm->context);
         break;
      default:
         assert(0);
         return LLVMFloatTypeInContext(gallivm->context);
      }
   }
   else {
      return LLVMIntTypeInContext(gallivm->context, type.width);
   }
}
示例#4
0
/* Initialize module-independent parts of the context.
 *
 * The caller is responsible for initializing ctx::module and ctx::builder.
 */
void
ac_llvm_context_init(struct ac_llvm_context *ctx, LLVMContextRef context)
{
	LLVMValueRef args[1];

	ctx->context = context;
	ctx->module = NULL;
	ctx->builder = NULL;

	ctx->voidt = LLVMVoidTypeInContext(ctx->context);
	ctx->i1 = LLVMInt1TypeInContext(ctx->context);
	ctx->i8 = LLVMInt8TypeInContext(ctx->context);
	ctx->i16 = LLVMIntTypeInContext(ctx->context, 16);
	ctx->i32 = LLVMIntTypeInContext(ctx->context, 32);
	ctx->i64 = LLVMIntTypeInContext(ctx->context, 64);
	ctx->f16 = LLVMHalfTypeInContext(ctx->context);
	ctx->f32 = LLVMFloatTypeInContext(ctx->context);
	ctx->f64 = LLVMDoubleTypeInContext(ctx->context);
	ctx->v4i32 = LLVMVectorType(ctx->i32, 4);
	ctx->v4f32 = LLVMVectorType(ctx->f32, 4);
	ctx->v8i32 = LLVMVectorType(ctx->i32, 8);

	ctx->i32_0 = LLVMConstInt(ctx->i32, 0, false);
	ctx->i32_1 = LLVMConstInt(ctx->i32, 1, false);
	ctx->f32_0 = LLVMConstReal(ctx->f32, 0.0);
	ctx->f32_1 = LLVMConstReal(ctx->f32, 1.0);

	ctx->range_md_kind = LLVMGetMDKindIDInContext(ctx->context,
						     "range", 5);

	ctx->invariant_load_md_kind = LLVMGetMDKindIDInContext(ctx->context,
							       "invariant.load", 14);

	ctx->fpmath_md_kind = LLVMGetMDKindIDInContext(ctx->context, "fpmath", 6);

	args[0] = LLVMConstReal(ctx->f32, 2.5);
	ctx->fpmath_md_2p5_ulp = LLVMMDNodeInContext(ctx->context, args, 1);

	ctx->uniform_md_kind = LLVMGetMDKindIDInContext(ctx->context,
							"amdgpu.uniform", 14);

	ctx->empty_md = LLVMMDNodeInContext(ctx->context, NULL, 0);
}
示例#5
0
static LLVMValueRef
emit_fetch_immediate(
	struct lp_build_tgsi_context *bld_base,
	const struct tgsi_full_src_register *reg,
	enum tgsi_opcode_type type,
	unsigned swizzle)
{
	LLVMTypeRef ctype;
	LLVMContextRef ctx = bld_base->base.gallivm->context;

	switch (type) {
	case TGSI_TYPE_UNSIGNED:
	case TGSI_TYPE_SIGNED:
		ctype = LLVMInt32TypeInContext(ctx);
		break;
	case TGSI_TYPE_UNTYPED:
	case TGSI_TYPE_FLOAT:
		ctype = LLVMFloatTypeInContext(ctx);
		break;
	default:
		ctype = 0;
		break;
	}

	struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
	if (swizzle == ~0) {
		LLVMValueRef values[TGSI_NUM_CHANNELS] = {};
		unsigned chan;
		for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
                   values[chan] = LLVMConstBitCast(bld->immediates[reg->Register.Index][chan], ctype);
		}
		return lp_build_gather_values(bld_base->base.gallivm, values,
						TGSI_NUM_CHANNELS);
	} else {
		return LLVMConstBitCast(bld->immediates[reg->Register.Index][swizzle], ctype);
	}
}
/**
 * Pack a single pixel.
 *
 * @param rgba 4 float vector with the unpacked components.
 *
 * XXX: This is mostly for reference and testing -- operating a single pixel at
 * a time is rarely if ever needed.
 */
LLVMValueRef
lp_build_pack_rgba_aos(struct gallivm_state *gallivm,
                       const struct util_format_description *desc,
                       LLVMValueRef rgba)
{
   LLVMBuilderRef builder = gallivm->builder;
   LLVMTypeRef type;
   LLVMValueRef packed = NULL;
   LLVMValueRef swizzles[4];
   LLVMValueRef shifted, casted, scaled, unswizzled;
   LLVMValueRef shifts[4];
   LLVMValueRef scales[4];
   boolean normalized;
   unsigned shift;
   unsigned i, j;

   assert(desc->layout == UTIL_FORMAT_LAYOUT_PLAIN);
   assert(desc->block.width == 1);
   assert(desc->block.height == 1);

   type = LLVMIntTypeInContext(gallivm->context, desc->block.bits);

   /* Unswizzle the color components into the source vector. */
   for (i = 0; i < 4; ++i) {
      for (j = 0; j < 4; ++j) {
         if (desc->swizzle[j] == i)
            break;
      }
      if (j < 4)
         swizzles[i] = lp_build_const_int32(gallivm, j);
      else
         swizzles[i] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
   }

   unswizzled = LLVMBuildShuffleVector(builder, rgba,
                                       LLVMGetUndef(LLVMVectorType(LLVMFloatTypeInContext(gallivm->context), 4)),
                                       LLVMConstVector(swizzles, 4), "");

   normalized = FALSE;
   shift = 0;
   for (i = 0; i < 4; ++i) {
      unsigned bits = desc->channel[i].size;

      if (desc->channel[i].type == UTIL_FORMAT_TYPE_VOID) {
         shifts[i] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
         scales[i] =  LLVMGetUndef(LLVMFloatTypeInContext(gallivm->context));
      }
      else {
         unsigned mask = (1 << bits) - 1;

         assert(desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED);
         assert(bits < 32);

         shifts[i] = lp_build_const_int32(gallivm, shift);

         if (desc->channel[i].normalized) {
            scales[i] = lp_build_const_float(gallivm, mask);
            normalized = TRUE;
         }
         else
            scales[i] = lp_build_const_float(gallivm, 1.0);
      }

      shift += bits;
   }

   if (normalized)
      scaled = LLVMBuildFMul(builder, unswizzled, LLVMConstVector(scales, 4), "");
   else
      scaled = unswizzled;

   casted = LLVMBuildFPToSI(builder, scaled, LLVMVectorType(LLVMInt32TypeInContext(gallivm->context), 4), "");

   shifted = LLVMBuildShl(builder, casted, LLVMConstVector(shifts, 4), "");
   
   /* Bitwise or all components */
   for (i = 0; i < 4; ++i) {
      if (desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED) {
         LLVMValueRef component = LLVMBuildExtractElement(builder, shifted,
                                               lp_build_const_int32(gallivm, i), "");
         if (packed)
            packed = LLVMBuildOr(builder, packed, component, "");
         else
            packed = component;
      }
   }

   if (!packed)
      packed = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));

   if (desc->block.bits < 32)
      packed = LLVMBuildTrunc(builder, packed, type, "");

   return packed;
}
/**
 * Fetch a pixel into a 4 float AoS.
 *
 * \param format_desc  describes format of the image we're fetching from
 * \param ptr  address of the pixel block (or the texel if uncompressed)
 * \param i, j  the sub-block pixel coordinates.  For non-compressed formats
 *              these will always be (0, 0).
 * \return  a 4 element vector with the pixel's RGBA values.
 */
LLVMValueRef
lp_build_fetch_rgba_aos(struct gallivm_state *gallivm,
                        const struct util_format_description *format_desc,
                        struct lp_type type,
                        LLVMValueRef base_ptr,
                        LLVMValueRef offset,
                        LLVMValueRef i,
                        LLVMValueRef j)
{
   LLVMBuilderRef builder = gallivm->builder;
   unsigned num_pixels = type.length / 4;
   struct lp_build_context bld;

   assert(type.length <= LP_MAX_VECTOR_LENGTH);
   assert(type.length % 4 == 0);

   lp_build_context_init(&bld, gallivm, type);

   /*
    * Trivial case
    *
    * The format matches the type (apart of a swizzle) so no need for
    * scaling or converting.
    */

   if (format_matches_type(format_desc, type) &&
       format_desc->block.bits <= type.width * 4 &&
       util_is_power_of_two(format_desc->block.bits)) {
      LLVMValueRef packed;

      /*
       * The format matches the type (apart of a swizzle) so no need for
       * scaling or converting.
       */

      packed = lp_build_gather(gallivm, type.length/4,
                               format_desc->block.bits, type.width*4,
                               base_ptr, offset);

      assert(format_desc->block.bits <= type.width * type.length);

      packed = LLVMBuildBitCast(gallivm->builder, packed,
                                lp_build_vec_type(gallivm, type), "");

      return lp_build_format_swizzle_aos(format_desc, &bld, packed);
   }

   /*
    * Bit arithmetic
    */

   if (format_desc->layout == UTIL_FORMAT_LAYOUT_PLAIN &&
       (format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
        format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS) &&
       format_desc->block.width == 1 &&
       format_desc->block.height == 1 &&
       util_is_power_of_two(format_desc->block.bits) &&
       format_desc->block.bits <= 32 &&
       format_desc->is_bitmask &&
       !format_desc->is_mixed &&
       (format_desc->channel[0].type == UTIL_FORMAT_TYPE_UNSIGNED ||
        format_desc->channel[1].type == UTIL_FORMAT_TYPE_UNSIGNED)) {

      LLVMValueRef tmps[LP_MAX_VECTOR_LENGTH/4];
      LLVMValueRef res;
      unsigned k;

      /*
       * Unpack a pixel at a time into a <4 x float> RGBA vector
       */

      for (k = 0; k < num_pixels; ++k) {
         LLVMValueRef packed;

         packed = lp_build_gather_elem(gallivm, num_pixels,
                                       format_desc->block.bits, 32,
                                       base_ptr, offset, k);

         tmps[k] = lp_build_unpack_arith_rgba_aos(gallivm,
                                                  format_desc,
                                                  packed);
      }

      /*
       * Type conversion.
       *
       * TODO: We could avoid floating conversion for integer to
       * integer conversions.
       */

      if (gallivm_debug & GALLIVM_DEBUG_PERF && !type.floating) {
         debug_printf("%s: unpacking %s with floating point\n",
                      __FUNCTION__, format_desc->short_name);
      }

      lp_build_conv(gallivm,
                    lp_float32_vec4_type(),
                    type,
                    tmps, num_pixels, &res, 1);

      return lp_build_format_swizzle_aos(format_desc, &bld, res);
   }

   /*
    * YUV / subsampled formats
    */

   if (format_desc->layout == UTIL_FORMAT_LAYOUT_SUBSAMPLED) {
      struct lp_type tmp_type;
      LLVMValueRef tmp;

      memset(&tmp_type, 0, sizeof tmp_type);
      tmp_type.width = 8;
      tmp_type.length = num_pixels * 4;
      tmp_type.norm = TRUE;

      tmp = lp_build_fetch_subsampled_rgba_aos(gallivm,
                                               format_desc,
                                               num_pixels,
                                               base_ptr,
                                               offset,
                                               i, j);

      lp_build_conv(gallivm,
                    tmp_type, type,
                    &tmp, 1, &tmp, 1);

      return tmp;
   }

   /*
    * Fallback to util_format_description::fetch_rgba_8unorm().
    */

   if (format_desc->fetch_rgba_8unorm &&
       !type.floating && type.width == 8 && !type.sign && type.norm) {
      /*
       * Fallback to calling util_format_description::fetch_rgba_8unorm.
       *
       * This is definitely not the most efficient way of fetching pixels, as
       * we miss the opportunity to do vectorization, but this it is a
       * convenient for formats or scenarios for which there was no opportunity
       * or incentive to optimize.
       */

      LLVMModuleRef module = LLVMGetGlobalParent(LLVMGetBasicBlockParent(LLVMGetInsertBlock(gallivm->builder)));
      char name[256];
      LLVMTypeRef i8t = LLVMInt8TypeInContext(gallivm->context);
      LLVMTypeRef pi8t = LLVMPointerType(i8t, 0);
      LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
      LLVMValueRef function;
      LLVMValueRef tmp_ptr;
      LLVMValueRef tmp;
      LLVMValueRef res;
      LLVMValueRef callee;
      unsigned k;

      util_snprintf(name, sizeof name, "util_format_%s_fetch_rgba_8unorm",
                    format_desc->short_name);

      if (gallivm_debug & GALLIVM_DEBUG_PERF) {
         debug_printf("%s: falling back to %s\n", __FUNCTION__, name);
      }

      /*
       * Declare and bind format_desc->fetch_rgba_8unorm().
       */

      function = LLVMGetNamedFunction(module, name);
      if (!function) {
         /*
          * Function to call looks like:
          *   fetch(uint8_t *dst, const uint8_t *src, unsigned i, unsigned j)
          */
         LLVMTypeRef ret_type;
         LLVMTypeRef arg_types[4];
         LLVMTypeRef function_type;

         ret_type = LLVMVoidTypeInContext(gallivm->context);
         arg_types[0] = pi8t;
         arg_types[1] = pi8t;
         arg_types[2] = i32t;
         arg_types[3] = i32t;
         function_type = LLVMFunctionType(ret_type, arg_types,
                                          Elements(arg_types), 0);
         function = LLVMAddFunction(module, name, function_type);

         LLVMSetFunctionCallConv(function, LLVMCCallConv);
         LLVMSetLinkage(function, LLVMExternalLinkage);

         assert(LLVMIsDeclaration(function));
      }

      /* make const pointer for the C fetch_rgba_float function */
      callee = lp_build_const_int_pointer(gallivm,
         func_to_pointer((func_pointer) format_desc->fetch_rgba_8unorm));

      /* cast the callee pointer to the function's type */
      function = LLVMBuildBitCast(builder, callee,
                                  LLVMTypeOf(function), "cast callee");

      tmp_ptr = lp_build_alloca(gallivm, i32t, "");

      res = LLVMGetUndef(LLVMVectorType(i32t, num_pixels));

      /*
       * Invoke format_desc->fetch_rgba_8unorm() for each pixel and insert the result
       * in the SoA vectors.
       */

      for (k = 0; k < num_pixels; ++k) {
         LLVMValueRef index = lp_build_const_int32(gallivm, k);
         LLVMValueRef args[4];

         args[0] = LLVMBuildBitCast(builder, tmp_ptr, pi8t, "");
         args[1] = lp_build_gather_elem_ptr(gallivm, num_pixels,
                                            base_ptr, offset, k);

         if (num_pixels == 1) {
            args[2] = i;
            args[3] = j;
         }
         else {
            args[2] = LLVMBuildExtractElement(builder, i, index, "");
            args[3] = LLVMBuildExtractElement(builder, j, index, "");
         }

         LLVMBuildCall(builder, function, args, Elements(args), "");

         tmp = LLVMBuildLoad(builder, tmp_ptr, "");

         if (num_pixels == 1) {
            res = tmp;
         }
         else {
            res = LLVMBuildInsertElement(builder, res, tmp, index, "");
         }
      }

      /* Bitcast from <n x i32> to <4n x i8> */
      res = LLVMBuildBitCast(builder, res, bld.vec_type, "");

      return res;
   }


   /*
    * Fallback to util_format_description::fetch_rgba_float().
    */

   if (format_desc->fetch_rgba_float) {
      /*
       * Fallback to calling util_format_description::fetch_rgba_float.
       *
       * This is definitely not the most efficient way of fetching pixels, as
       * we miss the opportunity to do vectorization, but this it is a
       * convenient for formats or scenarios for which there was no opportunity
       * or incentive to optimize.
       */

      LLVMModuleRef module = LLVMGetGlobalParent(LLVMGetBasicBlockParent(LLVMGetInsertBlock(builder)));
      char name[256];
      LLVMTypeRef f32t = LLVMFloatTypeInContext(gallivm->context);
      LLVMTypeRef f32x4t = LLVMVectorType(f32t, 4);
      LLVMTypeRef pf32t = LLVMPointerType(f32t, 0);
      LLVMTypeRef pi8t = LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0);
      LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
      LLVMValueRef function;
      LLVMValueRef tmp_ptr;
      LLVMValueRef tmps[LP_MAX_VECTOR_LENGTH/4];
      LLVMValueRef res;
      LLVMValueRef callee;
      unsigned k;

      util_snprintf(name, sizeof name, "util_format_%s_fetch_rgba_float",
                    format_desc->short_name);

      if (gallivm_debug & GALLIVM_DEBUG_PERF) {
         debug_printf("%s: falling back to %s\n", __FUNCTION__, name);
      }

      /*
       * Declare and bind format_desc->fetch_rgba_float().
       */

      function = LLVMGetNamedFunction(module, name);
      if (!function) {
         /*
          * Function to call looks like:
          *   fetch(float *dst, const uint8_t *src, unsigned i, unsigned j)
          */
         LLVMTypeRef ret_type;
         LLVMTypeRef arg_types[4];
         LLVMTypeRef function_type;

         ret_type = LLVMVoidTypeInContext(gallivm->context);
         arg_types[0] = pf32t;
         arg_types[1] = pi8t;
         arg_types[2] = i32t;
         arg_types[3] = i32t;
         function_type = LLVMFunctionType(ret_type, arg_types,
                                          Elements(arg_types), 0);
         function = LLVMAddFunction(module, name, function_type);

         LLVMSetFunctionCallConv(function, LLVMCCallConv);
         LLVMSetLinkage(function, LLVMExternalLinkage);

         assert(LLVMIsDeclaration(function));
      }

      /* Note: we're using this casting here instead of LLVMAddGlobalMapping()
       * to work around a bug in LLVM 2.6.
       */

      /* make const pointer for the C fetch_rgba_float function */
      callee = lp_build_const_int_pointer(gallivm,
         func_to_pointer((func_pointer) format_desc->fetch_rgba_float));

      /* cast the callee pointer to the function's type */
      function = LLVMBuildBitCast(builder, callee,
                                  LLVMTypeOf(function), "cast callee");


      tmp_ptr = lp_build_alloca(gallivm, f32x4t, "");

      /*
       * Invoke format_desc->fetch_rgba_float() for each pixel and insert the result
       * in the SoA vectors.
       */

      for (k = 0; k < num_pixels; ++k) {
         LLVMValueRef args[4];

         args[0] = LLVMBuildBitCast(builder, tmp_ptr, pf32t, "");
         args[1] = lp_build_gather_elem_ptr(gallivm, num_pixels,
                                            base_ptr, offset, k);

         if (num_pixels == 1) {
            args[2] = i;
            args[3] = j;
         }
         else {
            LLVMValueRef index = lp_build_const_int32(gallivm, k);
            args[2] = LLVMBuildExtractElement(builder, i, index, "");
            args[3] = LLVMBuildExtractElement(builder, j, index, "");
         }

         LLVMBuildCall(builder, function, args, Elements(args), "");

         tmps[k] = LLVMBuildLoad(builder, tmp_ptr, "");
      }

      lp_build_conv(gallivm,
                    lp_float32_vec4_type(),
                    type,
                    tmps, num_pixels, &res, 1);

      return res;
   }

   assert(0);
   return lp_build_undef(gallivm, type);
}
示例#8
0
/**
 * Increment the shader input attribute values.
 * This is called when we move from one quad to the next.
 */
static void
attribs_update(struct lp_build_interp_soa_context *bld,
               struct gallivm_state *gallivm,
               LLVMValueRef loop_iter,
               int start,
               int end)
{
   LLVMBuilderRef builder = gallivm->builder;
   struct lp_build_context *coeff_bld = &bld->coeff_bld;
   LLVMValueRef oow = NULL;
   unsigned attrib;
   unsigned chan;

   for(attrib = start; attrib < end; ++attrib) {
      const unsigned mask = bld->mask[attrib];
      const unsigned interp = bld->interp[attrib];
      for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
         if(mask & (1 << chan)) {
            LLVMValueRef a;
            if (interp == LP_INTERP_CONSTANT ||
                interp == LP_INTERP_FACING) {
               a = LLVMBuildLoad(builder, bld->a[attrib][chan], "");
            }
            else if (interp == LP_INTERP_POSITION) {
               assert(attrib > 0);
               a = bld->attribs[0][chan];
            }
            else {
               LLVMValueRef dadq;

               a = bld->a[attrib][chan];

               /*
                * Broadcast the attribute value for this quad into all elements
                */

               {
                  /* stored as vector load as float */
                  LLVMTypeRef ptr_type = LLVMPointerType(LLVMFloatTypeInContext(
                                                            gallivm->context), 0);
                  LLVMValueRef ptr;
                  a = LLVMBuildBitCast(builder, a, ptr_type, "");
                  ptr = LLVMBuildGEP(builder, a, &loop_iter, 1, "");
                  a = LLVMBuildLoad(builder, ptr, "");
                  a = lp_build_broadcast_scalar(&bld->coeff_bld, a);
               }

               /*
                * Get the derivatives.
                */

               dadq = bld->dadq[attrib][chan];

#if PERSPECTIVE_DIVIDE_PER_QUAD
               if (interp == LP_INTERP_PERSPECTIVE) {
                  LLVMValueRef dwdq = bld->dadq[0][3];

                  if (oow == NULL) {
                     assert(bld->oow);
                     oow = LLVMBuildShuffleVector(coeff_bld->builder,
                                                  bld->oow, coeff_bld->undef,
                                                  shuffle, "");
                  }

                  dadq = lp_build_sub(coeff_bld,
                                      dadq,
                                      lp_build_mul(coeff_bld, a, dwdq));
                  dadq = lp_build_mul(coeff_bld, dadq, oow);
               }
#endif

               /*
                * Add the derivatives
                */

               a = lp_build_add(coeff_bld, a, dadq);

#if !PERSPECTIVE_DIVIDE_PER_QUAD
               if (interp == LP_INTERP_PERSPECTIVE) {
                  if (oow == NULL) {
                     LLVMValueRef w = bld->attribs[0][3];
                     assert(attrib != 0);
                     assert(bld->mask[0] & TGSI_WRITEMASK_W);
                     oow = lp_build_rcp(coeff_bld, w);
                  }
                  a = lp_build_mul(coeff_bld, a, oow);
               }
#endif

               if (attrib == 0 && chan == 2) {
                  /* FIXME: Depth values can exceed 1.0, due to the fact that
                   * setup interpolation coefficients refer to (0,0) which causes
                   * precision loss. So we must clamp to 1.0 here to avoid artifacts
                   */
                  a = lp_build_min(coeff_bld, a, coeff_bld->one);
               }

               attrib_name(a, attrib, chan, "");
            }
            bld->attribs[attrib][chan] = a;
         }
      }
   }
}
/**
 * Unpack a single pixel into its RGBA components.
 *
 * @param desc  the pixel format for the packed pixel value
 * @param packed integer pixel in a format such as PIPE_FORMAT_B8G8R8A8_UNORM
 *
 * @return RGBA in a float[4] or ubyte[4] or ushort[4] vector.
 */
static INLINE LLVMValueRef
lp_build_unpack_arith_rgba_aos(struct gallivm_state *gallivm,
                               const struct util_format_description *desc,
                               LLVMValueRef packed)
{
   LLVMBuilderRef builder = gallivm->builder;
   LLVMValueRef shifted, casted, scaled, masked;
   LLVMValueRef shifts[4];
   LLVMValueRef masks[4];
   LLVMValueRef scales[4];

   boolean normalized;
   boolean needs_uitofp;
   unsigned shift;
   unsigned i;

   /* TODO: Support more formats */
   assert(desc->layout == UTIL_FORMAT_LAYOUT_PLAIN);
   assert(desc->block.width == 1);
   assert(desc->block.height == 1);
   assert(desc->block.bits <= 32);

   /* Do the intermediate integer computations with 32bit integers since it
    * matches floating point size */
   assert (LLVMTypeOf(packed) == LLVMInt32TypeInContext(gallivm->context));

   /* Broadcast the packed value to all four channels
    * before: packed = BGRA
    * after: packed = {BGRA, BGRA, BGRA, BGRA}
    */
   packed = LLVMBuildInsertElement(builder,
                                   LLVMGetUndef(LLVMVectorType(LLVMInt32TypeInContext(gallivm->context), 4)),
                                   packed,
                                   LLVMConstNull(LLVMInt32TypeInContext(gallivm->context)),
                                   "");
   packed = LLVMBuildShuffleVector(builder,
                                   packed,
                                   LLVMGetUndef(LLVMVectorType(LLVMInt32TypeInContext(gallivm->context), 4)),
                                   LLVMConstNull(LLVMVectorType(LLVMInt32TypeInContext(gallivm->context), 4)),
                                   "");

   /* Initialize vector constants */
   normalized = FALSE;
   needs_uitofp = FALSE;
   shift = 0;

   /* Loop over 4 color components */
   for (i = 0; i < 4; ++i) {
      unsigned bits = desc->channel[i].size;

      if (desc->channel[i].type == UTIL_FORMAT_TYPE_VOID) {
         shifts[i] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
         masks[i] = LLVMConstNull(LLVMInt32TypeInContext(gallivm->context));
         scales[i] =  LLVMConstNull(LLVMFloatTypeInContext(gallivm->context));
      }
      else {
         unsigned long long mask = (1ULL << bits) - 1;

         assert(desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED);

         if (bits == 32) {
            needs_uitofp = TRUE;
         }

         shifts[i] = lp_build_const_int32(gallivm, shift);
         masks[i] = lp_build_const_int32(gallivm, mask);

         if (desc->channel[i].normalized) {
            scales[i] = lp_build_const_float(gallivm, 1.0 / mask);
            normalized = TRUE;
         }
         else
            scales[i] =  lp_build_const_float(gallivm, 1.0);
      }

      shift += bits;
   }

   /* Ex: convert packed = {BGRA, BGRA, BGRA, BGRA}
    * into masked = {B, G, R, A}
    */
   shifted = LLVMBuildLShr(builder, packed, LLVMConstVector(shifts, 4), "");
   masked = LLVMBuildAnd(builder, shifted, LLVMConstVector(masks, 4), "");


   if (!needs_uitofp) {
      /* UIToFP can't be expressed in SSE2 */
      casted = LLVMBuildSIToFP(builder, masked, LLVMVectorType(LLVMFloatTypeInContext(gallivm->context), 4), "");
   } else {
      casted = LLVMBuildUIToFP(builder, masked, LLVMVectorType(LLVMFloatTypeInContext(gallivm->context), 4), "");
   }

   /* At this point 'casted' may be a vector of floats such as
    * {255.0, 255.0, 255.0, 255.0}.  Next, if the pixel values are normalized
    * we'll scale this to {1.0, 1.0, 1.0, 1.0}.
    */

   if (normalized)
      scaled = LLVMBuildFMul(builder, casted, LLVMConstVector(scales, 4), "");
   else
      scaled = casted;

   return scaled;
}
示例#10
0
文件: lp_jit.c 项目: Gnurou/mesa
static void
lp_jit_create_types(struct lp_fragment_shader_variant *lp)
{
   struct gallivm_state *gallivm = lp->gallivm;
   LLVMContextRef lc = gallivm->context;
   LLVMTypeRef viewport_type, texture_type, sampler_type;

   /* struct lp_jit_viewport */
   {
      LLVMTypeRef elem_types[LP_JIT_VIEWPORT_NUM_FIELDS];

      elem_types[LP_JIT_VIEWPORT_MIN_DEPTH] =
      elem_types[LP_JIT_VIEWPORT_MAX_DEPTH] = LLVMFloatTypeInContext(lc);

      viewport_type = LLVMStructTypeInContext(lc, elem_types,
                                              Elements(elem_types), 0);

      LP_CHECK_MEMBER_OFFSET(struct lp_jit_viewport, min_depth,
                             gallivm->target, viewport_type,
                             LP_JIT_VIEWPORT_MIN_DEPTH);
      LP_CHECK_MEMBER_OFFSET(struct lp_jit_viewport, max_depth,
                             gallivm->target, viewport_type,
                             LP_JIT_VIEWPORT_MAX_DEPTH);
      LP_CHECK_STRUCT_SIZE(struct lp_jit_viewport,
                           gallivm->target, viewport_type);
   }

   /* struct lp_jit_texture */
   {
      LLVMTypeRef elem_types[LP_JIT_TEXTURE_NUM_FIELDS];

      elem_types[LP_JIT_TEXTURE_WIDTH]  =
      elem_types[LP_JIT_TEXTURE_HEIGHT] =
      elem_types[LP_JIT_TEXTURE_DEPTH] =
      elem_types[LP_JIT_TEXTURE_FIRST_LEVEL] =
      elem_types[LP_JIT_TEXTURE_LAST_LEVEL] = LLVMInt32TypeInContext(lc);
      elem_types[LP_JIT_TEXTURE_BASE] = LLVMPointerType(LLVMInt8TypeInContext(lc), 0);
      elem_types[LP_JIT_TEXTURE_ROW_STRIDE] =
      elem_types[LP_JIT_TEXTURE_IMG_STRIDE] =
      elem_types[LP_JIT_TEXTURE_MIP_OFFSETS] =
         LLVMArrayType(LLVMInt32TypeInContext(lc), LP_MAX_TEXTURE_LEVELS);

      texture_type = LLVMStructTypeInContext(lc, elem_types,
                                             Elements(elem_types), 0);

      LP_CHECK_MEMBER_OFFSET(struct lp_jit_texture, width,
                             gallivm->target, texture_type,
                             LP_JIT_TEXTURE_WIDTH);
      LP_CHECK_MEMBER_OFFSET(struct lp_jit_texture, height,
                             gallivm->target, texture_type,
                             LP_JIT_TEXTURE_HEIGHT);
      LP_CHECK_MEMBER_OFFSET(struct lp_jit_texture, depth,
                             gallivm->target, texture_type,
                             LP_JIT_TEXTURE_DEPTH);
      LP_CHECK_MEMBER_OFFSET(struct lp_jit_texture, first_level,
                             gallivm->target, texture_type,
                             LP_JIT_TEXTURE_FIRST_LEVEL);
      LP_CHECK_MEMBER_OFFSET(struct lp_jit_texture, last_level,
                             gallivm->target, texture_type,
                             LP_JIT_TEXTURE_LAST_LEVEL);
      LP_CHECK_MEMBER_OFFSET(struct lp_jit_texture, base,
                             gallivm->target, texture_type,
                             LP_JIT_TEXTURE_BASE);
      LP_CHECK_MEMBER_OFFSET(struct lp_jit_texture, row_stride,
                             gallivm->target, texture_type,
                             LP_JIT_TEXTURE_ROW_STRIDE);
      LP_CHECK_MEMBER_OFFSET(struct lp_jit_texture, img_stride,
                             gallivm->target, texture_type,
                             LP_JIT_TEXTURE_IMG_STRIDE);
      LP_CHECK_MEMBER_OFFSET(struct lp_jit_texture, mip_offsets,
                             gallivm->target, texture_type,
                             LP_JIT_TEXTURE_MIP_OFFSETS);
      LP_CHECK_STRUCT_SIZE(struct lp_jit_texture,
                           gallivm->target, texture_type);
   }

   /* struct lp_jit_sampler */
   {
      LLVMTypeRef elem_types[LP_JIT_SAMPLER_NUM_FIELDS];
      elem_types[LP_JIT_SAMPLER_MIN_LOD] =
      elem_types[LP_JIT_SAMPLER_MAX_LOD] =
      elem_types[LP_JIT_SAMPLER_LOD_BIAS] = LLVMFloatTypeInContext(lc);
      elem_types[LP_JIT_SAMPLER_BORDER_COLOR] =
         LLVMArrayType(LLVMFloatTypeInContext(lc), 4);

      sampler_type = LLVMStructTypeInContext(lc, elem_types,
                                             Elements(elem_types), 0);

      LP_CHECK_MEMBER_OFFSET(struct lp_jit_sampler, min_lod,
                             gallivm->target, sampler_type,
                             LP_JIT_SAMPLER_MIN_LOD);
      LP_CHECK_MEMBER_OFFSET(struct lp_jit_sampler, max_lod,
                             gallivm->target, sampler_type,
                             LP_JIT_SAMPLER_MAX_LOD);
      LP_CHECK_MEMBER_OFFSET(struct lp_jit_sampler, lod_bias,
                             gallivm->target, sampler_type,
                             LP_JIT_SAMPLER_LOD_BIAS);
      LP_CHECK_MEMBER_OFFSET(struct lp_jit_sampler, border_color,
                             gallivm->target, sampler_type,
                             LP_JIT_SAMPLER_BORDER_COLOR);
      LP_CHECK_STRUCT_SIZE(struct lp_jit_sampler,
                           gallivm->target, sampler_type);
   }

   /* struct lp_jit_context */
   {
      LLVMTypeRef elem_types[LP_JIT_CTX_COUNT];
      LLVMTypeRef context_type;

      elem_types[LP_JIT_CTX_CONSTANTS] =
         LLVMArrayType(LLVMPointerType(LLVMFloatTypeInContext(lc), 0), LP_MAX_TGSI_CONST_BUFFERS);
      elem_types[LP_JIT_CTX_NUM_CONSTANTS] =
            LLVMArrayType(LLVMInt32TypeInContext(lc), LP_MAX_TGSI_CONST_BUFFERS);
      elem_types[LP_JIT_CTX_ALPHA_REF] = LLVMFloatTypeInContext(lc);
      elem_types[LP_JIT_CTX_STENCIL_REF_FRONT] =
      elem_types[LP_JIT_CTX_STENCIL_REF_BACK] = LLVMInt32TypeInContext(lc);
      elem_types[LP_JIT_CTX_U8_BLEND_COLOR] = LLVMPointerType(LLVMInt8TypeInContext(lc), 0);
      elem_types[LP_JIT_CTX_F_BLEND_COLOR] = LLVMPointerType(LLVMFloatTypeInContext(lc), 0);
      elem_types[LP_JIT_CTX_VIEWPORTS] = LLVMPointerType(viewport_type, 0);
      elem_types[LP_JIT_CTX_TEXTURES] = LLVMArrayType(texture_type,
                                                      PIPE_MAX_SHADER_SAMPLER_VIEWS);
      elem_types[LP_JIT_CTX_SAMPLERS] = LLVMArrayType(sampler_type,
                                                      PIPE_MAX_SAMPLERS);

      context_type = LLVMStructTypeInContext(lc, elem_types,
                                             Elements(elem_types), 0);

      LP_CHECK_MEMBER_OFFSET(struct lp_jit_context, constants,
                             gallivm->target, context_type,
                             LP_JIT_CTX_CONSTANTS);
      LP_CHECK_MEMBER_OFFSET(struct lp_jit_context, num_constants,
                             gallivm->target, context_type,
                             LP_JIT_CTX_NUM_CONSTANTS);
      LP_CHECK_MEMBER_OFFSET(struct lp_jit_context, alpha_ref_value,
                             gallivm->target, context_type,
                             LP_JIT_CTX_ALPHA_REF);
      LP_CHECK_MEMBER_OFFSET(struct lp_jit_context, stencil_ref_front,
                             gallivm->target, context_type,
                             LP_JIT_CTX_STENCIL_REF_FRONT);
      LP_CHECK_MEMBER_OFFSET(struct lp_jit_context, stencil_ref_back,
                             gallivm->target, context_type,
                             LP_JIT_CTX_STENCIL_REF_BACK);
      LP_CHECK_MEMBER_OFFSET(struct lp_jit_context, u8_blend_color,
                             gallivm->target, context_type,
                             LP_JIT_CTX_U8_BLEND_COLOR);
      LP_CHECK_MEMBER_OFFSET(struct lp_jit_context, f_blend_color,
                             gallivm->target, context_type,
                             LP_JIT_CTX_F_BLEND_COLOR);
      LP_CHECK_MEMBER_OFFSET(struct lp_jit_context, viewports,
                             gallivm->target, context_type,
                             LP_JIT_CTX_VIEWPORTS);
      LP_CHECK_MEMBER_OFFSET(struct lp_jit_context, textures,
                             gallivm->target, context_type,
                             LP_JIT_CTX_TEXTURES);
      LP_CHECK_MEMBER_OFFSET(struct lp_jit_context, samplers,
                             gallivm->target, context_type,
                             LP_JIT_CTX_SAMPLERS);
      LP_CHECK_STRUCT_SIZE(struct lp_jit_context,
                           gallivm->target, context_type);

      lp->jit_context_ptr_type = LLVMPointerType(context_type, 0);
   }

   /* struct lp_jit_thread_data */
   {
      LLVMTypeRef elem_types[LP_JIT_THREAD_DATA_COUNT];
      LLVMTypeRef thread_data_type;

      elem_types[LP_JIT_THREAD_DATA_COUNTER] = LLVMInt64TypeInContext(lc);
      elem_types[LP_JIT_THREAD_DATA_RASTER_STATE_VIEWPORT_INDEX] =
            LLVMInt32TypeInContext(lc);

      thread_data_type = LLVMStructTypeInContext(lc, elem_types,
                                                 Elements(elem_types), 0);

      lp->jit_thread_data_ptr_type = LLVMPointerType(thread_data_type, 0);
   }

   if (gallivm_debug & GALLIVM_DEBUG_IR) {
      LLVMDumpModule(gallivm->module);
   }
}
示例#11
0
LLVMTypeRef ett_llvm_type(EagleComplexType *type)
{
    switch(type->type)
    {
        case ETVoid:
            return LLVMVoidTypeInContext(utl_get_current_context());
        case ETFloat:
            return LLVMFloatTypeInContext(utl_get_current_context());
        case ETDouble:
            return LLVMDoubleTypeInContext(utl_get_current_context());
        case ETInt1:
            return LLVMInt1TypeInContext(utl_get_current_context());
        case ETGeneric: // In practice this doesn't matter
        case ETAny:
        case ETInt8:
        case ETUInt8:
            return LLVMInt8TypeInContext(utl_get_current_context());
        case ETInt16:
        case ETUInt16:
            return LLVMInt16TypeInContext(utl_get_current_context());
        case ETInt32:
        case ETUInt32:
            return LLVMInt32TypeInContext(utl_get_current_context());
        case ETInt64:
        case ETUInt64:
            return LLVMInt64TypeInContext(utl_get_current_context());
        case ETCString:
            return LLVMPointerType(LLVMInt8TypeInContext(utl_get_current_context()), 0);
        case ETEnum:
            return LLVMInt64TypeInContext(utl_get_current_context());
        case ETGenerator:
        {
            if(generator_type)
                return generator_type;

            LLVMTypeRef ptmp[2];
            ptmp[0] = LLVMPointerType(LLVMInt8TypeInContext(utl_get_current_context()), 0);
            ptmp[1] = LLVMPointerType(LLVMInt8TypeInContext(utl_get_current_context()), 0);

            generator_type = LLVMStructCreateNamed(utl_get_current_context(), "__egl_gen_strct");
            LLVMStructSetBody(generator_type, ptmp, 2, 0);
            return generator_type;
        }
        case ETClass:
        case ETStruct:
        {
            EagleStructType *st = (EagleStructType *)type;
            LLVMTypeRef loaded = LLVMGetTypeByName(the_module, st->name);
            if(loaded)
                return loaded;

            return NULL;
           // LLVMTypeRef ty = LLVMStructTypeInContext(utl_get_current_context(),
        }
        case ETInterface:
        {
            return LLVMInt8TypeInContext(utl_get_current_context());
        }
        case ETPointer:
        {
            EaglePointerType *pt = (EaglePointerType *)type;
            if(pt->counted || pt->weak)
            {
                LLVMTypeRef ptmp[2];
                ptmp[0] = LLVMPointerType(LLVMInt8TypeInContext(utl_get_current_context()), 0);
                ptmp[1] = LLVMInt1TypeInContext(utl_get_current_context());

                LLVMTypeRef tys[6];
                tys[0] = LLVMInt64TypeInContext(utl_get_current_context());
                tys[1] = LLVMInt16TypeInContext(utl_get_current_context());
                tys[2] = LLVMInt16TypeInContext(utl_get_current_context());
                tys[3] = LLVMPointerType(LLVMInt8TypeInContext(utl_get_current_context()), 0);
                tys[4] = LLVMPointerType(LLVMFunctionType(LLVMVoidTypeInContext(utl_get_current_context()), ptmp, 2, 0), 0);
                tys[5] = ett_llvm_type(pt->to);

                return LLVMPointerType(ty_get_counted(LLVMStructTypeInContext(utl_get_current_context(), tys, 6, 0)), 0);
            }
            return LLVMPointerType(ett_llvm_type(((EaglePointerType *)type)->to), 0);
        }
        case ETArray:
            {
                EagleArrayType *at = (EagleArrayType *)type;
                if(at->ct < 0)
                    return LLVMPointerType(ett_llvm_type(at->of), 0);
                else
                    return LLVMArrayType(ett_llvm_type(at->of), at->ct);
            }
        case ETFunction:
            {
                EagleFunctionType *ft = (EagleFunctionType *)type;
                if(ET_IS_CLOSURE(type))
                {
                    LLVMTypeRef tys[2];
                    tys[0] = LLVMPointerType(LLVMInt8TypeInContext(utl_get_current_context()), 0);
                    tys[1] = LLVMPointerType(LLVMInt8TypeInContext(utl_get_current_context()), 0);
                    return LLVMStructTypeInContext(utl_get_current_context(), tys, 2, 0);
                }

                LLVMTypeRef *tys = malloc(sizeof(LLVMTypeRef) * ft->pct);
                int i;
                for(i = 0; i < ft->pct; i++)
                    tys[i] = ett_llvm_type(ft->params[i]);
                LLVMTypeRef out = LLVMFunctionType(ett_llvm_type(ft->retType), tys, ft->pct, 0);
                free(tys);
                return out;
            }
        default:
            return NULL;
    }
}
示例#12
0
文件: codegen.c 项目: dckc/ponyc
static void init_runtime(compile_t* c)
{
  c->str_1 = stringtab("$1");
  c->str_Bool = stringtab("Bool");
  c->str_I8 = stringtab("I8");
  c->str_I16 = stringtab("I16");
  c->str_I32 = stringtab("I32");
  c->str_I64 = stringtab("I64");
  c->str_I128 = stringtab("I128");
  c->str_U8 = stringtab("U8");
  c->str_U16 = stringtab("U16");
  c->str_U32 = stringtab("U32");
  c->str_U64 = stringtab("U64");
  c->str_U128 = stringtab("U128");
  c->str_F32 = stringtab("F32");
  c->str_F64 = stringtab("F64");
  c->str_Pointer = stringtab("Pointer");
  c->str_Array = stringtab("Array");
  c->str_Platform = stringtab("Platform");

  c->str_add = stringtab("add");
  c->str_sub = stringtab("sub");
  c->str_mul = stringtab("mul");
  c->str_div = stringtab("div");
  c->str_mod = stringtab("mod");
  c->str_neg = stringtab("neg");
  c->str_and = stringtab("op_and");
  c->str_or = stringtab("op_or");
  c->str_xor = stringtab("op_xor");
  c->str_not = stringtab("op_not");
  c->str_shl = stringtab("shl");
  c->str_shr = stringtab("shr");
  c->str_eq = stringtab("eq");
  c->str_ne = stringtab("ne");
  c->str_lt = stringtab("lt");
  c->str_le = stringtab("le");
  c->str_ge = stringtab("ge");
  c->str_gt = stringtab("gt");

  LLVMTypeRef type;
  LLVMTypeRef params[4];
  LLVMValueRef value;

  c->void_type = LLVMVoidTypeInContext(c->context);
  c->i1 = LLVMInt1TypeInContext(c->context);
  c->i8 = LLVMInt8TypeInContext(c->context);
  c->i16 = LLVMInt16TypeInContext(c->context);
  c->i32 = LLVMInt32TypeInContext(c->context);
  c->i64 = LLVMInt64TypeInContext(c->context);
  c->i128 = LLVMIntTypeInContext(c->context, 128);
  c->f32 = LLVMFloatTypeInContext(c->context);
  c->f64 = LLVMDoubleTypeInContext(c->context);
  c->intptr = LLVMIntPtrTypeInContext(c->context, c->target_data);

  // i8*
  c->void_ptr = LLVMPointerType(c->i8, 0);

  // forward declare object
  c->object_type = LLVMStructCreateNamed(c->context, "$object");
  c->object_ptr = LLVMPointerType(c->object_type, 0);

  // padding required in an actor between the descriptor and fields
  c->actor_pad = LLVMArrayType(c->i8, PONY_ACTOR_PAD_SIZE);

  // message
  params[0] = c->i32; // size
  params[1] = c->i32; // id
  c->msg_type = LLVMStructCreateNamed(c->context, "$message");
  c->msg_ptr = LLVMPointerType(c->msg_type, 0);
  LLVMStructSetBody(c->msg_type, params, 2, false);

  // trace
  // void (*)($object*)
  params[0] = c->object_ptr;
  c->trace_type = LLVMFunctionType(c->void_type, params, 1, false);
  c->trace_fn = LLVMPointerType(c->trace_type, 0);

  // dispatch
  // void (*)($object*, $message*)
  params[0] = c->object_ptr;
  params[1] = c->msg_ptr;
  c->dispatch_type = LLVMFunctionType(c->void_type, params, 2, false);
  c->dispatch_fn = LLVMPointerType(c->dispatch_type, 0);

  // void (*)($object*)
  params[0] = c->object_ptr;
  c->final_fn = LLVMPointerType(
    LLVMFunctionType(c->void_type, params, 1, false), 0);

  // descriptor, opaque version
  // We need this in order to build our own structure.
  const char* desc_name = genname_descriptor(NULL);
  c->descriptor_type = LLVMStructCreateNamed(c->context, desc_name);
  c->descriptor_ptr = LLVMPointerType(c->descriptor_type, 0);

  // field descriptor
  // Also needed to build a descriptor structure.
  params[0] = c->i32;
  params[1] = c->descriptor_ptr;
  c->field_descriptor = LLVMStructTypeInContext(c->context, params, 2, false);

  // descriptor, filled in
  c->descriptor_type = gendesc_type(c, NULL);

  // define object
  params[0] = c->descriptor_ptr;
  LLVMStructSetBody(c->object_type, params, 1, false);

  // $object* pony_create($desc*)
  params[0] = c->descriptor_ptr;
  type = LLVMFunctionType(c->object_ptr, params, 1, false);
  value = LLVMAddFunction(c->module, "pony_create", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
  LLVMSetReturnNoAlias(value);

  // void pony_destroy($object*)
  params[0] = c->object_ptr;
  type = LLVMFunctionType(c->void_type, params, 1, false);
  value = LLVMAddFunction(c->module, "pony_destroy", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
  //LLVMSetReturnNoAlias(value);

  // void pony_sendv($object*, $message*);
  params[0] = c->object_ptr;
  params[1] = c->msg_ptr;
  type = LLVMFunctionType(c->void_type, params, 2, false);
  value = LLVMAddFunction(c->module, "pony_sendv", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);

  // i8* pony_alloc(i64)
  params[0] = c->i64;
  type = LLVMFunctionType(c->void_ptr, params, 1, false);
  value = LLVMAddFunction(c->module, "pony_alloc", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
  LLVMSetReturnNoAlias(value);

  // i8* pony_realloc(i8*, i64)
  params[0] = c->void_ptr;
  params[1] = c->i64;
  type = LLVMFunctionType(c->void_ptr, params, 2, false);
  value = LLVMAddFunction(c->module, "pony_realloc", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
  LLVMSetReturnNoAlias(value);

  // i8* pony_alloc_final(i64, c->final_fn)
  params[0] = c->i64;
  params[1] = c->final_fn;
  type = LLVMFunctionType(c->void_ptr, params, 2, false);
  value = LLVMAddFunction(c->module, "pony_alloc_final", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
  LLVMSetReturnNoAlias(value);

  // $message* pony_alloc_msg(i32, i32)
  params[0] = c->i32;
  params[1] = c->i32;
  type = LLVMFunctionType(c->msg_ptr, params, 2, false);
  value = LLVMAddFunction(c->module, "pony_alloc_msg", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
  LLVMSetReturnNoAlias(value);

  // void pony_trace(i8*)
  params[0] = c->void_ptr;
  type = LLVMFunctionType(c->void_type, params, 1, false);
  value = LLVMAddFunction(c->module, "pony_trace", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);

  // void pony_traceactor($object*)
  params[0] = c->object_ptr;
  type = LLVMFunctionType(c->void_type, params, 1, false);
  value = LLVMAddFunction(c->module, "pony_traceactor", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);

  // void pony_traceobject($object*, trace_fn)
  params[0] = c->object_ptr;
  params[1] = c->trace_fn;
  type = LLVMFunctionType(c->void_type, params, 2, false);
  value = LLVMAddFunction(c->module, "pony_traceobject", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);

  // void pony_traceunknown($object*)
  params[0] = c->object_ptr;
  type = LLVMFunctionType(c->void_type, params, 1, false);
  value = LLVMAddFunction(c->module, "pony_traceunknown", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);

  // void pony_trace_tag_or_actor($object*)
  params[0] = c->object_ptr;
  type = LLVMFunctionType(c->void_type, params, 1, false);
  value = LLVMAddFunction(c->module, "pony_trace_tag_or_actor", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);

  // void pony_gc_send()
  type = LLVMFunctionType(c->void_type, NULL, 0, false);
  value = LLVMAddFunction(c->module, "pony_gc_send", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);

  // void pony_gc_recv()
  type = LLVMFunctionType(c->void_type, NULL, 0, false);
  value = LLVMAddFunction(c->module, "pony_gc_recv", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);

  // void pony_send_done()
  type = LLVMFunctionType(c->void_type, NULL, 0, false);
  value = LLVMAddFunction(c->module, "pony_send_done", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);

  // void pony_recv_done()
  type = LLVMFunctionType(c->void_type, NULL, 0, false);
  value = LLVMAddFunction(c->module, "pony_recv_done", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);

  // i32 pony_init(i32, i8**)
  params[0] = c->i32;
  params[1] = LLVMPointerType(c->void_ptr, 0);
  type = LLVMFunctionType(c->i32, params, 2, false);
  value = LLVMAddFunction(c->module, "pony_init", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);

  // void pony_become($object*)
  params[0] = c->object_ptr;
  type = LLVMFunctionType(c->void_type, params, 1, false);
  value = LLVMAddFunction(c->module, "pony_become", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);

  // i32 pony_start(i32)
  params[0] = c->i32;
  type = LLVMFunctionType(c->i32, params, 1, false);
  value = LLVMAddFunction(c->module, "pony_start", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);

  // void pony_throw()
  type = LLVMFunctionType(c->void_type, NULL, 0, false);
  LLVMAddFunction(c->module, "pony_throw", type);

  // i32 pony_personality_v0(...)
  type = LLVMFunctionType(c->i32, NULL, 0, true);
  c->personality = LLVMAddFunction(c->module, "pony_personality_v0", type);

  // i8* memcpy(...)
  type = LLVMFunctionType(c->void_ptr, NULL, 0, true);
  value = LLVMAddFunction(c->module, "memcpy", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);

  // i8* memmove(...)
  type = LLVMFunctionType(c->void_ptr, NULL, 0, true);
  value = LLVMAddFunction(c->module, "memmove", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
}
示例#13
0
static void init_runtime(compile_t* c)
{
  c->str_builtin = stringtab("$0");
  c->str_Bool = stringtab("Bool");
  c->str_I8 = stringtab("I8");
  c->str_I16 = stringtab("I16");
  c->str_I32 = stringtab("I32");
  c->str_I64 = stringtab("I64");
  c->str_I128 = stringtab("I128");
  c->str_ILong = stringtab("ILong");
  c->str_ISize = stringtab("ISize");
  c->str_U8 = stringtab("U8");
  c->str_U16 = stringtab("U16");
  c->str_U32 = stringtab("U32");
  c->str_U64 = stringtab("U64");
  c->str_U128 = stringtab("U128");
  c->str_ULong = stringtab("ULong");
  c->str_USize = stringtab("USize");
  c->str_F32 = stringtab("F32");
  c->str_F64 = stringtab("F64");
  c->str_Pointer = stringtab("Pointer");
  c->str_Maybe = stringtab("MaybePointer");
  c->str_DoNotOptimise = stringtab("DoNotOptimise");
  c->str_Array = stringtab("Array");
  c->str_String = stringtab("String");
  c->str_Platform = stringtab("Platform");
  c->str_Main = stringtab("Main");
  c->str_Env = stringtab("Env");

  c->str_add = stringtab("add");
  c->str_sub = stringtab("sub");
  c->str_mul = stringtab("mul");
  c->str_div = stringtab("div");
  c->str_mod = stringtab("mod");
  c->str_neg = stringtab("neg");
  c->str_add_unsafe = stringtab("add_unsafe");
  c->str_sub_unsafe = stringtab("sub_unsafe");
  c->str_mul_unsafe = stringtab("mul_unsafe");
  c->str_div_unsafe = stringtab("div_unsafe");
  c->str_mod_unsafe = stringtab("mod_unsafe");
  c->str_neg_unsafe = stringtab("neg_unsafe");
  c->str_and = stringtab("op_and");
  c->str_or = stringtab("op_or");
  c->str_xor = stringtab("op_xor");
  c->str_not = stringtab("op_not");
  c->str_shl = stringtab("shl");
  c->str_shr = stringtab("shr");
  c->str_shl_unsafe = stringtab("shl_unsafe");
  c->str_shr_unsafe = stringtab("shr_unsafe");
  c->str_eq = stringtab("eq");
  c->str_ne = stringtab("ne");
  c->str_lt = stringtab("lt");
  c->str_le = stringtab("le");
  c->str_ge = stringtab("ge");
  c->str_gt = stringtab("gt");
  c->str_eq_unsafe = stringtab("eq_unsafe");
  c->str_ne_unsafe = stringtab("ne_unsafe");
  c->str_lt_unsafe = stringtab("lt_unsafe");
  c->str_le_unsafe = stringtab("le_unsafe");
  c->str_ge_unsafe = stringtab("ge_unsafe");
  c->str_gt_unsafe = stringtab("gt_unsafe");

  c->str_this = stringtab("this");
  c->str_create = stringtab("create");
  c->str__create = stringtab("_create");
  c->str__init = stringtab("_init");
  c->str__final = stringtab("_final");
  c->str__event_notify = stringtab("_event_notify");
  c->str__serialise_space = stringtab("_serialise_space");
  c->str__serialise = stringtab("_serialise");
  c->str__deserialise = stringtab("_deserialise");

  LLVMTypeRef type;
  LLVMTypeRef params[5];
  LLVMValueRef value;

  c->void_type = LLVMVoidTypeInContext(c->context);
  c->i1 = LLVMInt1TypeInContext(c->context);
  c->i8 = LLVMInt8TypeInContext(c->context);
  c->i16 = LLVMInt16TypeInContext(c->context);
  c->i32 = LLVMInt32TypeInContext(c->context);
  c->i64 = LLVMInt64TypeInContext(c->context);
  c->i128 = LLVMIntTypeInContext(c->context, 128);
  c->f32 = LLVMFloatTypeInContext(c->context);
  c->f64 = LLVMDoubleTypeInContext(c->context);
  c->intptr = LLVMIntPtrTypeInContext(c->context, c->target_data);

  // i8*
  c->void_ptr = LLVMPointerType(c->i8, 0);

  // forward declare object
  c->object_type = LLVMStructCreateNamed(c->context, "__object");
  c->object_ptr = LLVMPointerType(c->object_type, 0);

  // padding required in an actor between the descriptor and fields
  c->actor_pad = LLVMArrayType(c->i8, PONY_ACTOR_PAD_SIZE);

  // message
  params[0] = c->i32; // size
  params[1] = c->i32; // id
  c->msg_type = LLVMStructCreateNamed(c->context, "__message");
  c->msg_ptr = LLVMPointerType(c->msg_type, 0);
  LLVMStructSetBody(c->msg_type, params, 2, false);

  // trace
  // void (*)(i8*, __object*)
  params[0] = c->void_ptr;
  params[1] = c->object_ptr;
  c->trace_type = LLVMFunctionType(c->void_type, params, 2, false);
  c->trace_fn = LLVMPointerType(c->trace_type, 0);

  // serialise
  // void (*)(i8*, __object*, i8*, intptr, i32)
  params[0] = c->void_ptr;
  params[1] = c->object_ptr;
  params[2] = c->void_ptr;
  params[3] = c->intptr;
  params[4] = c->i32;
  c->serialise_type = LLVMFunctionType(c->void_type, params, 5, false);
  c->serialise_fn = LLVMPointerType(c->serialise_type, 0);

  // serialise_space
  // i64 (__object*)
  params[0] = c->object_ptr;
  c->custom_serialise_space_fn = LLVMPointerType(
    LLVMFunctionType(c->i64, params, 1, false), 0);

  // custom_deserialise
  // void (*)(__object*, void*)
  params[0] = c->object_ptr;
  params[1] = c->void_ptr;
  c->custom_deserialise_fn = LLVMPointerType(
  LLVMFunctionType(c->void_type, params, 2, false), 0);

  // dispatch
  // void (*)(i8*, __object*, $message*)
  params[0] = c->void_ptr;
  params[1] = c->object_ptr;
  params[2] = c->msg_ptr;
  c->dispatch_type = LLVMFunctionType(c->void_type, params, 3, false);
  c->dispatch_fn = LLVMPointerType(c->dispatch_type, 0);

  // void (*)(__object*)
  params[0] = c->object_ptr;
  c->final_fn = LLVMPointerType(
    LLVMFunctionType(c->void_type, params, 1, false), 0);

  // descriptor, opaque version
  // We need this in order to build our own structure.
  const char* desc_name = genname_descriptor(NULL);
  c->descriptor_type = LLVMStructCreateNamed(c->context, desc_name);
  c->descriptor_ptr = LLVMPointerType(c->descriptor_type, 0);

  // field descriptor
  // Also needed to build a descriptor structure.
  params[0] = c->i32;
  params[1] = c->descriptor_ptr;
  c->field_descriptor = LLVMStructTypeInContext(c->context, params, 2, false);

  // descriptor, filled in
  gendesc_basetype(c, c->descriptor_type);

  // define object
  params[0] = c->descriptor_ptr;
  LLVMStructSetBody(c->object_type, params, 1, false);

#if PONY_LLVM >= 309
  LLVM_DECLARE_ATTRIBUTEREF(nounwind_attr, nounwind, 0);
  LLVM_DECLARE_ATTRIBUTEREF(readnone_attr, readnone, 0);
  LLVM_DECLARE_ATTRIBUTEREF(readonly_attr, readonly, 0);
  LLVM_DECLARE_ATTRIBUTEREF(inacc_or_arg_mem_attr,
    inaccessiblemem_or_argmemonly, 0);
  LLVM_DECLARE_ATTRIBUTEREF(noalias_attr, noalias, 0);
  LLVM_DECLARE_ATTRIBUTEREF(noreturn_attr, noreturn, 0);
  LLVM_DECLARE_ATTRIBUTEREF(deref_actor_attr, dereferenceable,
    PONY_ACTOR_PAD_SIZE + (target_is_ilp32(c->opt->triple) ? 4 : 8));
  LLVM_DECLARE_ATTRIBUTEREF(align_pool_attr, align, ponyint_pool_size(0));
  LLVM_DECLARE_ATTRIBUTEREF(align_heap_attr, align, HEAP_MIN);
  LLVM_DECLARE_ATTRIBUTEREF(deref_or_null_alloc_attr, dereferenceable_or_null,
    HEAP_MIN);
  LLVM_DECLARE_ATTRIBUTEREF(deref_alloc_small_attr, dereferenceable, HEAP_MIN);
  LLVM_DECLARE_ATTRIBUTEREF(deref_alloc_large_attr, dereferenceable,
    HEAP_MAX << 1);
#endif

  // i8* pony_ctx()
  type = LLVMFunctionType(c->void_ptr, NULL, 0, false);
  value = LLVMAddFunction(c->module, "pony_ctx", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, nounwind_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, readnone_attr);
#else
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
  LLVMAddFunctionAttr(value, LLVMReadNoneAttribute);
#endif

  // __object* pony_create(i8*, __Desc*)
  params[0] = c->void_ptr;
  params[1] = c->descriptor_ptr;
  type = LLVMFunctionType(c->object_ptr, params, 2, false);
  value = LLVMAddFunction(c->module, "pony_create", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, nounwind_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex,
    inacc_or_arg_mem_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeReturnIndex, noalias_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeReturnIndex, deref_actor_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeReturnIndex, align_pool_attr);
#else
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
#  if PONY_LLVM >= 308
  LLVMSetInaccessibleMemOrArgMemOnly(value);
#  endif
  LLVMSetReturnNoAlias(value);
  LLVMSetDereferenceable(value, 0, PONY_ACTOR_PAD_SIZE +
    (target_is_ilp32(c->opt->triple) ? 4 : 8));
#endif

  // void ponyint_destroy(__object*)
  params[0] = c->object_ptr;
  type = LLVMFunctionType(c->void_type, params, 1, false);
  value = LLVMAddFunction(c->module, "ponyint_destroy", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, nounwind_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex,
    inacc_or_arg_mem_attr);
#else
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
#  if PONY_LLVM >= 308
  LLVMSetInaccessibleMemOrArgMemOnly(value);
#  endif
#endif

  // void pony_sendv(i8*, __object*, $message*, $message*)
  params[0] = c->void_ptr;
  params[1] = c->object_ptr;
  params[2] = c->msg_ptr;
  params[3] = c->msg_ptr;
  type = LLVMFunctionType(c->void_type, params, 4, false);
  value = LLVMAddFunction(c->module, "pony_sendv", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, nounwind_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex,
    inacc_or_arg_mem_attr);
#else
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
#  if PONY_LLVM >= 308
  LLVMSetInaccessibleMemOrArgMemOnly(value);
#  endif
#endif

  // void pony_sendv_single(i8*, __object*, $message*, $message*)
  params[0] = c->void_ptr;
  params[1] = c->object_ptr;
  params[2] = c->msg_ptr;
  params[3] = c->msg_ptr;
  type = LLVMFunctionType(c->void_type, params, 4, false);
  value = LLVMAddFunction(c->module, "pony_sendv_single", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, nounwind_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex,
    inacc_or_arg_mem_attr);
#else
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
#  if PONY_LLVM >= 308
  LLVMSetInaccessibleMemOrArgMemOnly(value);
#  endif
#endif

  // i8* pony_alloc(i8*, intptr)
  params[0] = c->void_ptr;
  params[1] = c->intptr;
  type = LLVMFunctionType(c->void_ptr, params, 2, false);
  value = LLVMAddFunction(c->module, "pony_alloc", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, nounwind_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex,
    inacc_or_arg_mem_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeReturnIndex, noalias_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeReturnIndex,
    deref_or_null_alloc_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeReturnIndex, align_heap_attr);
#else
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
#  if PONY_LLVM >= 308
  LLVMSetInaccessibleMemOrArgMemOnly(value);
#  endif
  LLVMSetReturnNoAlias(value);
  LLVMSetDereferenceableOrNull(value, 0, HEAP_MIN);
#endif

  // i8* pony_alloc_small(i8*, i32)
  params[0] = c->void_ptr;
  params[1] = c->i32;
  type = LLVMFunctionType(c->void_ptr, params, 2, false);
  value = LLVMAddFunction(c->module, "pony_alloc_small", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, nounwind_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex,
    inacc_or_arg_mem_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeReturnIndex, noalias_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeReturnIndex,
    deref_alloc_small_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeReturnIndex, align_heap_attr);
#else
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
#  if PONY_LLVM >= 308
  LLVMSetInaccessibleMemOrArgMemOnly(value);
#  endif
  LLVMSetReturnNoAlias(value);
  LLVMSetDereferenceable(value, 0, HEAP_MIN);
#endif

  // i8* pony_alloc_large(i8*, intptr)
  params[0] = c->void_ptr;
  params[1] = c->intptr;
  type = LLVMFunctionType(c->void_ptr, params, 2, false);
  value = LLVMAddFunction(c->module, "pony_alloc_large", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, nounwind_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex,
    inacc_or_arg_mem_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeReturnIndex, noalias_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeReturnIndex,
    deref_alloc_large_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeReturnIndex, align_heap_attr);
#else
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
#  if PONY_LLVM >= 308
  LLVMSetInaccessibleMemOrArgMemOnly(value);
#  endif
  LLVMSetReturnNoAlias(value);
  LLVMSetDereferenceable(value, 0, HEAP_MAX << 1);
#endif

  // i8* pony_realloc(i8*, i8*, intptr)
  params[0] = c->void_ptr;
  params[1] = c->void_ptr;
  params[2] = c->intptr;
  type = LLVMFunctionType(c->void_ptr, params, 3, false);
  value = LLVMAddFunction(c->module, "pony_realloc", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, nounwind_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex,
    inacc_or_arg_mem_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeReturnIndex, noalias_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeReturnIndex,
    deref_or_null_alloc_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeReturnIndex, align_heap_attr);
#else
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
#  if PONY_LLVM >= 308
  LLVMSetInaccessibleMemOrArgMemOnly(value);
#  endif
  LLVMSetReturnNoAlias(value);
  LLVMSetDereferenceableOrNull(value, 0, HEAP_MIN);
#endif

  // i8* pony_alloc_final(i8*, intptr)
  params[0] = c->void_ptr;
  params[1] = c->intptr;
  type = LLVMFunctionType(c->void_ptr, params, 2, false);
  value = LLVMAddFunction(c->module, "pony_alloc_final", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, nounwind_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex,
    inacc_or_arg_mem_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeReturnIndex, noalias_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeReturnIndex,
    deref_or_null_alloc_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeReturnIndex, align_heap_attr);
#else
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
#  if PONY_LLVM >= 308
  LLVMSetInaccessibleMemOrArgMemOnly(value);
#  endif
  LLVMSetReturnNoAlias(value);
  LLVMSetDereferenceableOrNull(value, 0, HEAP_MIN);
#endif

  // i8* pony_alloc_small_final(i8*, i32)
  params[0] = c->void_ptr;
  params[1] = c->i32;
  type = LLVMFunctionType(c->void_ptr, params, 2, false);
  value = LLVMAddFunction(c->module, "pony_alloc_small_final", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, nounwind_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex,
    inacc_or_arg_mem_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeReturnIndex, noalias_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeReturnIndex,
    deref_alloc_small_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeReturnIndex, align_heap_attr);
#else
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
#  if PONY_LLVM >= 308
  LLVMSetInaccessibleMemOrArgMemOnly(value);
#  endif
  LLVMSetReturnNoAlias(value);
  LLVMSetDereferenceable(value, 0, HEAP_MIN);
#endif

  // i8* pony_alloc_large_final(i8*, intptr)
  params[0] = c->void_ptr;
  params[1] = c->intptr;
  type = LLVMFunctionType(c->void_ptr, params, 2, false);
  value = LLVMAddFunction(c->module, "pony_alloc_large_final", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, nounwind_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex,
    inacc_or_arg_mem_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeReturnIndex, noalias_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeReturnIndex,
    deref_alloc_large_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeReturnIndex, align_heap_attr);
#else
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
#  if PONY_LLVM >= 308
  LLVMSetInaccessibleMemOrArgMemOnly(value);
#  endif
  LLVMSetReturnNoAlias(value);
  LLVMSetDereferenceable(value, 0, HEAP_MAX << 1);
#endif

  // $message* pony_alloc_msg(i32, i32)
  params[0] = c->i32;
  params[1] = c->i32;
  type = LLVMFunctionType(c->msg_ptr, params, 2, false);
  value = LLVMAddFunction(c->module, "pony_alloc_msg", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, nounwind_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex,
    inacc_or_arg_mem_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeReturnIndex, noalias_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeReturnIndex, align_pool_attr);
#else
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
#  if PONY_LLVM >= 308
  LLVMSetInaccessibleMemOrArgMemOnly(value);
#  endif
  LLVMSetReturnNoAlias(value);
#endif

  // void pony_trace(i8*, i8*)
  params[0] = c->void_ptr;
  params[1] = c->void_ptr;
  type = LLVMFunctionType(c->void_type, params, 2, false);
  value = LLVMAddFunction(c->module, "pony_trace", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, nounwind_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex,
    inacc_or_arg_mem_attr);
  LLVMAddAttributeAtIndex(value, 2, readnone_attr);
#else
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
#  if PONY_LLVM >= 308
  LLVMSetInaccessibleMemOrArgMemOnly(value);
#  endif
  value = LLVMGetParam(value, 1);
  LLVMAddAttribute(value, LLVMReadNoneAttribute);
#endif

  // void pony_traceknown(i8*, __object*, __Desc*, i32)
  params[0] = c->void_ptr;
  params[1] = c->object_ptr;
  params[2] = c->descriptor_ptr;
  params[3] = c->i32;
  type = LLVMFunctionType(c->void_type, params, 4, false);
  value = LLVMAddFunction(c->module, "pony_traceknown", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, nounwind_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex,
    inacc_or_arg_mem_attr);
  LLVMAddAttributeAtIndex(value, 2, readonly_attr);
#else
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
#  if PONY_LLVM >= 308
  LLVMSetInaccessibleMemOrArgMemOnly(value);
#  endif
  value = LLVMGetParam(value, 1);
  LLVMAddAttribute(value, LLVMReadOnlyAttribute);
#endif

  // void pony_traceunknown(i8*, __object*, i32)
  params[0] = c->void_ptr;
  params[1] = c->object_ptr;
  params[2] = c->i32;
  type = LLVMFunctionType(c->void_type, params, 3, false);
  value = LLVMAddFunction(c->module, "pony_traceunknown", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, nounwind_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex,
    inacc_or_arg_mem_attr);
  LLVMAddAttributeAtIndex(value, 2, readonly_attr);
#else
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
#  if PONY_LLVM >= 308
  LLVMSetInaccessibleMemOrArgMemOnly(value);
#  endif
  value = LLVMGetParam(value, 1);
  LLVMAddAttribute(value, LLVMReadOnlyAttribute);
#endif

  // void pony_gc_send(i8*)
  params[0] = c->void_ptr;
  type = LLVMFunctionType(c->void_type, params, 1, false);
  value = LLVMAddFunction(c->module, "pony_gc_send", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, nounwind_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex,
    inacc_or_arg_mem_attr);
#else
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
#  if PONY_LLVM >= 308
  LLVMSetInaccessibleMemOrArgMemOnly(value);
#  endif
#endif

  // void pony_gc_recv(i8*)
  params[0] = c->void_ptr;
  type = LLVMFunctionType(c->void_type, params, 1, false);
  value = LLVMAddFunction(c->module, "pony_gc_recv", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, nounwind_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex,
    inacc_or_arg_mem_attr);
#else
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
#  if PONY_LLVM >= 308
  LLVMSetInaccessibleMemOrArgMemOnly(value);
#  endif
#endif

  // void pony_send_done(i8*)
  params[0] = c->void_ptr;
  type = LLVMFunctionType(c->void_type, params, 1, false);
  value = LLVMAddFunction(c->module, "pony_send_done", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, nounwind_attr);
#else
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
#endif

  // void pony_recv_done(i8*)
  params[0] = c->void_ptr;
  type = LLVMFunctionType(c->void_type, params, 1, false);
  value = LLVMAddFunction(c->module, "pony_recv_done", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, nounwind_attr);
#else
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
#endif

  // void pony_serialise_reserve(i8*, i8*, intptr)
  params[0] = c->void_ptr;
  params[1] = c->void_ptr;
  params[2] = c->intptr;
  type = LLVMFunctionType(c->void_type, params, 3, false);
  value = LLVMAddFunction(c->module, "pony_serialise_reserve", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, nounwind_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex,
    inacc_or_arg_mem_attr);
  LLVMAddAttributeAtIndex(value, 2, readnone_attr);
#else
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
#  if PONY_LLVM >= 308
  LLVMSetInaccessibleMemOrArgMemOnly(value);
#  endif
  value = LLVMGetParam(value, 1);
  LLVMAddAttribute(value, LLVMReadNoneAttribute);
#endif

  // intptr pony_serialise_offset(i8*, i8*)
  params[0] = c->void_ptr;
  params[1] = c->void_ptr;
  type = LLVMFunctionType(c->intptr, params, 2, false);
  value = LLVMAddFunction(c->module, "pony_serialise_offset", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, nounwind_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex,
    inacc_or_arg_mem_attr);
  LLVMAddAttributeAtIndex(value, 2, readonly_attr);
#else
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
#  if PONY_LLVM >= 308
  LLVMSetInaccessibleMemOrArgMemOnly(value);
#  endif
  value = LLVMGetParam(value, 1);
  LLVMAddAttribute(value, LLVMReadOnlyAttribute);
#endif

  // i8* pony_deserialise_offset(i8*, __desc*, intptr)
  params[0] = c->void_ptr;
  params[1] = c->descriptor_ptr;
  params[2] = c->intptr;
  type = LLVMFunctionType(c->void_ptr, params, 3, false);
  value = LLVMAddFunction(c->module, "pony_deserialise_offset", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex,
    inacc_or_arg_mem_attr);
#elif PONY_LLVM == 308
  LLVMSetInaccessibleMemOrArgMemOnly(value);
#endif

  // i8* pony_deserialise_block(i8*, intptr, intptr)
  params[0] = c->void_ptr;
  params[1] = c->intptr;
  params[2] = c->intptr;
  type = LLVMFunctionType(c->void_ptr, params, 3, false);
  value = LLVMAddFunction(c->module, "pony_deserialise_block", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex,
    inacc_or_arg_mem_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeReturnIndex, noalias_attr);
#else
#  if PONY_LLVM >= 308
  LLVMSetInaccessibleMemOrArgMemOnly(value);
#  endif
  LLVMSetReturnNoAlias(value);
#endif

  // i32 pony_init(i32, i8**)
  params[0] = c->i32;
  params[1] = LLVMPointerType(c->void_ptr, 0);
  type = LLVMFunctionType(c->i32, params, 2, false);
  value = LLVMAddFunction(c->module, "pony_init", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, nounwind_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex,
    inacc_or_arg_mem_attr);
#else
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
#  if PONY_LLVM >= 308
  LLVMSetInaccessibleMemOrArgMemOnly(value);
#  endif
#endif

  // void pony_become(i8*, __object*)
  params[0] = c->void_ptr;
  params[1] = c->object_ptr;
  type = LLVMFunctionType(c->void_type, params, 2, false);
  value = LLVMAddFunction(c->module, "pony_become", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, nounwind_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex,
    inacc_or_arg_mem_attr);
#else
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
#  if PONY_LLVM >= 308
  LLVMSetInaccessibleMemOrArgMemOnly(value);
#  endif
#endif

  // i32 pony_start(i32, i32)
  params[0] = c->i32;
  params[1] = c->i32;
  type = LLVMFunctionType(c->i32, params, 2, false);
  value = LLVMAddFunction(c->module, "pony_start", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, nounwind_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex,
    inacc_or_arg_mem_attr);
#else
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
#  if PONY_LLVM >= 308
  LLVMSetInaccessibleMemOrArgMemOnly(value);
#  endif
#endif

  // i32 pony_get_exitcode()
  type = LLVMFunctionType(c->i32, NULL, 0, false);
  value = LLVMAddFunction(c->module, "pony_get_exitcode", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, nounwind_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, readonly_attr);
#else
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
  LLVMAddFunctionAttr(value, LLVMReadOnlyAttribute);
#endif

  // void pony_throw()
  type = LLVMFunctionType(c->void_type, NULL, 0, false);
  value = LLVMAddFunction(c->module, "pony_throw", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, noreturn_attr);
#else
  LLVMAddFunctionAttr(value, LLVMNoReturnAttribute);
#endif

  // i32 pony_personality_v0(...)
  type = LLVMFunctionType(c->i32, NULL, 0, true);
  c->personality = LLVMAddFunction(c->module, "pony_personality_v0", type);

  // i32 memcmp(i8*, i8*, intptr)
  params[0] = c->void_ptr;
  params[1] = c->void_ptr;
  params[2] = c->intptr;
  type = LLVMFunctionType(c->i32, params, 3, false);
  value = LLVMAddFunction(c->module, "memcmp", type);
#if PONY_LLVM >= 309
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, nounwind_attr);
  LLVMAddAttributeAtIndex(value, LLVMAttributeFunctionIndex, readonly_attr);
  LLVMAddAttributeAtIndex(value, 1, readonly_attr);
  LLVMAddAttributeAtIndex(value, 2, readonly_attr);
#else
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
  LLVMAddFunctionAttr(value, LLVMReadOnlyAttribute);
  LLVMValueRef param = LLVMGetParam(value, 0);
  LLVMAddAttribute(param, LLVMReadOnlyAttribute);
  param = LLVMGetParam(value, 1);
  LLVMAddAttribute(param, LLVMReadOnlyAttribute);
#endif
}
示例#14
0
static void declare_input_fs(
	struct si_shader_context * si_shader_ctx,
	unsigned input_index,
	const struct tgsi_full_declaration *decl)
{
	struct si_shader *shader = &si_shader_ctx->shader->shader;
	struct lp_build_context * base =
				&si_shader_ctx->radeon_bld.soa.bld_base.base;
	struct gallivm_state * gallivm = base->gallivm;
	LLVMTypeRef input_type = LLVMFloatTypeInContext(gallivm->context);
	LLVMValueRef main_fn = si_shader_ctx->radeon_bld.main_fn;

	LLVMValueRef interp_param;
	const char * intr_name;

	/* This value is:
	 * [15:0] NewPrimMask (Bit mask for each quad.  It is set it the
	 *                     quad begins a new primitive.  Bit 0 always needs
	 *                     to be unset)
	 * [32:16] ParamOffset
	 *
	 */
	LLVMValueRef params = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_PRIM_MASK);
	LLVMValueRef attr_number;

	unsigned chan;

	if (decl->Semantic.Name == TGSI_SEMANTIC_POSITION) {
		for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
			unsigned soa_index =
				radeon_llvm_reg_index_soa(input_index, chan);
			si_shader_ctx->radeon_bld.inputs[soa_index] =
				LLVMGetParam(main_fn, SI_PARAM_POS_X_FLOAT + chan);

			if (chan == 3)
				/* RCP for fragcoord.w */
				si_shader_ctx->radeon_bld.inputs[soa_index] =
					LLVMBuildFDiv(gallivm->builder,
						      lp_build_const_float(gallivm, 1.0f),
						      si_shader_ctx->radeon_bld.inputs[soa_index],
						      "");
		}
		return;
	}

	if (decl->Semantic.Name == TGSI_SEMANTIC_FACE) {
		LLVMValueRef face, is_face_positive;

		face = LLVMGetParam(main_fn, SI_PARAM_FRONT_FACE);

		is_face_positive = LLVMBuildFCmp(gallivm->builder,
						 LLVMRealUGT, face,
						 lp_build_const_float(gallivm, 0.0f),
						 "");

		si_shader_ctx->radeon_bld.inputs[radeon_llvm_reg_index_soa(input_index, 0)] =
			LLVMBuildSelect(gallivm->builder,
					is_face_positive,
					lp_build_const_float(gallivm, 1.0f),
					lp_build_const_float(gallivm, 0.0f),
					"");
		si_shader_ctx->radeon_bld.inputs[radeon_llvm_reg_index_soa(input_index, 1)] =
		si_shader_ctx->radeon_bld.inputs[radeon_llvm_reg_index_soa(input_index, 2)] =
			lp_build_const_float(gallivm, 0.0f);
		si_shader_ctx->radeon_bld.inputs[radeon_llvm_reg_index_soa(input_index, 3)] =
			lp_build_const_float(gallivm, 1.0f);

		return;
	}

	shader->input[input_index].param_offset = shader->ninterp++;
	attr_number = lp_build_const_int32(gallivm,
					   shader->input[input_index].param_offset);

	/* XXX: Handle all possible interpolation modes */
	switch (decl->Interp.Interpolate) {
	case TGSI_INTERPOLATE_COLOR:
		if (si_shader_ctx->shader->key.ps.flatshade) {
			interp_param = 0;
		} else {
			if (decl->Interp.Centroid)
				interp_param = LLVMGetParam(main_fn, SI_PARAM_PERSP_CENTROID);
			else
				interp_param = LLVMGetParam(main_fn, SI_PARAM_PERSP_CENTER);
		}
		break;
	case TGSI_INTERPOLATE_CONSTANT:
		interp_param = 0;
		break;
	case TGSI_INTERPOLATE_LINEAR:
		if (decl->Interp.Centroid)
			interp_param = LLVMGetParam(main_fn, SI_PARAM_LINEAR_CENTROID);
		else
			interp_param = LLVMGetParam(main_fn, SI_PARAM_LINEAR_CENTER);
		break;
	case TGSI_INTERPOLATE_PERSPECTIVE:
		if (decl->Interp.Centroid)
			interp_param = LLVMGetParam(main_fn, SI_PARAM_PERSP_CENTROID);
		else
			interp_param = LLVMGetParam(main_fn, SI_PARAM_PERSP_CENTER);
		break;
	default:
		fprintf(stderr, "Warning: Unhandled interpolation mode.\n");
		return;
	}

	intr_name = interp_param ? "llvm.SI.fs.interp" : "llvm.SI.fs.constant";

	/* XXX: Could there be more than TGSI_NUM_CHANNELS (4) ? */
	if (decl->Semantic.Name == TGSI_SEMANTIC_COLOR &&
	    si_shader_ctx->shader->key.ps.color_two_side) {
		LLVMValueRef args[4];
		LLVMValueRef face, is_face_positive;
		LLVMValueRef back_attr_number =
			lp_build_const_int32(gallivm,
					     shader->input[input_index].param_offset + 1);

		face = LLVMGetParam(main_fn, SI_PARAM_FRONT_FACE);

		is_face_positive = LLVMBuildFCmp(gallivm->builder,
						 LLVMRealUGT, face,
						 lp_build_const_float(gallivm, 0.0f),
						 "");

		args[2] = params;
		args[3] = interp_param;
		for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
			LLVMValueRef llvm_chan = lp_build_const_int32(gallivm, chan);
			unsigned soa_index = radeon_llvm_reg_index_soa(input_index, chan);
			LLVMValueRef front, back;

			args[0] = llvm_chan;
			args[1] = attr_number;
			front = build_intrinsic(base->gallivm->builder, intr_name,
						input_type, args, args[3] ? 4 : 3,
						LLVMReadNoneAttribute | LLVMNoUnwindAttribute);

			args[1] = back_attr_number;
			back = build_intrinsic(base->gallivm->builder, intr_name,
					       input_type, args, args[3] ? 4 : 3,
					       LLVMReadNoneAttribute | LLVMNoUnwindAttribute);

			si_shader_ctx->radeon_bld.inputs[soa_index] =
				LLVMBuildSelect(gallivm->builder,
						is_face_positive,
						front,
						back,
						"");
		}

		shader->ninterp++;
	} else {
		for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
			LLVMValueRef args[4];
			LLVMValueRef llvm_chan = lp_build_const_int32(gallivm, chan);
			unsigned soa_index = radeon_llvm_reg_index_soa(input_index, chan);
			args[0] = llvm_chan;
			args[1] = attr_number;
			args[2] = params;
			args[3] = interp_param;
			si_shader_ctx->radeon_bld.inputs[soa_index] =
				build_intrinsic(base->gallivm->builder, intr_name,
						input_type, args, args[3] ? 4 : 3,
						LLVMReadNoneAttribute | LLVMNoUnwindAttribute);
		}
	}
}
/**
 * Return mask ? a : b;
 *
 * mask is a bitwise mask, composed of 0 or ~0 for each element. Any other value
 * will yield unpredictable results.
 */
LLVMValueRef
lp_build_select(struct lp_build_context *bld,
                LLVMValueRef mask,
                LLVMValueRef a,
                LLVMValueRef b)
{
   LLVMBuilderRef builder = bld->gallivm->builder;
   LLVMContextRef lc = bld->gallivm->context;
   struct lp_type type = bld->type;
   LLVMValueRef res;

   assert(lp_check_value(type, a));
   assert(lp_check_value(type, b));

   if(a == b)
      return a;

   if (type.length == 1) {
      mask = LLVMBuildTrunc(builder, mask, LLVMInt1TypeInContext(lc), "");
      res = LLVMBuildSelect(builder, mask, a, b, "");
   }
   else if (0) {
      /* Generate a vector select.
       *
       * XXX: Using vector selects would avoid emitting intrinsics, but they aren't
       * properly supported yet.
       *
       * LLVM 3.0 includes experimental support provided the -promote-elements
       * options is passed to LLVM's command line (e.g., via
       * llvm::cl::ParseCommandLineOptions), but resulting code quality is much
       * worse, probably because some optimization passes don't know how to
       * handle vector selects.
       *
       * See also:
       * - http://lists.cs.uiuc.edu/pipermail/llvmdev/2011-October/043659.html
       */

      /* Convert the mask to a vector of booleans.
       * XXX: There are two ways to do this. Decide what's best.
       */
      if (1) {
         LLVMTypeRef bool_vec_type = LLVMVectorType(LLVMInt1TypeInContext(lc), type.length);
         mask = LLVMBuildTrunc(builder, mask, bool_vec_type, "");
      } else {
         mask = LLVMBuildICmp(builder, LLVMIntNE, mask, LLVMConstNull(bld->int_vec_type), "");
      }
      res = LLVMBuildSelect(builder, mask, a, b, "");
   }
   else if (((util_cpu_caps.has_sse4_1 &&
              type.width * type.length == 128) ||
             (util_cpu_caps.has_avx &&
              type.width * type.length == 256 && type.width >= 32)) &&
            !LLVMIsConstant(a) &&
            !LLVMIsConstant(b) &&
            !LLVMIsConstant(mask)) {
      const char *intrinsic;
      LLVMTypeRef arg_type;
      LLVMValueRef args[3];

      /*
       *  There's only float blend in AVX but can just cast i32/i64
       *  to float.
       */
      if (type.width * type.length == 256) {
         if (type.width == 64) {
           intrinsic = "llvm.x86.avx.blendv.pd.256";
           arg_type = LLVMVectorType(LLVMDoubleTypeInContext(lc), 4);
         }
         else {
            intrinsic = "llvm.x86.avx.blendv.ps.256";
            arg_type = LLVMVectorType(LLVMFloatTypeInContext(lc), 8);
         }
      }
      else if (type.floating &&
               type.width == 64) {
         intrinsic = "llvm.x86.sse41.blendvpd";
         arg_type = LLVMVectorType(LLVMDoubleTypeInContext(lc), 2);
      } else if (type.floating &&
                 type.width == 32) {
         intrinsic = "llvm.x86.sse41.blendvps";
         arg_type = LLVMVectorType(LLVMFloatTypeInContext(lc), 4);
      } else {
         intrinsic = "llvm.x86.sse41.pblendvb";
         arg_type = LLVMVectorType(LLVMInt8TypeInContext(lc), 16);
      }

      if (arg_type != bld->int_vec_type) {
         mask = LLVMBuildBitCast(builder, mask, arg_type, "");
      }

      if (arg_type != bld->vec_type) {
         a = LLVMBuildBitCast(builder, a, arg_type, "");
         b = LLVMBuildBitCast(builder, b, arg_type, "");
      }

      args[0] = b;
      args[1] = a;
      args[2] = mask;

      res = lp_build_intrinsic(builder, intrinsic,
                               arg_type, args, Elements(args));

      if (arg_type != bld->vec_type) {
         res = LLVMBuildBitCast(builder, res, bld->vec_type, "");
      }
   }
   else {
      res = lp_build_select_bitwise(bld, mask, a, b);
   }

   return res;
}
示例#16
0
static LLVMValueRef
lp_build_gather_avx2(struct gallivm_state *gallivm,
                     unsigned length,
                     unsigned src_width,
                     struct lp_type dst_type,
                     LLVMValueRef base_ptr,
                     LLVMValueRef offsets)
{
   LLVMBuilderRef builder = gallivm->builder;
   LLVMTypeRef src_type, src_vec_type;
   LLVMValueRef res;
   struct lp_type res_type = dst_type;
   res_type.length *= length;

   if (dst_type.floating) {
      src_type = src_width == 64 ? LLVMDoubleTypeInContext(gallivm->context) :
                                   LLVMFloatTypeInContext(gallivm->context);
   } else {
      src_type = LLVMIntTypeInContext(gallivm->context, src_width);
   }
   src_vec_type = LLVMVectorType(src_type, length);

   /* XXX should allow hw scaling (can handle i8, i16, i32, i64 for x86) */
   assert(LLVMTypeOf(base_ptr) == LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0));

   if (0) {
      /*
       * XXX: This will cause LLVM pre 3.7 to hang; it works on LLVM 3.8 but
       * will not use the AVX2 gather instrinsics (even with llvm 4.0), at
       * least with Haswell. See
       * http://lists.llvm.org/pipermail/llvm-dev/2016-January/094448.html
       * And the generated code doing the emulation is quite a bit worse
       * than what we get by doing it ourselves too.
       */
      LLVMTypeRef i32_type = LLVMIntTypeInContext(gallivm->context, 32);
      LLVMTypeRef i32_vec_type = LLVMVectorType(i32_type, length);
      LLVMTypeRef i1_type = LLVMIntTypeInContext(gallivm->context, 1);
      LLVMTypeRef i1_vec_type = LLVMVectorType(i1_type, length);
      LLVMTypeRef src_ptr_type = LLVMPointerType(src_type, 0);
      LLVMValueRef src_ptr;

      base_ptr = LLVMBuildBitCast(builder, base_ptr, src_ptr_type, "");

      /* Rescale offsets from bytes to elements */
      LLVMValueRef scale = LLVMConstInt(i32_type, src_width/8, 0);
      scale = lp_build_broadcast(gallivm, i32_vec_type, scale);
      assert(LLVMTypeOf(offsets) == i32_vec_type);
      offsets = LLVMBuildSDiv(builder, offsets, scale, "");

      src_ptr = LLVMBuildGEP(builder, base_ptr, &offsets, 1, "vector-gep");

      char intrinsic[64];
      util_snprintf(intrinsic, sizeof intrinsic, "llvm.masked.gather.v%u%s%u",
                    length, dst_type.floating ? "f" : "i", src_width);
      LLVMValueRef alignment = LLVMConstInt(i32_type, src_width/8, 0);
      LLVMValueRef mask = LLVMConstAllOnes(i1_vec_type);
      LLVMValueRef passthru = LLVMGetUndef(src_vec_type);

      LLVMValueRef args[] = { src_ptr, alignment, mask, passthru };

      res = lp_build_intrinsic(builder, intrinsic, src_vec_type, args, 4, 0);
   } else {
      LLVMTypeRef i8_type = LLVMIntTypeInContext(gallivm->context, 8);
      const char *intrinsic = NULL;
      unsigned l_idx = 0;

      assert(src_width == 32 || src_width == 64);
      if (src_width == 32) {
         assert(length == 4 || length == 8);
      } else {
         assert(length == 2 || length == 4);
      }

      static const char *intrinsics[2][2][2] = {

         {{"llvm.x86.avx2.gather.d.d",
           "llvm.x86.avx2.gather.d.d.256"},
          {"llvm.x86.avx2.gather.d.q",
           "llvm.x86.avx2.gather.d.q.256"}},

         {{"llvm.x86.avx2.gather.d.ps",
           "llvm.x86.avx2.gather.d.ps.256"},
          {"llvm.x86.avx2.gather.d.pd",
           "llvm.x86.avx2.gather.d.pd.256"}},
      };

      if ((src_width == 32 && length == 8) ||
          (src_width == 64 && length == 4)) {
         l_idx = 1;
      }
      intrinsic = intrinsics[dst_type.floating][src_width == 64][l_idx];

      LLVMValueRef passthru = LLVMGetUndef(src_vec_type);
      LLVMValueRef mask = LLVMConstAllOnes(src_vec_type);
      mask = LLVMConstBitCast(mask, src_vec_type);
      LLVMValueRef scale = LLVMConstInt(i8_type, 1, 0);

      LLVMValueRef args[] = { passthru, base_ptr, offsets, mask, scale };

      res = lp_build_intrinsic(builder, intrinsic, src_vec_type, args, 5, 0);
   }
   res = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, res_type), "");

   return res;
}
示例#17
0
/**
 * Converts float32 to int16 half-float
 * Note this can be performed in 1 instruction if vcvtps2ph exists (f16c/cvt16)
 * [llvm.x86.vcvtps2ph / _mm_cvtps_ph]
 *
 * @param src           value to convert
 *
 * Convert float32 to half floats, preserving Infs and NaNs,
 * with rounding towards zero (trunc).
 */
LLVMValueRef
lp_build_float_to_half(struct gallivm_state *gallivm,
                       LLVMValueRef src)
{
   LLVMBuilderRef builder = gallivm->builder;
   LLVMTypeRef f32_vec_type = LLVMTypeOf(src);
   unsigned length = LLVMGetTypeKind(f32_vec_type) == LLVMVectorTypeKind
                   ? LLVMGetVectorSize(f32_vec_type) : 1;
   struct lp_type i32_type = lp_type_int_vec(32, 32 * length);
   struct lp_type i16_type = lp_type_int_vec(16, 16 * length);
   LLVMValueRef result;

   if (util_cpu_caps.has_f16c && HAVE_LLVM >= 0x0301 &&
       (length == 4 || length == 8)) {
      struct lp_type i168_type = lp_type_int_vec(16, 16 * 8);
      unsigned mode = 3; /* same as LP_BUILD_ROUND_TRUNCATE */
      LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
      const char *intrinsic = NULL;
      if (length == 4) {
         intrinsic = "llvm.x86.vcvtps2ph.128";
      }
      else {
         intrinsic = "llvm.x86.vcvtps2ph.256";
      }
      result = lp_build_intrinsic_binary(builder, intrinsic,
                                         lp_build_vec_type(gallivm, i168_type),
                                         src, LLVMConstInt(i32t, mode, 0));
      if (length == 4) {
         result = lp_build_extract_range(gallivm, result, 0, 4);
      }
   }

   else {
      result = lp_build_float_to_smallfloat(gallivm, i32_type, src, 10, 5, 0, true);
      /* Convert int32 vector to int16 vector by trunc (might generate bad code) */
      result = LLVMBuildTrunc(builder, result, lp_build_vec_type(gallivm, i16_type), "");
   }

   /*
    * Debugging code.
    */
   if (0) {
     LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
     LLVMTypeRef i16t = LLVMInt16TypeInContext(gallivm->context);
     LLVMTypeRef f32t = LLVMFloatTypeInContext(gallivm->context);
     LLVMValueRef ref_result = LLVMGetUndef(LLVMVectorType(i16t, length));
     unsigned i;

     LLVMTypeRef func_type = LLVMFunctionType(i16t, &f32t, 1, 0);
     LLVMValueRef func = lp_build_const_int_pointer(gallivm, func_to_pointer((func_pointer)util_float_to_half));
     func = LLVMBuildBitCast(builder, func, LLVMPointerType(func_type, 0), "util_float_to_half");

     for (i = 0; i < length; ++i) {
        LLVMValueRef index = LLVMConstInt(i32t, i, 0);
        LLVMValueRef f32 = LLVMBuildExtractElement(builder, src, index, "");
#if 0
        /* XXX: not really supported by backends */
        LLVMValueRef f16 = lp_build_intrinsic_unary(builder, "llvm.convert.to.fp16", i16t, f32);
#else
        LLVMValueRef f16 = LLVMBuildCall(builder, func, &f32, 1, "");
#endif
        ref_result = LLVMBuildInsertElement(builder, ref_result, f16, index, "");
     }

     lp_build_print_value(gallivm, "src  = ", src);
     lp_build_print_value(gallivm, "llvm = ", result);
     lp_build_print_value(gallivm, "util = ", ref_result);
     lp_build_printf(gallivm, "\n");
  }

   return result;
}
示例#18
0
文件: codegen.c 项目: npruehs/ponyc
static void init_runtime(compile_t* c)
{
  c->str_builtin = stringtab("$0");
  c->str_Bool = stringtab("Bool");
  c->str_I8 = stringtab("I8");
  c->str_I16 = stringtab("I16");
  c->str_I32 = stringtab("I32");
  c->str_I64 = stringtab("I64");
  c->str_I128 = stringtab("I128");
  c->str_ILong = stringtab("ILong");
  c->str_ISize = stringtab("ISize");
  c->str_U8 = stringtab("U8");
  c->str_U16 = stringtab("U16");
  c->str_U32 = stringtab("U32");
  c->str_U64 = stringtab("U64");
  c->str_U128 = stringtab("U128");
  c->str_ULong = stringtab("ULong");
  c->str_USize = stringtab("USize");
  c->str_F32 = stringtab("F32");
  c->str_F64 = stringtab("F64");
  c->str_Pointer = stringtab("Pointer");
  c->str_Maybe = stringtab("MaybePointer");
  c->str_DoNotOptimise = stringtab("DoNotOptimise");
  c->str_Array = stringtab("Array");
  c->str_String = stringtab("String");
  c->str_Platform = stringtab("Platform");
  c->str_Main = stringtab("Main");
  c->str_Env = stringtab("Env");

  c->str_add = stringtab("add");
  c->str_sub = stringtab("sub");
  c->str_mul = stringtab("mul");
  c->str_div = stringtab("div");
  c->str_mod = stringtab("mod");
  c->str_neg = stringtab("neg");
  c->str_and = stringtab("op_and");
  c->str_or = stringtab("op_or");
  c->str_xor = stringtab("op_xor");
  c->str_not = stringtab("op_not");
  c->str_shl = stringtab("shl");
  c->str_shr = stringtab("shr");
  c->str_eq = stringtab("eq");
  c->str_ne = stringtab("ne");
  c->str_lt = stringtab("lt");
  c->str_le = stringtab("le");
  c->str_ge = stringtab("ge");
  c->str_gt = stringtab("gt");

  c->str_this = stringtab("this");
  c->str_create = stringtab("create");
  c->str__create = stringtab("_create");
  c->str__init = stringtab("_init");
  c->str__final = stringtab("_final");
  c->str__event_notify = stringtab("_event_notify");

  LLVMTypeRef type;
  LLVMTypeRef params[5];
  LLVMValueRef value;

  c->void_type = LLVMVoidTypeInContext(c->context);
  c->ibool = LLVMInt8TypeInContext(c->context);
  c->i1 = LLVMInt1TypeInContext(c->context);
  c->i8 = LLVMInt8TypeInContext(c->context);
  c->i16 = LLVMInt16TypeInContext(c->context);
  c->i32 = LLVMInt32TypeInContext(c->context);
  c->i64 = LLVMInt64TypeInContext(c->context);
  c->i128 = LLVMIntTypeInContext(c->context, 128);
  c->f32 = LLVMFloatTypeInContext(c->context);
  c->f64 = LLVMDoubleTypeInContext(c->context);
  c->intptr = LLVMIntPtrTypeInContext(c->context, c->target_data);

  // i8*
  c->void_ptr = LLVMPointerType(c->i8, 0);

  // forward declare object
  c->object_type = LLVMStructCreateNamed(c->context, "__object");
  c->object_ptr = LLVMPointerType(c->object_type, 0);

  // padding required in an actor between the descriptor and fields
  c->actor_pad = LLVMArrayType(c->i8, PONY_ACTOR_PAD_SIZE);

  // message
  params[0] = c->i32; // size
  params[1] = c->i32; // id
  c->msg_type = LLVMStructCreateNamed(c->context, "__message");
  c->msg_ptr = LLVMPointerType(c->msg_type, 0);
  LLVMStructSetBody(c->msg_type, params, 2, false);

  // trace
  // void (*)(i8*, __object*)
  params[0] = c->void_ptr;
  params[1] = c->object_ptr;
  c->trace_type = LLVMFunctionType(c->void_type, params, 2, false);
  c->trace_fn = LLVMPointerType(c->trace_type, 0);

  // serialise
  // void (*)(i8*, __object*, i8*, intptr, i32)
  params[0] = c->void_ptr;
  params[1] = c->object_ptr;
  params[2] = c->void_ptr;
  params[3] = c->intptr;
  params[4] = c->i32;
  c->serialise_type = LLVMFunctionType(c->void_type, params, 5, false);
  c->serialise_fn = LLVMPointerType(c->serialise_type, 0);

  // dispatch
  // void (*)(i8*, __object*, $message*)
  params[0] = c->void_ptr;
  params[1] = c->object_ptr;
  params[2] = c->msg_ptr;
  c->dispatch_type = LLVMFunctionType(c->void_type, params, 3, false);
  c->dispatch_fn = LLVMPointerType(c->dispatch_type, 0);

  // void (*)(__object*)
  params[0] = c->object_ptr;
  c->final_fn = LLVMPointerType(
    LLVMFunctionType(c->void_type, params, 1, false), 0);

  // descriptor, opaque version
  // We need this in order to build our own structure.
  const char* desc_name = genname_descriptor(NULL);
  c->descriptor_type = LLVMStructCreateNamed(c->context, desc_name);
  c->descriptor_ptr = LLVMPointerType(c->descriptor_type, 0);

  // field descriptor
  // Also needed to build a descriptor structure.
  params[0] = c->i32;
  params[1] = c->descriptor_ptr;
  c->field_descriptor = LLVMStructTypeInContext(c->context, params, 2, false);

  // descriptor, filled in
  gendesc_basetype(c, c->descriptor_type);

  // define object
  params[0] = c->descriptor_ptr;
  LLVMStructSetBody(c->object_type, params, 1, false);

  // $i8* pony_ctx()
  type = LLVMFunctionType(c->void_ptr, NULL, 0, false);
  value = LLVMAddFunction(c->module, "pony_ctx", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
  LLVMAddFunctionAttr(value, LLVMReadNoneAttribute);

  // __object* pony_create(i8*, __Desc*)
  params[0] = c->void_ptr;
  params[1] = c->descriptor_ptr;
  type = LLVMFunctionType(c->object_ptr, params, 2, false);
  value = LLVMAddFunction(c->module, "pony_create", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
  LLVMSetReturnNoAlias(value);
  LLVMSetDereferenceable(value, 0, PONY_ACTOR_PAD_SIZE);

  // void ponyint_destroy(__object*)
  params[0] = c->object_ptr;
  type = LLVMFunctionType(c->void_type, params, 1, false);
  value = LLVMAddFunction(c->module, "ponyint_destroy", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);

  // void pony_sendv(i8*, __object*, $message*);
  params[0] = c->void_ptr;
  params[1] = c->object_ptr;
  params[2] = c->msg_ptr;
  type = LLVMFunctionType(c->void_type, params, 3, false);
  value = LLVMAddFunction(c->module, "pony_sendv", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);

  // i8* pony_alloc(i8*, intptr)
  params[0] = c->void_ptr;
  params[1] = c->intptr;
  type = LLVMFunctionType(c->void_ptr, params, 2, false);
  value = LLVMAddFunction(c->module, "pony_alloc", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
  LLVMSetReturnNoAlias(value);
#if PONY_LLVM >= 307
  LLVMSetDereferenceableOrNull(value, 0, HEAP_MIN);
#endif

  // i8* pony_alloc_small(i8*, i32)
  params[0] = c->void_ptr;
  params[1] = c->i32;
  type = LLVMFunctionType(c->void_ptr, params, 2, false);
  value = LLVMAddFunction(c->module, "pony_alloc_small", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
  LLVMSetReturnNoAlias(value);
  LLVMSetDereferenceable(value, 0, HEAP_MIN);

  // i8* pony_alloc_large(i8*, intptr)
  params[0] = c->void_ptr;
  params[1] = c->intptr;
  type = LLVMFunctionType(c->void_ptr, params, 2, false);
  value = LLVMAddFunction(c->module, "pony_alloc_large", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
  LLVMSetReturnNoAlias(value);
  LLVMSetDereferenceable(value, 0, HEAP_MAX + 1);

  // i8* pony_realloc(i8*, i8*, intptr)
  params[0] = c->void_ptr;
  params[1] = c->void_ptr;
  params[2] = c->intptr;
  type = LLVMFunctionType(c->void_ptr, params, 3, false);
  value = LLVMAddFunction(c->module, "pony_realloc", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
  LLVMSetReturnNoAlias(value);
#if PONY_LLVM >= 307
  LLVMSetDereferenceableOrNull(value, 0, HEAP_MIN);
#endif

  // i8* pony_alloc_final(i8*, intptr, c->final_fn)
  params[0] = c->void_ptr;
  params[1] = c->intptr;
  params[2] = c->final_fn;
  type = LLVMFunctionType(c->void_ptr, params, 3, false);
  value = LLVMAddFunction(c->module, "pony_alloc_final", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
  LLVMSetReturnNoAlias(value);
#if PONY_LLVM >= 307
  LLVMSetDereferenceableOrNull(value, 0, HEAP_MIN);
#endif

  // $message* pony_alloc_msg(i32, i32)
  params[0] = c->i32;
  params[1] = c->i32;
  type = LLVMFunctionType(c->msg_ptr, params, 2, false);
  value = LLVMAddFunction(c->module, "pony_alloc_msg", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
  LLVMSetReturnNoAlias(value);

  // void pony_trace(i8*, i8*)
  params[0] = c->void_ptr;
  params[1] = c->void_ptr;
  type = LLVMFunctionType(c->void_type, params, 2, false);
  value = LLVMAddFunction(c->module, "pony_trace", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);

  // i8* pony_traceobject(i8*, __object*, __Desc*, i32)
  params[0] = c->void_ptr;
  params[1] = c->object_ptr;
  params[2] = c->descriptor_ptr;
  params[3] = c->i32;
  type = LLVMFunctionType(c->void_ptr, params, 4, false);
  value = LLVMAddFunction(c->module, "pony_traceknown", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);

  // i8* pony_traceunknown(i8*, __object*, i32)
  params[0] = c->void_ptr;
  params[1] = c->object_ptr;
  params[2] = c->i32;
  type = LLVMFunctionType(c->void_ptr, params, 3, false);
  value = LLVMAddFunction(c->module, "pony_traceunknown", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);

  // void pony_gc_send(i8*)
  params[0] = c->void_ptr;
  type = LLVMFunctionType(c->void_type, params, 1, false);
  value = LLVMAddFunction(c->module, "pony_gc_send", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);

  // void pony_gc_recv(i8*)
  params[0] = c->void_ptr;
  type = LLVMFunctionType(c->void_type, params, 1, false);
  value = LLVMAddFunction(c->module, "pony_gc_recv", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);

  // void pony_send_done(i8*)
  params[0] = c->void_ptr;
  type = LLVMFunctionType(c->void_type, params, 1, false);
  value = LLVMAddFunction(c->module, "pony_send_done", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);

  // void pony_recv_done(i8*)
  params[0] = c->void_ptr;
  type = LLVMFunctionType(c->void_type, params, 1, false);
  value = LLVMAddFunction(c->module, "pony_recv_done", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);

  // void pony_serialise_reserve(i8*, i8*, intptr)
  params[0] = c->void_ptr;
  params[1] = c->void_ptr;
  params[2] = c->intptr;
  type = LLVMFunctionType(c->void_type, params, 3, false);
  value = LLVMAddFunction(c->module, "pony_serialise_reserve", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);

  // intptr pony_serialise_offset(i8*, i8*)
  params[0] = c->void_ptr;
  params[1] = c->void_ptr;
  type = LLVMFunctionType(c->intptr, params, 2, false);
  value = LLVMAddFunction(c->module, "pony_serialise_offset", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);

  // i8* pony_deserialise_offset(i8*, __desc*, intptr)
  params[0] = c->void_ptr;
  params[1] = c->descriptor_ptr;
  params[2] = c->intptr;
  type = LLVMFunctionType(c->void_ptr, params, 3, false);
  value = LLVMAddFunction(c->module, "pony_deserialise_offset", type);

  // i8* pony_deserialise_block(i8*, intptr, intptr)
  params[0] = c->void_ptr;
  params[1] = c->intptr;
  params[2] = c->intptr;
  type = LLVMFunctionType(c->void_ptr, params, 3, false);
  value = LLVMAddFunction(c->module, "pony_deserialise_block", type);

  // i32 pony_init(i32, i8**)
  params[0] = c->i32;
  params[1] = LLVMPointerType(c->void_ptr, 0);
  type = LLVMFunctionType(c->i32, params, 2, false);
  value = LLVMAddFunction(c->module, "pony_init", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);

  // void pony_become(i8*, __object*)
  params[0] = c->void_ptr;
  params[1] = c->object_ptr;
  type = LLVMFunctionType(c->void_type, params, 2, false);
  value = LLVMAddFunction(c->module, "pony_become", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);

  // i32 pony_start(i32)
  params[0] = c->i32;
  type = LLVMFunctionType(c->i32, params, 1, false);
  value = LLVMAddFunction(c->module, "pony_start", type);
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);

  // void pony_throw()
  type = LLVMFunctionType(c->void_type, NULL, 0, false);
  LLVMAddFunction(c->module, "pony_throw", type);

  // i32 pony_personality_v0(...)
  type = LLVMFunctionType(c->i32, NULL, 0, true);
  c->personality = LLVMAddFunction(c->module, "pony_personality_v0", type);

  // void llvm.memcpy.*(i8*, i8*, i32/64, i32, i1)
  params[0] = c->void_ptr;
  params[1] = c->void_ptr;
  params[3] = c->i32;
  params[4] = c->i1;
  if(target_is_ilp32(c->opt->triple))
  {
    params[2] = c->i32;
    type = LLVMFunctionType(c->void_type, params, 5, false);
    value = LLVMAddFunction(c->module, "llvm.memcpy.p0i8.p0i8.i32", type);
  } else {
    params[2] = c->i64;
    type = LLVMFunctionType(c->void_type, params, 5, false);
    value = LLVMAddFunction(c->module, "llvm.memcpy.p0i8.p0i8.i64", type);
  }
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);

  // void llvm.memmove.*(i8*, i8*, i32/64, i32, i1)
  params[0] = c->void_ptr;
  params[1] = c->void_ptr;
  params[3] = c->i32;
  params[4] = c->i1;
  if(target_is_ilp32(c->opt->triple))
  {
    params[2] = c->i32;
    type = LLVMFunctionType(c->void_type, params, 5, false);
    value = LLVMAddFunction(c->module, "llvm.memmove.p0i8.p0i8.i32", type);
  } else {
    params[2] = c->i64;
    type = LLVMFunctionType(c->void_type, params, 5, false);
    value = LLVMAddFunction(c->module, "llvm.memmove.p0i8.p0i8.i64", type);
  }
  LLVMAddFunctionAttr(value, LLVMNoUnwindAttribute);
}