示例#1
0
/**
 * Swizzle a vector consisting of an array of XYZW structs.
 *
 * This fills a vector of dst_len length with the swizzled channels from src.
 *
 * e.g. with swizzles = { 2, 1, 0 } and swizzle_count = 6 results in
 *      RGBA RGBA = BGR BGR BG
 *
 * @param swizzles        the swizzle array
 * @param num_swizzles    the number of elements in swizzles
 * @param dst_len         the length of the result
 */
LLVMValueRef
lp_build_swizzle_aos_n(struct gallivm_state* gallivm,
                       LLVMValueRef src,
                       const unsigned char* swizzles,
                       unsigned num_swizzles,
                       unsigned dst_len)
{
   LLVMBuilderRef builder = gallivm->builder;
   LLVMValueRef shuffles[LP_MAX_VECTOR_WIDTH];
   unsigned i;

   assert(dst_len < LP_MAX_VECTOR_WIDTH);

   for (i = 0; i < dst_len; ++i) {
      int swizzle = swizzles[i % num_swizzles];

      if (swizzle == LP_BLD_SWIZZLE_DONTCARE) {
         shuffles[i] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
      } else {
         shuffles[i] = lp_build_const_int32(gallivm, swizzle);
      }
   }

   return LLVMBuildShuffleVector(builder, src, LLVMGetUndef(LLVMTypeOf(src)), LLVMConstVector(shuffles, dst_len), "");
}
示例#2
0
文件: hi2.c 项目: alexmavr/pzcc
int main (void) {
    LLVMModuleRef module = LLVMModuleCreateWithName("kal");
    LLVMBuilderRef builder = LLVMCreateBuilder();
//	LLVMInitializeNativeTarget();

	LLVMTypeRef funcType = LLVMFunctionType(LLVMVoidType(), NULL, 0, 0);
	LLVMValueRef func = LLVMAddFunction(module, "main", funcType);
	LLVMSetLinkage(func, LLVMExternalLinkage);
	LLVMBasicBlockRef block = LLVMAppendBasicBlock(func, "entry");
	LLVMPositionBuilderAtEnd(builder, block);

	LLVMValueRef cond = LLVMBuildICmp(builder, LLVMIntNE, LLVMConstInt(LLVMInt32Type(), 2, 0), LLVMConstInt(LLVMInt32Type(), 1, 0), "ifcond");

	LLVMValueRef owning_block = LLVMGetBasicBlockParent(LLVMGetInsertBlock(builder));	//TODO: WRONG??
	//LLVMValueRef owning_block = LLVMBasicBlockAsValue(LLVMGetPreviousBasicBlock(LLVMGetInsertBlock(builder)));
	// 2. Generate new blocks for cases.
	LLVMBasicBlockRef then_ref = LLVMAppendBasicBlock(owning_block, "then");
	LLVMBasicBlockRef else_ref = LLVMAppendBasicBlock(owning_block, "else");
	LLVMBasicBlockRef merge_ref = LLVMAppendBasicBlock(owning_block, "ifmerge");

	// 3. Branch conditionally on then or else.
	LLVMBuildCondBr(builder, cond, then_ref, else_ref);

	// 4. Build then branch prologue.
	LLVMPositionBuilderAtEnd(builder, then_ref);

	LLVMValueRef hi1 = LLVMBuildXor(builder, LLVMGetUndef(LLVMInt32Type()), LLVMGetUndef(LLVMInt32Type()), "subtmp");

	// 5. Connect then branch to merge block.
	LLVMBuildBr(builder, merge_ref);

	then_ref = LLVMGetInsertBlock(builder);

	// 6. Build else branch prologue.
	LLVMPositionBuilderAtEnd(builder, else_ref);

	LLVMValueRef hi2 = LLVMBuildXor(builder, LLVMGetUndef(LLVMInt32Type()), LLVMGetUndef(LLVMInt32Type()), "subtmp2");

	// 7. Connect else branch to merge block.
	LLVMBuildBr(builder, merge_ref);

	else_ref = LLVMGetInsertBlock(builder);
	// 8. Position ourselves after the merge block.
	LLVMPositionBuilderAtEnd(builder, merge_ref);
	// 9. Build the phi node.
//	LLVMValueRef phi = LLVMBuildPhi(builder, LLVMDoubleType(), "phi");
	// 10. Add incoming edges.
//	LLVMAddIncoming(phi, &hi1, &then_ref, 1);
//	LLVMAddIncoming(phi, &hi2, &else_ref, 1);

	LLVMDumpModule(module);
	LLVMDisposeBuilder(builder);
	LLVMDisposeModule(module);

	return 0;
}
示例#3
0
LLVMValueRef
lp_build_broadcast(struct gallivm_state *gallivm,
                   LLVMTypeRef vec_type,
                   LLVMValueRef scalar)
{
   LLVMValueRef res;

   if (LLVMGetTypeKind(vec_type) != LLVMVectorTypeKind) {
      /* scalar */
      assert(vec_type == LLVMTypeOf(scalar));
      res = scalar;
   } else {
      LLVMBuilderRef builder = gallivm->builder;
      const unsigned length = LLVMGetVectorSize(vec_type);
      LLVMValueRef undef = LLVMGetUndef(vec_type);
      /* The shuffle vector is always made of int32 elements */
      LLVMTypeRef i32_type = LLVMInt32TypeInContext(gallivm->context);
      LLVMTypeRef i32_vec_type = LLVMVectorType(i32_type, length);

      assert(LLVMGetElementType(vec_type) == LLVMTypeOf(scalar));

      res = LLVMBuildInsertElement(builder, undef, scalar, LLVMConstNull(i32_type), "");
      res = LLVMBuildShuffleVector(builder, res, undef, LLVMConstNull(i32_vec_type), "");
   }

   return res;
}
示例#4
0
static LLVMValueRef build_cube_intrinsic(struct gallivm_state *gallivm,
					 LLVMValueRef in[3])
{
	if (HAVE_LLVM >= 0x0309) {
		LLVMTypeRef f32 = LLVMTypeOf(in[0]);
		LLVMValueRef out[4];

		out[0] = lp_build_intrinsic(gallivm->builder, "llvm.amdgcn.cubetc",
					    f32, in, 3, LLVMReadNoneAttribute);
		out[1] = lp_build_intrinsic(gallivm->builder, "llvm.amdgcn.cubesc",
					    f32, in, 3, LLVMReadNoneAttribute);
		out[2] = lp_build_intrinsic(gallivm->builder, "llvm.amdgcn.cubema",
					    f32, in, 3, LLVMReadNoneAttribute);
		out[3] = lp_build_intrinsic(gallivm->builder, "llvm.amdgcn.cubeid",
					    f32, in, 3, LLVMReadNoneAttribute);

		return lp_build_gather_values(gallivm, out, 4);
	} else {
		LLVMValueRef c[4] = {
			in[0],
			in[1],
			in[2],
			LLVMGetUndef(LLVMTypeOf(in[0]))
		};
		LLVMValueRef vec = lp_build_gather_values(gallivm, c, 4);

		return lp_build_intrinsic(gallivm->builder, "llvm.AMDGPU.cube",
					  LLVMTypeOf(vec), &vec, 1,
					  LLVMReadNoneAttribute);
	}
}
示例#5
0
/**
 * Pack first element of aos values,
 * pad out to destination size.
 * i.e. x1 _ _ _ x2 _ _ _ will become x1 x2 _ _
 */
LLVMValueRef
lp_build_pack_aos_scalars(struct gallivm_state *gallivm,
                          struct lp_type src_type,
                          struct lp_type dst_type,
                          const LLVMValueRef src)
{
   LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
   LLVMValueRef undef = LLVMGetUndef(i32t);
   LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
   unsigned num_src = src_type.length / 4;
   unsigned num_dst = dst_type.length;
   unsigned i;

   assert(num_src <= num_dst);

   for (i = 0; i < num_src; i++) {
      shuffles[i] = LLVMConstInt(i32t, i * 4, 0);
   }
   for (i = num_src; i < num_dst; i++) {
      shuffles[i] = undef;
   }

   if (num_dst == 1) {
      return LLVMBuildExtractElement(gallivm->builder, src, shuffles[0], "");
   }
   else {
      return LLVMBuildShuffleVector(gallivm->builder, src, src,
                                    LLVMConstVector(shuffles, num_dst), "");
   }
}
示例#6
0
static LLVMValueRef
emit_array_fetch(
	struct lp_build_tgsi_context *bld_base,
	unsigned File, enum tgsi_opcode_type type,
	struct tgsi_declaration_range range,
	unsigned swizzle)
{
	struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
	struct gallivm_state * gallivm = bld->bld_base.base.gallivm;
	LLVMBuilderRef builder = bld_base->base.gallivm->builder;

	unsigned i, size = range.Last - range.First + 1;
	LLVMTypeRef vec = LLVMVectorType(tgsi2llvmtype(bld_base, type), size);
	LLVMValueRef result = LLVMGetUndef(vec);

	struct tgsi_full_src_register tmp_reg = {};
	tmp_reg.Register.File = File;

	for (i = 0; i < size; ++i) {
		tmp_reg.Register.Index = i + range.First;
		LLVMValueRef temp = emit_fetch(bld_base, &tmp_reg, type, swizzle);
		result = LLVMBuildInsertElement(builder, result, temp,
			lp_build_const_int32(gallivm, i), "");
	}
	return result;
}
示例#7
0
void
lp_build_context_init(struct lp_build_context *bld,
                      struct gallivm_state *gallivm,
                      struct lp_type type)
{
   bld->gallivm = gallivm;
   bld->type = type;

   bld->int_elem_type = lp_build_int_elem_type(gallivm, type);
   if (type.floating)
      bld->elem_type = lp_build_elem_type(gallivm, type);
   else
      bld->elem_type = bld->int_elem_type;

   if (type.length == 1) {
      bld->int_vec_type = bld->int_elem_type;
      bld->vec_type = bld->elem_type;
   }
   else {
      bld->int_vec_type = LLVMVectorType(bld->int_elem_type, type.length);
      bld->vec_type = LLVMVectorType(bld->elem_type, type.length);
   }

   bld->undef = LLVMGetUndef(bld->vec_type);
   bld->zero = LLVMConstNull(bld->vec_type);
   bld->one = lp_build_one(gallivm, type);
}
示例#8
0
/**
 * Gather elements from scatter positions in memory into a single vector.
 * Use for fetching texels from a texture.
 * For SSE, typical values are length=4, src_width=32, dst_width=32.
 *
 * @param length length of the offsets
 * @param src_width src element width in bits
 * @param dst_width result element width in bits (src will be expanded to fit)
 * @param base_ptr base pointer, should be a i8 pointer type.
 * @param offsets vector with offsets
 */
LLVMValueRef
lp_build_gather(struct gallivm_state *gallivm,
                unsigned length,
                unsigned src_width,
                unsigned dst_width,
                LLVMValueRef base_ptr,
                LLVMValueRef offsets)
{
   LLVMValueRef res;

   if (length == 1) {
      /* Scalar */
      return lp_build_gather_elem(gallivm, length,
                                  src_width, dst_width,
                                  base_ptr, offsets, 0);
   } else {
      /* Vector */

      LLVMTypeRef dst_elem_type = LLVMIntTypeInContext(gallivm->context, dst_width);
      LLVMTypeRef dst_vec_type = LLVMVectorType(dst_elem_type, length);
      unsigned i;

      res = LLVMGetUndef(dst_vec_type);
      for (i = 0; i < length; ++i) {
         LLVMValueRef index = lp_build_const_int32(gallivm, i);
         LLVMValueRef elem;
         elem = lp_build_gather_elem(gallivm, length,
                                     src_width, dst_width,
                                     base_ptr, offsets, i);
         res = LLVMBuildInsertElement(gallivm->builder, res, elem, index, "");
      }
   }

   return res;
}
示例#9
0
LLVMValueRef
ac_build_gather_values_extended(struct ac_llvm_context *ctx,
				LLVMValueRef *values,
				unsigned value_count,
				unsigned value_stride,
				bool load)
{
	LLVMBuilderRef builder = ctx->builder;
	LLVMValueRef vec = NULL;
	unsigned i;

	if (value_count == 1) {
		if (load)
			return LLVMBuildLoad(builder, values[0], "");
		return values[0];
	} else if (!value_count)
		unreachable("value_count is 0");

	for (i = 0; i < value_count; i++) {
		LLVMValueRef value = values[i * value_stride];
		if (load)
			value = LLVMBuildLoad(builder, value, "");

		if (!i)
			vec = LLVMGetUndef( LLVMVectorType(LLVMTypeOf(value), value_count));
		LLVMValueRef index = LLVMConstInt(ctx->i32, i, false);
		vec = LLVMBuildInsertElement(builder, vec, value, index, "");
	}
	return vec;
}
示例#10
0
LLVMValueRef
lp_build_intrinsic_map(struct gallivm_state *gallivm,
                       const char *name,
                       LLVMTypeRef ret_type,
                       LLVMValueRef *args,
                       unsigned num_args)
{
   LLVMBuilderRef builder = gallivm->builder;
   LLVMTypeRef ret_elem_type = LLVMGetElementType(ret_type);
   unsigned n = LLVMGetVectorSize(ret_type);
   unsigned i, j;
   LLVMValueRef res;

   assert(num_args <= LP_MAX_FUNC_ARGS);

   res = LLVMGetUndef(ret_type);
   for(i = 0; i < n; ++i) {
      LLVMValueRef index = lp_build_const_int32(gallivm, i);
      LLVMValueRef arg_elems[LP_MAX_FUNC_ARGS];
      LLVMValueRef res_elem;
      for(j = 0; j < num_args; ++j)
         arg_elems[j] = LLVMBuildExtractElement(builder, args[j], index, "");
      res_elem = lp_build_intrinsic(builder, name, ret_elem_type, arg_elems, num_args, 0);
      res = LLVMBuildInsertElement(builder, res, res_elem, index, "");
   }

   return res;
}
/**
 * Expands src vector from src.length to dst_length
 */
LLVMValueRef
lp_build_pad_vector(struct gallivm_state *gallivm,
                       LLVMValueRef src,
                       struct lp_type src_type,
                       unsigned dst_length)
{
   LLVMValueRef undef = LLVMGetUndef(lp_build_vec_type(gallivm, src_type));
   LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
   unsigned i;

   assert(dst_length <= Elements(elems));
   assert(dst_length > src_type.length);

   if (src_type.length == dst_length)
      return src;

   /* If its a single scalar type, no need to reinvent the wheel */
   if (src_type.length == 1) {
      return lp_build_broadcast(gallivm, LLVMVectorType(lp_build_elem_type(gallivm, src_type), dst_length), src);
   }

   /* All elements from src vector */
   for (i = 0; i < src_type.length; ++i)
      elems[i] = lp_build_const_int32(gallivm, i);

   /* Undef fill remaining space */
   for (i = src_type.length; i < dst_length; ++i)
      elems[i] = lp_build_const_int32(gallivm, src_type.length);

   /* Combine the two vectors */
   return LLVMBuildShuffleVector(gallivm->builder, src, undef, LLVMConstVector(elems, dst_length), "");
}
示例#12
0
/**
 * Combined extract and broadcast (mere shuffle in most cases)
 */
LLVMValueRef
lp_build_extract_broadcast(struct gallivm_state *gallivm,
                           struct lp_type src_type,
                           struct lp_type dst_type,
                           LLVMValueRef vector,
                           LLVMValueRef index)
{
   LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
   LLVMValueRef res;

   assert(src_type.floating == dst_type.floating);
   assert(src_type.width    == dst_type.width);

   assert(lp_check_value(src_type, vector));
   assert(LLVMTypeOf(index) == i32t);

   if (src_type.length == 1) {
      if (dst_type.length == 1) {
         /*
          * Trivial scalar -> scalar.
          */

         res = vector;
      }
      else {
         /*
          * Broadcast scalar -> vector.
          */

         res = lp_build_broadcast(gallivm,
                                  lp_build_vec_type(gallivm, dst_type),
                                  vector);
      }
   }
   else {
      if (dst_type.length > 1) {
         /*
          * shuffle - result can be of different length.
          */

         LLVMValueRef shuffle;
         shuffle = lp_build_broadcast(gallivm,
                                      LLVMVectorType(i32t, dst_type.length),
                                      index);
         res = LLVMBuildShuffleVector(gallivm->builder, vector,
                                      LLVMGetUndef(lp_build_vec_type(gallivm, src_type)),
                                      shuffle, "");
      }
      else {
         /*
          * Trivial extract scalar from vector.
          */
          res = LLVMBuildExtractElement(gallivm->builder, vector, index, "");
      }
   }

   return res;
}
示例#13
0
LLVMValueRef gen_tuple(compile_t* c, ast_t* ast)
{
  ast_t* child = ast_child(ast);

  if(ast_sibling(child) == NULL)
    return gen_expr(c, child);

  deferred_reification_t* reify = c->frame->reify;

  ast_t* type = deferred_reify(reify, ast_type(ast), c->opt);

  // If we contain '_', we have no usable value.
  if(contains_dontcare(type))
  {
    ast_free_unattached(type);
    return GEN_NOTNEEDED;
  }

  reach_type_t* t = reach_type(c->reach, type);
  compile_type_t* c_t = (compile_type_t*)t->c_type;
  int count = LLVMCountStructElementTypes(c_t->primitive);
  size_t buf_size = count * sizeof(LLVMTypeRef);
  LLVMTypeRef* elements = (LLVMTypeRef*)ponyint_pool_alloc_size(buf_size);
  LLVMGetStructElementTypes(c_t->primitive, elements);

  LLVMValueRef tuple = LLVMGetUndef(c_t->primitive);
  int i = 0;

  while(child != NULL)
  {
    LLVMValueRef value = gen_expr(c, child);

    if(value == NULL)
    {
      ponyint_pool_free_size(buf_size, elements);
      return NULL;
    }

    // We'll have an undefined element if one of our source elements is a
    // variable declaration. This is ok, since the tuple value will never be
    // used.
    if(value == GEN_NOVALUE || value == GEN_NOTNEEDED)
    {
      ponyint_pool_free_size(buf_size, elements);
      return value;
    }

    ast_t* child_type = deferred_reify(reify, ast_type(child), c->opt);
    value = gen_assign_cast(c, elements[i], value, child_type);
    ast_free_unattached(child_type);
    tuple = LLVMBuildInsertValue(c->builder, tuple, value, i++, "");
    child = ast_sibling(child);
  }

  ponyint_pool_free_size(buf_size, elements);
  return tuple;
}
示例#14
0
static LLVMValueRef
emit_fetch(
	struct lp_build_tgsi_context *bld_base,
	const struct tgsi_full_src_register *reg,
	enum tgsi_opcode_type type,
	unsigned swizzle)
{
	struct radeon_llvm_context * ctx = radeon_llvm_context(bld_base);
	struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
	LLVMBuilderRef builder = bld_base->base.gallivm->builder;
	LLVMValueRef result, ptr;

	if (swizzle == ~0) {
		LLVMValueRef values[TGSI_NUM_CHANNELS];
		unsigned chan;
		for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
			values[chan] = emit_fetch(bld_base, reg, type, chan);
		}
		return lp_build_gather_values(bld_base->base.gallivm, values,
					      TGSI_NUM_CHANNELS);
	}

	if (reg->Register.Indirect) {
		struct tgsi_declaration_range range = get_array_range(bld_base,
			reg->Register.File, &reg->Indirect);
		return LLVMBuildExtractElement(builder,
			emit_array_fetch(bld_base, reg->Register.File, type, range, swizzle),
			emit_array_index(bld, &reg->Indirect, reg->Register.Index - range.First),
			"");
	}

	switch(reg->Register.File) {
	case TGSI_FILE_IMMEDIATE: {
		LLVMTypeRef ctype = tgsi2llvmtype(bld_base, type);
		return LLVMConstBitCast(bld->immediates[reg->Register.Index][swizzle], ctype);
	}

	case TGSI_FILE_INPUT:
		result = ctx->inputs[radeon_llvm_reg_index_soa(reg->Register.Index, swizzle)];
		break;

	case TGSI_FILE_TEMPORARY:
		ptr = lp_get_temp_ptr_soa(bld, reg->Register.Index, swizzle);
		result = LLVMBuildLoad(builder, ptr, "");
		break;

	case TGSI_FILE_OUTPUT:
		ptr = lp_get_output_ptr(bld, reg->Register.Index, swizzle);
		result = LLVMBuildLoad(builder, ptr, "");
		break;

	default:
		return LLVMGetUndef(tgsi2llvmtype(bld_base, type));
	}

	return bitcast(bld_base, type, result);
}
示例#15
0
/**
 * Expands src vector from src.length to dst_length
 */
LLVMValueRef
lp_build_pad_vector(struct gallivm_state *gallivm,
                    LLVMValueRef src,
                    unsigned dst_length)
{
   LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
   LLVMValueRef undef;
   LLVMTypeRef type;
   unsigned i, src_length;

   type = LLVMTypeOf(src);

   if (LLVMGetTypeKind(type) != LLVMVectorTypeKind) {
      /* Can't use ShuffleVector on non-vector type */
      undef = LLVMGetUndef(LLVMVectorType(type, dst_length));
      return LLVMBuildInsertElement(gallivm->builder, undef, src, lp_build_const_int32(gallivm, 0), "");
   }

   undef      = LLVMGetUndef(type);
   src_length = LLVMGetVectorSize(type);

   assert(dst_length <= Elements(elems));
   assert(dst_length >= src_length);

   if (src_length == dst_length)
      return src;

   /* All elements from src vector */
   for (i = 0; i < src_length; ++i)
      elems[i] = lp_build_const_int32(gallivm, i);

   /* Undef fill remaining space */
   for (i = src_length; i < dst_length; ++i)
      elems[i] = lp_build_const_int32(gallivm, src_length);

   /* Combine the two vectors */
   return LLVMBuildShuffleVector(gallivm->builder, src, undef, LLVMConstVector(elems, dst_length), "");
}
示例#16
0
/**
 * @param n  is the number of pixels processed
 * @param packed  is a <n x i32> vector with the packed YUYV blocks
 * @param i  is a <n x i32> vector with the x pixel coordinate (0 or 1)
 * @return  a <4*n x i8> vector with the pixel RGBA values in AoS
 */
LLVMValueRef
lp_build_fetch_subsampled_rgba_aos(struct gallivm_state *gallivm,
                                   const struct util_format_description *format_desc,
                                   unsigned n,
                                   LLVMValueRef base_ptr,
                                   LLVMValueRef offset,
                                   LLVMValueRef i,
                                   LLVMValueRef j)
{
   LLVMValueRef packed;
   LLVMValueRef rgba;
   struct lp_type fetch_type;

   assert(format_desc->layout == UTIL_FORMAT_LAYOUT_SUBSAMPLED);
   assert(format_desc->block.bits == 32);
   assert(format_desc->block.width == 2);
   assert(format_desc->block.height == 1);

   fetch_type = lp_type_uint(32);
   packed = lp_build_gather(gallivm, n, 32, fetch_type, TRUE, base_ptr, offset, FALSE);

   (void)j;

   switch (format_desc->format) {
   case PIPE_FORMAT_UYVY:
      rgba = uyvy_to_rgba_aos(gallivm, n, packed, i);
      break;
   case PIPE_FORMAT_YUYV:
      rgba = yuyv_to_rgba_aos(gallivm, n, packed, i);
      break;
   case PIPE_FORMAT_R8G8_B8G8_UNORM:
      rgba = rgbg_to_rgba_aos(gallivm, n, packed, i);
      break;
   case PIPE_FORMAT_G8R8_G8B8_UNORM:
      rgba = grgb_to_rgba_aos(gallivm, n, packed, i);
      break;
   case PIPE_FORMAT_G8R8_B8R8_UNORM:
      rgba = grbr_to_rgba_aos(gallivm, n, packed, i);
      break;
   case PIPE_FORMAT_R8G8_R8B8_UNORM:
      rgba = rgrb_to_rgba_aos(gallivm, n, packed, i);
      break;
   default:
      assert(0);
      rgba =  LLVMGetUndef(LLVMVectorType(LLVMInt8TypeInContext(gallivm->context), 4*n));
      break;
   }

   return rgba;
}
示例#17
0
LLVMValueRef
lp_build_gather_values(struct gallivm_state * gallivm,
                       LLVMValueRef * values,
                       unsigned value_count)
{
   LLVMTypeRef vec_type = LLVMVectorType(LLVMTypeOf(values[0]), value_count);
   LLVMBuilderRef builder = gallivm->builder;
   LLVMValueRef vec = LLVMGetUndef(vec_type);
   unsigned i;

   for (i = 0; i < value_count; i++) {
      LLVMValueRef index = lp_build_const_int32(gallivm, i);
      vec = LLVMBuildInsertElement(builder, vec, values[i], index, "");
   }
   return vec;
}
示例#18
0
文件: JIT.cpp 项目: hoangt/tool_axe
void JITImpl::reclaimUnreachableFunctions(JITCoreInfo &coreInfo)
{
  std::vector<uint32_t> &unreachableFunctions = coreInfo.unreachableFunctions;
  std::map<uint32_t,JITFunctionInfo*> &functionMap = coreInfo.functionMap;
  for (std::vector<uint32_t>::iterator it = unreachableFunctions.begin(),
       e = unreachableFunctions.end(); it != e; ++it) {
    std::map<uint32_t,JITFunctionInfo*>::iterator entry = functionMap.find(*it);
    if (entry == functionMap.end())
      continue;
    LLVMValueRef value = entry->second->value;
    LLVMFreeMachineCodeForFunction(executionEngine, value);
    LLVMReplaceAllUsesWith(value, LLVMGetUndef(LLVMTypeOf(value)));
    LLVMDeleteFunction(value);
    delete entry->second;
    functionMap.erase(entry);
  }
  unreachableFunctions.clear();
}
/**
 * @param n  is the number of pixels processed
 * @param packed  is a <n x i32> vector with the packed YUYV blocks
 * @param i  is a <n x i32> vector with the x pixel coordinate (0 or 1)
 * @return  a <4*n x i8> vector with the pixel RGBA values in AoS
 */
LLVMValueRef
lp_build_fetch_subsampled_rgba_aos(LLVMBuilderRef builder,
                                   const struct util_format_description *format_desc,
                                   unsigned n,
                                   LLVMValueRef base_ptr,
                                   LLVMValueRef offset,
                                   LLVMValueRef i,
                                   LLVMValueRef j)
{
   LLVMValueRef packed;
   LLVMValueRef rgba;

   assert(format_desc->layout == UTIL_FORMAT_LAYOUT_SUBSAMPLED);
   assert(format_desc->block.bits == 32);
   assert(format_desc->block.width == 2);
   assert(format_desc->block.height == 1);

   packed = lp_build_gather(builder, n, 32, 32, base_ptr, offset);

   (void)j;

   switch (format_desc->format) {
   case PIPE_FORMAT_UYVY:
      rgba = uyvy_to_rgba_aos(builder, n, packed, i);
      break;
   case PIPE_FORMAT_YUYV:
      rgba = yuyv_to_rgba_aos(builder, n, packed, i);
      break;
   case PIPE_FORMAT_R8G8_B8G8_UNORM:
      rgba = rgbg_to_rgba_aos(builder, n, packed, i);
      break;
   case PIPE_FORMAT_G8R8_G8B8_UNORM:
      rgba = grgb_to_rgba_aos(builder, n, packed, i);
      break;
   default:
      assert(0);
      rgba =  LLVMGetUndef(LLVMVectorType(LLVMInt8Type(), 4*n));
      break;
   }

   return rgba;
}
示例#20
0
static LLVMValueRef emit_swizzle(
	struct lp_build_tgsi_context * bld_base,
        LLVMValueRef value,
	unsigned swizzle_x,
	unsigned swizzle_y,
	unsigned swizzle_z,
	unsigned swizzle_w)
{
	LLVMValueRef swizzles[4];
	LLVMTypeRef i32t =
		LLVMInt32TypeInContext(bld_base->base.gallivm->context);

	swizzles[0] = LLVMConstInt(i32t, swizzle_x, 0);
	swizzles[1] = LLVMConstInt(i32t, swizzle_y, 0);
	swizzles[2] = LLVMConstInt(i32t, swizzle_z, 0);
	swizzles[3] = LLVMConstInt(i32t, swizzle_w, 0);

	return LLVMBuildShuffleVector(bld_base->base.gallivm->builder,
		value,
		LLVMGetUndef(LLVMTypeOf(value)),
		LLVMConstVector(swizzles, 4), "");
}
示例#21
0
/**
 * Gather elements from scatter positions in memory into a single vector.
 *
 * @param src_width src element width
 * @param dst_width result element width (source will be expanded to fit)
 * @param length length of the offsets,
 * @param base_ptr base pointer, should be a i8 pointer type.
 * @param offsets vector with offsets
 */
LLVMValueRef
lp_build_gather(LLVMBuilderRef builder,
                unsigned length,
                unsigned src_width,
                unsigned dst_width,
                LLVMValueRef base_ptr,
                LLVMValueRef offsets)
{
   LLVMTypeRef src_type = LLVMIntType(src_width);
   LLVMTypeRef src_ptr_type = LLVMPointerType(src_type, 0);
   LLVMTypeRef dst_elem_type = LLVMIntType(dst_width);
   LLVMTypeRef dst_vec_type = LLVMVectorType(dst_elem_type, length);
   LLVMValueRef res;
   unsigned i;

   res = LLVMGetUndef(dst_vec_type);
   for(i = 0; i < length; ++i) {
      LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
      LLVMValueRef elem_offset;
      LLVMValueRef elem_ptr;
      LLVMValueRef elem;

      elem_offset = LLVMBuildExtractElement(builder, offsets, index, "");
      elem_ptr = LLVMBuildGEP(builder, base_ptr, &elem_offset, 1, "");
      elem_ptr = LLVMBuildBitCast(builder, elem_ptr, src_ptr_type, "");
      elem = LLVMBuildLoad(builder, elem_ptr, "");

      assert(src_width <= dst_width);
      if(src_width > dst_width)
         elem = LLVMBuildTrunc(builder, elem, dst_elem_type, "");
      if(src_width < dst_width)
         elem = LLVMBuildZExt(builder, elem, dst_elem_type, "");

      res = LLVMBuildInsertElement(builder, res, elem, index, "");
   }

   return res;
}
示例#22
0
LLVMValueRef gen_tuple(compile_t* c, ast_t* ast)
{
  ast_t* child = ast_child(ast);

  if(ast_sibling(child) == NULL)
    return gen_expr(c, child);

  ast_t* type = ast_type(ast);
  gentype_t g;

  if(!gentype(c, type, &g))
    return NULL;

  // If we contain TK_DONTCARE, we have no usable value.
  if(g.primitive == NULL)
    return GEN_NOVALUE;

  LLVMValueRef tuple = LLVMGetUndef(g.primitive);
  int i = 0;

  while(child != NULL)
  {
    LLVMValueRef value = gen_expr(c, child);

    if(value == NULL)
      return NULL;

    // We'll have an undefined element if one of our source elements is a
    // variable declaration. This is ok, since the tuple value will never be
    // used.
    if(value != GEN_NOVALUE)
      tuple = LLVMBuildInsertValue(c->builder, tuple, value, i++, "");

    child = ast_sibling(child);
  }

  return tuple;
}
示例#23
0
LLVMValueRef
lp_build_broadcast(struct gallivm_state *gallivm,
                   LLVMTypeRef vec_type,
                   LLVMValueRef scalar)
{
   LLVMValueRef res;

   if (LLVMGetTypeKind(vec_type) != LLVMVectorTypeKind) {
      /* scalar */
      assert(vec_type == LLVMTypeOf(scalar));
      res = scalar;
   } else {
      LLVMBuilderRef builder = gallivm->builder;
      const unsigned length = LLVMGetVectorSize(vec_type);
      LLVMValueRef undef = LLVMGetUndef(vec_type);
      LLVMTypeRef i32_type = LLVMInt32TypeInContext(gallivm->context);

      assert(LLVMGetElementType(vec_type) == LLVMTypeOf(scalar));

      if (HAVE_LLVM >= 0x207) {
         /* The shuffle vector is always made of int32 elements */
         LLVMTypeRef i32_vec_type = LLVMVectorType(i32_type, length);
         res = LLVMBuildInsertElement(builder, undef, scalar, LLVMConstNull(i32_type), "");
         res = LLVMBuildShuffleVector(builder, res, undef, LLVMConstNull(i32_vec_type), "");
      } else {
         /* XXX: The above path provokes a bug in LLVM 2.6 */
         unsigned i;
         res = undef;
         for(i = 0; i < length; ++i) {
            LLVMValueRef index = lp_build_const_int32(gallivm, i);
            res = LLVMBuildInsertElement(builder, res, scalar, index, "");
         }
      }
   }

   return res;
}
示例#24
0
文件: genexpr.c 项目: ozra/ponyc
static LLVMValueRef assign_to_tuple(compile_t* c, LLVMTypeRef l_type,
  LLVMValueRef r_value, ast_t* type)
{
  // Cast each component.
  assert(ast_id(type) == TK_TUPLETYPE);

  int count = LLVMCountStructElementTypes(l_type);
  size_t buf_size = count * sizeof(LLVMTypeRef);
  LLVMTypeRef* elements = (LLVMTypeRef*)pool_alloc_size(buf_size);
  LLVMGetStructElementTypes(l_type, elements);

  LLVMValueRef result = LLVMGetUndef(l_type);

  ast_t* type_child = ast_child(type);
  int i = 0;

  while(type_child != NULL)
  {
    LLVMValueRef r_child = LLVMBuildExtractValue(c->builder, r_value, i, "");
    LLVMValueRef cast_value = gen_assign_cast(c, elements[i], r_child,
      type_child);

    if(cast_value == NULL)
    {
      pool_free_size(buf_size, elements);
      return NULL;
    }

    result = LLVMBuildInsertValue(c->builder, result, cast_value, i, "");
    type_child = ast_sibling(type_child);
    i++;
  }

  pool_free_size(buf_size, elements);
  return result;
}
示例#25
0
/**
 * Perform the occlusion test and increase the counter.
 * Test the depth mask. Add the number of channel which has none zero mask
 * into the occlusion counter. e.g. maskvalue is {-1, -1, -1, -1}.
 * The counter will add 4.
 *
 * \param type holds element type of the mask vector.
 * \param maskvalue is the depth test mask.
 * \param counter is a pointer of the uint32 counter.
 */
static void
lp_build_occlusion_count(LLVMBuilderRef builder,
                         struct lp_type type,
                         LLVMValueRef maskvalue,
                         LLVMValueRef counter)
{
   LLVMValueRef countmask = lp_build_const_int_vec(type, 1);
   LLVMValueRef countv = LLVMBuildAnd(builder, maskvalue, countmask, "countv");
   LLVMTypeRef i8v16 = LLVMVectorType(LLVMInt8Type(), 16);
   LLVMValueRef counti = LLVMBuildBitCast(builder, countv, i8v16, "counti");
   LLVMValueRef maskarray[4] = {
      LLVMConstInt(LLVMInt32Type(), 0, 0),
      LLVMConstInt(LLVMInt32Type(), 4, 0),
      LLVMConstInt(LLVMInt32Type(), 8, 0),
      LLVMConstInt(LLVMInt32Type(), 12, 0),
   };
   LLVMValueRef shufflemask = LLVMConstVector(maskarray, 4);
   LLVMValueRef shufflev =  LLVMBuildShuffleVector(builder, counti, LLVMGetUndef(i8v16), shufflemask, "shufflev");
   LLVMValueRef shuffle = LLVMBuildBitCast(builder, shufflev, LLVMInt32Type(), "shuffle");
   LLVMValueRef count = lp_build_intrinsic_unary(builder, "llvm.ctpop.i32", LLVMInt32Type(), shuffle);
   LLVMValueRef orig = LLVMBuildLoad(builder, counter, "orig");
   LLVMValueRef incr = LLVMBuildAdd(builder, orig, count, "incr");
   LLVMBuildStore(builder, incr, counter);
}
/**
 * Fetch a pixel into a 4 float AoS.
 *
 * \param format_desc  describes format of the image we're fetching from
 * \param ptr  address of the pixel block (or the texel if uncompressed)
 * \param i, j  the sub-block pixel coordinates.  For non-compressed formats
 *              these will always be (0, 0).
 * \return  a 4 element vector with the pixel's RGBA values.
 */
LLVMValueRef
lp_build_fetch_rgba_aos(struct gallivm_state *gallivm,
                        const struct util_format_description *format_desc,
                        struct lp_type type,
                        LLVMValueRef base_ptr,
                        LLVMValueRef offset,
                        LLVMValueRef i,
                        LLVMValueRef j)
{
   LLVMBuilderRef builder = gallivm->builder;
   unsigned num_pixels = type.length / 4;
   struct lp_build_context bld;

   assert(type.length <= LP_MAX_VECTOR_LENGTH);
   assert(type.length % 4 == 0);

   lp_build_context_init(&bld, gallivm, type);

   /*
    * Trivial case
    *
    * The format matches the type (apart of a swizzle) so no need for
    * scaling or converting.
    */

   if (format_matches_type(format_desc, type) &&
       format_desc->block.bits <= type.width * 4 &&
       util_is_power_of_two(format_desc->block.bits)) {
      LLVMValueRef packed;

      /*
       * The format matches the type (apart of a swizzle) so no need for
       * scaling or converting.
       */

      packed = lp_build_gather(gallivm, type.length/4,
                               format_desc->block.bits, type.width*4,
                               base_ptr, offset);

      assert(format_desc->block.bits <= type.width * type.length);

      packed = LLVMBuildBitCast(gallivm->builder, packed,
                                lp_build_vec_type(gallivm, type), "");

      return lp_build_format_swizzle_aos(format_desc, &bld, packed);
   }

   /*
    * Bit arithmetic
    */

   if (format_desc->layout == UTIL_FORMAT_LAYOUT_PLAIN &&
       (format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
        format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS) &&
       format_desc->block.width == 1 &&
       format_desc->block.height == 1 &&
       util_is_power_of_two(format_desc->block.bits) &&
       format_desc->block.bits <= 32 &&
       format_desc->is_bitmask &&
       !format_desc->is_mixed &&
       (format_desc->channel[0].type == UTIL_FORMAT_TYPE_UNSIGNED ||
        format_desc->channel[1].type == UTIL_FORMAT_TYPE_UNSIGNED)) {

      LLVMValueRef tmps[LP_MAX_VECTOR_LENGTH/4];
      LLVMValueRef res;
      unsigned k;

      /*
       * Unpack a pixel at a time into a <4 x float> RGBA vector
       */

      for (k = 0; k < num_pixels; ++k) {
         LLVMValueRef packed;

         packed = lp_build_gather_elem(gallivm, num_pixels,
                                       format_desc->block.bits, 32,
                                       base_ptr, offset, k);

         tmps[k] = lp_build_unpack_arith_rgba_aos(gallivm,
                                                  format_desc,
                                                  packed);
      }

      /*
       * Type conversion.
       *
       * TODO: We could avoid floating conversion for integer to
       * integer conversions.
       */

      if (gallivm_debug & GALLIVM_DEBUG_PERF && !type.floating) {
         debug_printf("%s: unpacking %s with floating point\n",
                      __FUNCTION__, format_desc->short_name);
      }

      lp_build_conv(gallivm,
                    lp_float32_vec4_type(),
                    type,
                    tmps, num_pixels, &res, 1);

      return lp_build_format_swizzle_aos(format_desc, &bld, res);
   }

   /*
    * YUV / subsampled formats
    */

   if (format_desc->layout == UTIL_FORMAT_LAYOUT_SUBSAMPLED) {
      struct lp_type tmp_type;
      LLVMValueRef tmp;

      memset(&tmp_type, 0, sizeof tmp_type);
      tmp_type.width = 8;
      tmp_type.length = num_pixels * 4;
      tmp_type.norm = TRUE;

      tmp = lp_build_fetch_subsampled_rgba_aos(gallivm,
                                               format_desc,
                                               num_pixels,
                                               base_ptr,
                                               offset,
                                               i, j);

      lp_build_conv(gallivm,
                    tmp_type, type,
                    &tmp, 1, &tmp, 1);

      return tmp;
   }

   /*
    * Fallback to util_format_description::fetch_rgba_8unorm().
    */

   if (format_desc->fetch_rgba_8unorm &&
       !type.floating && type.width == 8 && !type.sign && type.norm) {
      /*
       * Fallback to calling util_format_description::fetch_rgba_8unorm.
       *
       * This is definitely not the most efficient way of fetching pixels, as
       * we miss the opportunity to do vectorization, but this it is a
       * convenient for formats or scenarios for which there was no opportunity
       * or incentive to optimize.
       */

      LLVMModuleRef module = LLVMGetGlobalParent(LLVMGetBasicBlockParent(LLVMGetInsertBlock(gallivm->builder)));
      char name[256];
      LLVMTypeRef i8t = LLVMInt8TypeInContext(gallivm->context);
      LLVMTypeRef pi8t = LLVMPointerType(i8t, 0);
      LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
      LLVMValueRef function;
      LLVMValueRef tmp_ptr;
      LLVMValueRef tmp;
      LLVMValueRef res;
      LLVMValueRef callee;
      unsigned k;

      util_snprintf(name, sizeof name, "util_format_%s_fetch_rgba_8unorm",
                    format_desc->short_name);

      if (gallivm_debug & GALLIVM_DEBUG_PERF) {
         debug_printf("%s: falling back to %s\n", __FUNCTION__, name);
      }

      /*
       * Declare and bind format_desc->fetch_rgba_8unorm().
       */

      function = LLVMGetNamedFunction(module, name);
      if (!function) {
         /*
          * Function to call looks like:
          *   fetch(uint8_t *dst, const uint8_t *src, unsigned i, unsigned j)
          */
         LLVMTypeRef ret_type;
         LLVMTypeRef arg_types[4];
         LLVMTypeRef function_type;

         ret_type = LLVMVoidTypeInContext(gallivm->context);
         arg_types[0] = pi8t;
         arg_types[1] = pi8t;
         arg_types[2] = i32t;
         arg_types[3] = i32t;
         function_type = LLVMFunctionType(ret_type, arg_types,
                                          Elements(arg_types), 0);
         function = LLVMAddFunction(module, name, function_type);

         LLVMSetFunctionCallConv(function, LLVMCCallConv);
         LLVMSetLinkage(function, LLVMExternalLinkage);

         assert(LLVMIsDeclaration(function));
      }

      /* make const pointer for the C fetch_rgba_float function */
      callee = lp_build_const_int_pointer(gallivm,
         func_to_pointer((func_pointer) format_desc->fetch_rgba_8unorm));

      /* cast the callee pointer to the function's type */
      function = LLVMBuildBitCast(builder, callee,
                                  LLVMTypeOf(function), "cast callee");

      tmp_ptr = lp_build_alloca(gallivm, i32t, "");

      res = LLVMGetUndef(LLVMVectorType(i32t, num_pixels));

      /*
       * Invoke format_desc->fetch_rgba_8unorm() for each pixel and insert the result
       * in the SoA vectors.
       */

      for (k = 0; k < num_pixels; ++k) {
         LLVMValueRef index = lp_build_const_int32(gallivm, k);
         LLVMValueRef args[4];

         args[0] = LLVMBuildBitCast(builder, tmp_ptr, pi8t, "");
         args[1] = lp_build_gather_elem_ptr(gallivm, num_pixels,
                                            base_ptr, offset, k);

         if (num_pixels == 1) {
            args[2] = i;
            args[3] = j;
         }
         else {
            args[2] = LLVMBuildExtractElement(builder, i, index, "");
            args[3] = LLVMBuildExtractElement(builder, j, index, "");
         }

         LLVMBuildCall(builder, function, args, Elements(args), "");

         tmp = LLVMBuildLoad(builder, tmp_ptr, "");

         if (num_pixels == 1) {
            res = tmp;
         }
         else {
            res = LLVMBuildInsertElement(builder, res, tmp, index, "");
         }
      }

      /* Bitcast from <n x i32> to <4n x i8> */
      res = LLVMBuildBitCast(builder, res, bld.vec_type, "");

      return res;
   }


   /*
    * Fallback to util_format_description::fetch_rgba_float().
    */

   if (format_desc->fetch_rgba_float) {
      /*
       * Fallback to calling util_format_description::fetch_rgba_float.
       *
       * This is definitely not the most efficient way of fetching pixels, as
       * we miss the opportunity to do vectorization, but this it is a
       * convenient for formats or scenarios for which there was no opportunity
       * or incentive to optimize.
       */

      LLVMModuleRef module = LLVMGetGlobalParent(LLVMGetBasicBlockParent(LLVMGetInsertBlock(builder)));
      char name[256];
      LLVMTypeRef f32t = LLVMFloatTypeInContext(gallivm->context);
      LLVMTypeRef f32x4t = LLVMVectorType(f32t, 4);
      LLVMTypeRef pf32t = LLVMPointerType(f32t, 0);
      LLVMTypeRef pi8t = LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0);
      LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
      LLVMValueRef function;
      LLVMValueRef tmp_ptr;
      LLVMValueRef tmps[LP_MAX_VECTOR_LENGTH/4];
      LLVMValueRef res;
      LLVMValueRef callee;
      unsigned k;

      util_snprintf(name, sizeof name, "util_format_%s_fetch_rgba_float",
                    format_desc->short_name);

      if (gallivm_debug & GALLIVM_DEBUG_PERF) {
         debug_printf("%s: falling back to %s\n", __FUNCTION__, name);
      }

      /*
       * Declare and bind format_desc->fetch_rgba_float().
       */

      function = LLVMGetNamedFunction(module, name);
      if (!function) {
         /*
          * Function to call looks like:
          *   fetch(float *dst, const uint8_t *src, unsigned i, unsigned j)
          */
         LLVMTypeRef ret_type;
         LLVMTypeRef arg_types[4];
         LLVMTypeRef function_type;

         ret_type = LLVMVoidTypeInContext(gallivm->context);
         arg_types[0] = pf32t;
         arg_types[1] = pi8t;
         arg_types[2] = i32t;
         arg_types[3] = i32t;
         function_type = LLVMFunctionType(ret_type, arg_types,
                                          Elements(arg_types), 0);
         function = LLVMAddFunction(module, name, function_type);

         LLVMSetFunctionCallConv(function, LLVMCCallConv);
         LLVMSetLinkage(function, LLVMExternalLinkage);

         assert(LLVMIsDeclaration(function));
      }

      /* Note: we're using this casting here instead of LLVMAddGlobalMapping()
       * to work around a bug in LLVM 2.6.
       */

      /* make const pointer for the C fetch_rgba_float function */
      callee = lp_build_const_int_pointer(gallivm,
         func_to_pointer((func_pointer) format_desc->fetch_rgba_float));

      /* cast the callee pointer to the function's type */
      function = LLVMBuildBitCast(builder, callee,
                                  LLVMTypeOf(function), "cast callee");


      tmp_ptr = lp_build_alloca(gallivm, f32x4t, "");

      /*
       * Invoke format_desc->fetch_rgba_float() for each pixel and insert the result
       * in the SoA vectors.
       */

      for (k = 0; k < num_pixels; ++k) {
         LLVMValueRef args[4];

         args[0] = LLVMBuildBitCast(builder, tmp_ptr, pf32t, "");
         args[1] = lp_build_gather_elem_ptr(gallivm, num_pixels,
                                            base_ptr, offset, k);

         if (num_pixels == 1) {
            args[2] = i;
            args[3] = j;
         }
         else {
            LLVMValueRef index = lp_build_const_int32(gallivm, k);
            args[2] = LLVMBuildExtractElement(builder, i, index, "");
            args[3] = LLVMBuildExtractElement(builder, j, index, "");
         }

         LLVMBuildCall(builder, function, args, Elements(args), "");

         tmps[k] = LLVMBuildLoad(builder, tmp_ptr, "");
      }

      lp_build_conv(gallivm,
                    lp_float32_vec4_type(),
                    type,
                    tmps, num_pixels, &res, 1);

      return res;
   }

   assert(0);
   return lp_build_undef(gallivm, type);
}
/**
 * Pack a single pixel.
 *
 * @param rgba 4 float vector with the unpacked components.
 *
 * XXX: This is mostly for reference and testing -- operating a single pixel at
 * a time is rarely if ever needed.
 */
LLVMValueRef
lp_build_pack_rgba_aos(struct gallivm_state *gallivm,
                       const struct util_format_description *desc,
                       LLVMValueRef rgba)
{
   LLVMBuilderRef builder = gallivm->builder;
   LLVMTypeRef type;
   LLVMValueRef packed = NULL;
   LLVMValueRef swizzles[4];
   LLVMValueRef shifted, casted, scaled, unswizzled;
   LLVMValueRef shifts[4];
   LLVMValueRef scales[4];
   boolean normalized;
   unsigned shift;
   unsigned i, j;

   assert(desc->layout == UTIL_FORMAT_LAYOUT_PLAIN);
   assert(desc->block.width == 1);
   assert(desc->block.height == 1);

   type = LLVMIntTypeInContext(gallivm->context, desc->block.bits);

   /* Unswizzle the color components into the source vector. */
   for (i = 0; i < 4; ++i) {
      for (j = 0; j < 4; ++j) {
         if (desc->swizzle[j] == i)
            break;
      }
      if (j < 4)
         swizzles[i] = lp_build_const_int32(gallivm, j);
      else
         swizzles[i] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
   }

   unswizzled = LLVMBuildShuffleVector(builder, rgba,
                                       LLVMGetUndef(LLVMVectorType(LLVMFloatTypeInContext(gallivm->context), 4)),
                                       LLVMConstVector(swizzles, 4), "");

   normalized = FALSE;
   shift = 0;
   for (i = 0; i < 4; ++i) {
      unsigned bits = desc->channel[i].size;

      if (desc->channel[i].type == UTIL_FORMAT_TYPE_VOID) {
         shifts[i] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
         scales[i] =  LLVMGetUndef(LLVMFloatTypeInContext(gallivm->context));
      }
      else {
         unsigned mask = (1 << bits) - 1;

         assert(desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED);
         assert(bits < 32);

         shifts[i] = lp_build_const_int32(gallivm, shift);

         if (desc->channel[i].normalized) {
            scales[i] = lp_build_const_float(gallivm, mask);
            normalized = TRUE;
         }
         else
            scales[i] = lp_build_const_float(gallivm, 1.0);
      }

      shift += bits;
   }

   if (normalized)
      scaled = LLVMBuildFMul(builder, unswizzled, LLVMConstVector(scales, 4), "");
   else
      scaled = unswizzled;

   casted = LLVMBuildFPToSI(builder, scaled, LLVMVectorType(LLVMInt32TypeInContext(gallivm->context), 4), "");

   shifted = LLVMBuildShl(builder, casted, LLVMConstVector(shifts, 4), "");
   
   /* Bitwise or all components */
   for (i = 0; i < 4; ++i) {
      if (desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED) {
         LLVMValueRef component = LLVMBuildExtractElement(builder, shifted,
                                               lp_build_const_int32(gallivm, i), "");
         if (packed)
            packed = LLVMBuildOr(builder, packed, component, "");
         else
            packed = component;
      }
   }

   if (!packed)
      packed = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));

   if (desc->block.bits < 32)
      packed = LLVMBuildTrunc(builder, packed, type, "");

   return packed;
}
示例#28
0
/**
 * Non-interleaved pack.
 *
 * This will move values as
 *
 *   lo =   __ l0 __ l1 __ l2 __..  __ ln
 *   hi =   __ h0 __ h1 __ h2 __..  __ hn
 *   res =  l0 l1 l2 .. ln h0 h1 h2 .. hn
 *
 * This will only change the number of bits the values are represented, not the
 * values themselves.
 *
 * It is assumed the values are already clamped into the destination type range.
 * Values outside that range will produce undefined results. Use
 * lp_build_packs2 instead.
 */
LLVMValueRef
lp_build_pack2(struct gallivm_state *gallivm,
               struct lp_type src_type,
               struct lp_type dst_type,
               LLVMValueRef lo,
               LLVMValueRef hi)
{
   LLVMBuilderRef builder = gallivm->builder;
#if HAVE_LLVM < 0x0207
   LLVMTypeRef src_vec_type = lp_build_vec_type(gallivm, src_type);
#endif
   LLVMTypeRef dst_vec_type = lp_build_vec_type(gallivm, dst_type);
   LLVMValueRef shuffle;
   LLVMValueRef res = NULL;

   assert(!src_type.floating);
   assert(!dst_type.floating);
   assert(src_type.width == dst_type.width * 2);
   assert(src_type.length * 2 == dst_type.length);

   /* Check for special cases first */
   if(util_cpu_caps.has_sse2 && src_type.width * src_type.length == 128) {
      switch(src_type.width) {
      case 32:
         if(dst_type.sign) {
#if HAVE_LLVM >= 0x0207
            res = lp_build_intrinsic_binary(builder, "llvm.x86.sse2.packssdw.128", dst_vec_type, lo, hi);
#else
            res = lp_build_intrinsic_binary(builder, "llvm.x86.sse2.packssdw.128", src_vec_type, lo, hi);
#endif
         }
         else {
            if (util_cpu_caps.has_sse4_1) {
               return lp_build_intrinsic_binary(builder, "llvm.x86.sse41.packusdw", dst_vec_type, lo, hi);
            }
            else {
               /* use generic shuffle below */
               res = NULL;
            }
         }
         break;

      case 16:
         if(dst_type.sign)
#if HAVE_LLVM >= 0x0207
            res = lp_build_intrinsic_binary(builder, "llvm.x86.sse2.packsswb.128", dst_vec_type, lo, hi);
#else
            res = lp_build_intrinsic_binary(builder, "llvm.x86.sse2.packsswb.128", src_vec_type, lo, hi);
#endif
         else
#if HAVE_LLVM >= 0x0207
            res = lp_build_intrinsic_binary(builder, "llvm.x86.sse2.packuswb.128", dst_vec_type, lo, hi);
#else
            res = lp_build_intrinsic_binary(builder, "llvm.x86.sse2.packuswb.128", src_vec_type, lo, hi);
#endif
         break;

      default:
         assert(0);
         return LLVMGetUndef(dst_vec_type);
         break;
      }

      if (res) {
         res = LLVMBuildBitCast(builder, res, dst_vec_type, "");
         return res;
      }
   }
/**
 * Unpack a single pixel into its RGBA components.
 *
 * @param desc  the pixel format for the packed pixel value
 * @param packed integer pixel in a format such as PIPE_FORMAT_B8G8R8A8_UNORM
 *
 * @return RGBA in a float[4] or ubyte[4] or ushort[4] vector.
 */
static INLINE LLVMValueRef
lp_build_unpack_arith_rgba_aos(struct gallivm_state *gallivm,
                               const struct util_format_description *desc,
                               LLVMValueRef packed)
{
   LLVMBuilderRef builder = gallivm->builder;
   LLVMValueRef shifted, casted, scaled, masked;
   LLVMValueRef shifts[4];
   LLVMValueRef masks[4];
   LLVMValueRef scales[4];

   boolean normalized;
   boolean needs_uitofp;
   unsigned shift;
   unsigned i;

   /* TODO: Support more formats */
   assert(desc->layout == UTIL_FORMAT_LAYOUT_PLAIN);
   assert(desc->block.width == 1);
   assert(desc->block.height == 1);
   assert(desc->block.bits <= 32);

   /* Do the intermediate integer computations with 32bit integers since it
    * matches floating point size */
   assert (LLVMTypeOf(packed) == LLVMInt32TypeInContext(gallivm->context));

   /* Broadcast the packed value to all four channels
    * before: packed = BGRA
    * after: packed = {BGRA, BGRA, BGRA, BGRA}
    */
   packed = LLVMBuildInsertElement(builder,
                                   LLVMGetUndef(LLVMVectorType(LLVMInt32TypeInContext(gallivm->context), 4)),
                                   packed,
                                   LLVMConstNull(LLVMInt32TypeInContext(gallivm->context)),
                                   "");
   packed = LLVMBuildShuffleVector(builder,
                                   packed,
                                   LLVMGetUndef(LLVMVectorType(LLVMInt32TypeInContext(gallivm->context), 4)),
                                   LLVMConstNull(LLVMVectorType(LLVMInt32TypeInContext(gallivm->context), 4)),
                                   "");

   /* Initialize vector constants */
   normalized = FALSE;
   needs_uitofp = FALSE;
   shift = 0;

   /* Loop over 4 color components */
   for (i = 0; i < 4; ++i) {
      unsigned bits = desc->channel[i].size;

      if (desc->channel[i].type == UTIL_FORMAT_TYPE_VOID) {
         shifts[i] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
         masks[i] = LLVMConstNull(LLVMInt32TypeInContext(gallivm->context));
         scales[i] =  LLVMConstNull(LLVMFloatTypeInContext(gallivm->context));
      }
      else {
         unsigned long long mask = (1ULL << bits) - 1;

         assert(desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED);

         if (bits == 32) {
            needs_uitofp = TRUE;
         }

         shifts[i] = lp_build_const_int32(gallivm, shift);
         masks[i] = lp_build_const_int32(gallivm, mask);

         if (desc->channel[i].normalized) {
            scales[i] = lp_build_const_float(gallivm, 1.0 / mask);
            normalized = TRUE;
         }
         else
            scales[i] =  lp_build_const_float(gallivm, 1.0);
      }

      shift += bits;
   }

   /* Ex: convert packed = {BGRA, BGRA, BGRA, BGRA}
    * into masked = {B, G, R, A}
    */
   shifted = LLVMBuildLShr(builder, packed, LLVMConstVector(shifts, 4), "");
   masked = LLVMBuildAnd(builder, shifted, LLVMConstVector(masks, 4), "");


   if (!needs_uitofp) {
      /* UIToFP can't be expressed in SSE2 */
      casted = LLVMBuildSIToFP(builder, masked, LLVMVectorType(LLVMFloatTypeInContext(gallivm->context), 4), "");
   } else {
      casted = LLVMBuildUIToFP(builder, masked, LLVMVectorType(LLVMFloatTypeInContext(gallivm->context), 4), "");
   }

   /* At this point 'casted' may be a vector of floats such as
    * {255.0, 255.0, 255.0, 255.0}.  Next, if the pixel values are normalized
    * we'll scale this to {1.0, 1.0, 1.0, 1.0}.
    */

   if (normalized)
      scaled = LLVMBuildFMul(builder, casted, LLVMConstVector(scales, 4), "");
   else
      scaled = casted;

   return scaled;
}
static void llvm_emit_tex(
	const struct lp_build_tgsi_action * action,
	struct lp_build_tgsi_context * bld_base,
	struct lp_build_emit_data * emit_data)
{
	struct gallivm_state * gallivm = bld_base->base.gallivm;
	LLVMValueRef args[7];
	unsigned c, sampler_src;
	struct radeon_llvm_context * ctx = radeon_llvm_context(bld_base);

	if (emit_data->inst->Texture.Texture == TGSI_TEXTURE_BUFFER) {
		switch (emit_data->inst->Instruction.Opcode) {
		case TGSI_OPCODE_TXQ: {
			struct radeon_llvm_context * ctx = radeon_llvm_context(bld_base);
			ctx->uses_tex_buffers = true;
			bool isEgPlus = (ctx->chip_class >= EVERGREEN);
			LLVMValueRef offset = lp_build_const_int32(bld_base->base.gallivm,
				isEgPlus ? 0 : 1);
			LLVMValueRef cvecval = llvm_load_const_buffer(bld_base, offset,
				LLVM_R600_BUFFER_INFO_CONST_BUFFER);
			if (!isEgPlus) {
				LLVMValueRef maskval[4] = {
					lp_build_const_int32(gallivm, 1),
					lp_build_const_int32(gallivm, 2),
					lp_build_const_int32(gallivm, 3),
					lp_build_const_int32(gallivm, 0),
				};
				LLVMValueRef mask = LLVMConstVector(maskval, 4);
				cvecval = LLVMBuildShuffleVector(gallivm->builder, cvecval, cvecval,
					mask, "");
			}
			emit_data->output[0] = cvecval;
			return;
		}
		case TGSI_OPCODE_TXF: {
			args[0] = LLVMBuildExtractElement(gallivm->builder, emit_data->args[0], lp_build_const_int32(gallivm, 0), "");
			args[1] = lp_build_const_int32(gallivm, R600_MAX_CONST_BUFFERS);
			emit_data->output[0] = build_intrinsic(gallivm->builder,
							"llvm.R600.load.texbuf",
							emit_data->dst_type, args, 2, LLVMReadNoneAttribute);
			if (ctx->chip_class >= EVERGREEN)
				return;
			ctx->uses_tex_buffers = true;
			LLVMDumpValue(emit_data->output[0]);
			emit_data->output[0] = LLVMBuildBitCast(gallivm->builder,
				emit_data->output[0], LLVMVectorType(bld_base->base.int_elem_type, 4),
				"");
			LLVMValueRef Mask = llvm_load_const_buffer(bld_base,
				lp_build_const_int32(gallivm, 0),
				LLVM_R600_BUFFER_INFO_CONST_BUFFER);
			Mask = LLVMBuildBitCast(gallivm->builder, Mask,
				LLVMVectorType(bld_base->base.int_elem_type, 4), "");
			emit_data->output[0] = lp_build_emit_llvm_binary(bld_base, TGSI_OPCODE_AND,
				emit_data->output[0],
				Mask);
			LLVMValueRef WComponent = LLVMBuildExtractElement(gallivm->builder,
				emit_data->output[0], lp_build_const_int32(gallivm, 3), "");
			Mask = llvm_load_const_buffer(bld_base, lp_build_const_int32(gallivm, 1),
				LLVM_R600_BUFFER_INFO_CONST_BUFFER);
			Mask = LLVMBuildExtractElement(gallivm->builder, Mask,
				lp_build_const_int32(gallivm, 0), "");
			Mask = LLVMBuildBitCast(gallivm->builder, Mask,
				bld_base->base.int_elem_type, "");
			WComponent = lp_build_emit_llvm_binary(bld_base, TGSI_OPCODE_OR,
				WComponent, Mask);
			emit_data->output[0] = LLVMBuildInsertElement(gallivm->builder,
				emit_data->output[0], WComponent, lp_build_const_int32(gallivm, 3), "");
			emit_data->output[0] = LLVMBuildBitCast(gallivm->builder,
				emit_data->output[0], LLVMVectorType(bld_base->base.elem_type, 4), "");
		}
			return;
		default:
			break;
		}
	}

	if (emit_data->inst->Instruction.Opcode == TGSI_OPCODE_TEX ||
		emit_data->inst->Instruction.Opcode == TGSI_OPCODE_TXP) {
		LLVMValueRef Vector[4] = {
			LLVMBuildExtractElement(gallivm->builder, emit_data->args[0],
				lp_build_const_int32(gallivm, 0), ""),
			LLVMBuildExtractElement(gallivm->builder, emit_data->args[0],
				lp_build_const_int32(gallivm, 1), ""),
			LLVMBuildExtractElement(gallivm->builder, emit_data->args[0],
				lp_build_const_int32(gallivm, 2), ""),
			LLVMBuildExtractElement(gallivm->builder, emit_data->args[0],
				lp_build_const_int32(gallivm, 3), ""),
		};
		switch (emit_data->inst->Texture.Texture) {
		case TGSI_TEXTURE_2D:
		case TGSI_TEXTURE_RECT:
			Vector[2] = Vector[3] = LLVMGetUndef(bld_base->base.elem_type);
			break;
		case TGSI_TEXTURE_1D:
			Vector[1] = Vector[2] = Vector[3] = LLVMGetUndef(bld_base->base.elem_type);
			break;
		default:
			break;
		}
		args[0] = lp_build_gather_values(gallivm, Vector, 4);
	} else {
		args[0] = emit_data->args[0];
	}

	assert(emit_data->arg_count + 2 <= Elements(args));

	for (c = 1; c < emit_data->arg_count; ++c)
		args[c] = emit_data->args[c];

	if (emit_data->inst->Instruction.Opcode == TGSI_OPCODE_TXF) {
		args[1] = LLVMBuildShl(gallivm->builder, args[1], lp_build_const_int32(gallivm, 1), "");
		args[2] = LLVMBuildShl(gallivm->builder, args[2], lp_build_const_int32(gallivm, 1), "");
		args[3] = LLVMBuildShl(gallivm->builder, args[3], lp_build_const_int32(gallivm, 1), "");
	}

	sampler_src = emit_data->inst->Instruction.NumSrcRegs-1;

	args[c++] = lp_build_const_int32(gallivm,
					emit_data->inst->Src[sampler_src].Register.Index + R600_MAX_CONST_BUFFERS);
	args[c++] = lp_build_const_int32(gallivm,
					emit_data->inst->Src[sampler_src].Register.Index);
	args[c++] = lp_build_const_int32(gallivm,
					emit_data->inst->Texture.Texture);

	if (emit_data->inst->Instruction.Opcode == TGSI_OPCODE_TXF &&
		(emit_data->inst->Texture.Texture == TGSI_TEXTURE_2D_MSAA ||
		emit_data->inst->Texture.Texture == TGSI_TEXTURE_2D_ARRAY_MSAA)) {

		switch (emit_data->inst->Texture.Texture) {
		case TGSI_TEXTURE_2D_MSAA:
			args[6] = lp_build_const_int32(gallivm, TGSI_TEXTURE_2D);
			break;
		case TGSI_TEXTURE_2D_ARRAY_MSAA:
			args[6] = lp_build_const_int32(gallivm, TGSI_TEXTURE_2D_ARRAY);
			break;
		default:
			break;
		}

		if (ctx->has_compressed_msaa_texturing) {
			LLVMValueRef ldptr_args[10] = {
				args[0], // Coord
				args[1], // Offset X
				args[2], // Offset Y
				args[3], // Offset Z
				args[4],
				args[5],
				lp_build_const_int32(gallivm, 1),
				lp_build_const_int32(gallivm, 1),
				lp_build_const_int32(gallivm, 1),
				lp_build_const_int32(gallivm, 1)
			};
			LLVMValueRef ptr = build_intrinsic(gallivm->builder,
				"llvm.R600.ldptr",
				emit_data->dst_type, ldptr_args, 10, LLVMReadNoneAttribute);
			LLVMValueRef Tmp = LLVMBuildExtractElement(gallivm->builder, args[0],
				lp_build_const_int32(gallivm, 3), "");
			Tmp = LLVMBuildMul(gallivm->builder, Tmp,
				lp_build_const_int32(gallivm, 4), "");
			LLVMValueRef ResX = LLVMBuildExtractElement(gallivm->builder, ptr,
				lp_build_const_int32(gallivm, 0), "");
			ResX = LLVMBuildBitCast(gallivm->builder, ResX,
				bld_base->base.int_elem_type, "");
			Tmp = LLVMBuildLShr(gallivm->builder, ResX, Tmp, "");
			Tmp = LLVMBuildAnd(gallivm->builder, Tmp,
				lp_build_const_int32(gallivm, 0xF), "");
			args[0] = LLVMBuildInsertElement(gallivm->builder, args[0], Tmp,
				lp_build_const_int32(gallivm, 3), "");
			args[c++] = lp_build_const_int32(gallivm,
				emit_data->inst->Texture.Texture);
		}
	}

	emit_data->output[0] = build_intrinsic(gallivm->builder,
					action->intr_name,
					emit_data->dst_type, args, c, LLVMReadNoneAttribute);

	if (emit_data->inst->Instruction.Opcode == TGSI_OPCODE_TXQ &&
		((emit_data->inst->Texture.Texture == TGSI_TEXTURE_CUBE_ARRAY ||
		emit_data->inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE_ARRAY)))
		if (emit_data->inst->Dst[0].Register.WriteMask & 4) {
			LLVMValueRef offset = lp_build_const_int32(bld_base->base.gallivm, 0);
			LLVMValueRef ZLayer = LLVMBuildExtractElement(gallivm->builder,
				llvm_load_const_buffer(bld_base, offset, CONSTANT_TXQ_BUFFER),
				lp_build_const_int32(gallivm, 0), "");

			emit_data->output[0] = LLVMBuildInsertElement(gallivm->builder, emit_data->output[0], ZLayer, lp_build_const_int32(gallivm, 2), "");
			struct radeon_llvm_context * ctx = radeon_llvm_context(bld_base);
			ctx->has_txq_cube_array_z_comp = true;
		}
}