MVertex_ptr MVs_Merge_R1R2(MVertex_ptr v1, MVertex_ptr v2, int topoflag) { int i, idx, gdim, gid; MFace_ptr face; MRegion_ptr region; Mesh_ptr mesh; List_ptr vfaces2, vregions2; mesh = MV_Mesh(v1); gid = MV_GEntID(v1); gdim = MV_GEntDim(v1); if (mesh != MF_Mesh(v2)) { MSTK_Report("MVs_Join","Vertices not from same mesh",MSTK_ERROR); return 0; } else if (topoflag) { /* make sure geometric model topology is not violated */ if (gid != MV_GEntID(v2) || gdim != MV_GEntDim(v2)) { MSTK_Report("MFs_Join","Faces not from same geometric entity",MSTK_ERROR); return 0; } } vfaces2 = MV_Faces(v2); if (vfaces2) { idx = 0; while ((face = List_Next_Entry(vfaces2,&idx))) MF_Replace_Vertex(face,v2,v1); List_Delete(vfaces2); } vregions2 = MV_Regions(v2); if (vregions2) { idx = 0; while ((region = List_Next_Entry(vregions2,&idx))) MR_Replace_Vertex(region,v2,v1); List_Delete(vregions2); } MV_Delete(v2,0); return v1; }
MVertex_ptr MVs_Merge_R3R4(MVertex_ptr v1, MVertex_ptr v2, int topoflag) { int idx, gdim, gid, nsets; MFace_ptr face; Mesh_ptr mesh; List_ptr vfaces2; MSet_ptr mset; mesh = MV_Mesh(v1); gid = MV_GEntID(v1); gdim = MV_GEntDim(v1); if (mesh != MF_Mesh(v2)) { MSTK_Report("MVs_Join","Vertices not from same mesh",MSTK_ERROR); return 0; } else if (topoflag) { /* Make sure model topology is not violated */ if (gid != MV_GEntID(v2) || gdim != MV_GEntDim(v2)) { MSTK_Report("MFs_Join","Faces not from same geometric entity",MSTK_ERROR); return 0; } } vfaces2 = MV_Faces(v2); if (vfaces2) { idx = 0; while ((face = List_Next_Entry(vfaces2,&idx))) MF_Replace_Vertex(face,v2,v1); List_Delete(vfaces2); } nsets = MESH_Num_MSets(mesh); if(nsets) { idx = 0; while ((mset = (MSet_ptr) MESH_Next_MSet(mesh,&idx))) { if (MSet_Contains(mset, v2)) { if(MSet_Contains(mset, v1)) MSet_Rem(mset, v2); else MSet_Replace(mset, v2, v1); } } } MV_Delete(v2,1); return v1; }
MVertex_ptr ME_Collapse(MEdge_ptr e, MVertex_ptr vkeep_in, int topoflag, List_ptr *deleted_entities) { MVertex_ptr vdel, vkeep, ev00, ev01, ev10, ev11, vert; MEdge_ptr edge, edge2, oldedges[3], nuedges[2]; MFace_ptr face, face2, rface1, rface2; MRegion_ptr reg, reg2; List_ptr vedges, efaces, eregs, fedges, rfaces, fverts1, fverts2, vfaces; int idx1, idx2, idx3, dir, status, nfe, nrf, allfound, degenerate; int i, j, nfe2, nfv1, nfv2; status = 1; if (vkeep_in == NULL) { vdel = ME_Vertex(e,0); vkeep = ME_Vertex(e,1); } else { vkeep = vkeep_in; vdel = ME_OppVertex(e,vkeep); } int dimkeep, dimdel; dimkeep = MV_GEntDim(vkeep); /* Model entity dim of vertex to keep */ dimdel = MV_GEntDim(vdel); /* Model entity dim of vertex to delete */ if (topoflag == 1) { if (dimkeep == dimdel) { if (MV_GEntID(vkeep) != MV_GEntID(vdel)) status = 0; /* cannot allow since it will cause a dimensional reduction in mesh */ } else if (dimdel < dimkeep) { if (vkeep_in == NULL) { /* If no preference was indicated on which vertex to retain, we can collapse in the other direction */ MVertex_ptr vtemp = vdel; vdel = vkeep; vkeep = vtemp; } else status = 0; /* can't reverse order or vertices and boundary of mesh will get messed up if we go through as is */ } } else if (vkeep_in == NULL) { /* If no preference was indicated for the kept vertex and topological conformity with the underlying geometric model was not requested, we prefer to keep an external boundary vertex over an interior vertex or interior boundary vertex. This is because it is more likely that the external boundary vertex would have a boundary condition applied to it. If a preference was indicated, we just have to respect that. */ int vdel_external = 0; /* Check if any edges connected to vdel have only one connected face */ vedges = MV_Edges(vdel); idx1 = 0; while ((edge = (MEdge_ptr) List_Next_Entry(vedges,&idx1))) { List_ptr efaces = ME_Faces(edge); int nef = List_Num_Entries(efaces); List_Delete(efaces); if (nef < 2) { vdel_external = 1; break; } } List_Delete(vedges); /* check if any face connected to vdel has only one region connected to it */ if (!vdel_external) { vfaces = MV_Faces(vdel); idx1 = 0; while ((face = (MFace_ptr) List_Next_Entry(vfaces,&idx1))) { List_ptr fregs = MF_Regions(face); int nfr = fregs ? List_Num_Entries(fregs) : 0; if (fregs) List_Delete(fregs); if (nfr == 1) { vdel_external = 0; break; } } List_Delete(vfaces); } if (vdel_external) { /* swap the vertices in the hope that vkeep is not also on an external boundary. Since we have to go through with the collapse anyway, there is no use of doing a detailed check for whether vkeep is also on an external boundary */ MVertex_ptr vtemp = vdel; vdel = vkeep; vkeep = vtemp; } } if (status == 0) return NULL; /* Cannot collapse due to constraints of topological conformity with geometric model */ *deleted_entities = List_New(10); /* Need to collect this in advance because the info gets messed up later */ efaces = ME_Faces(e); eregs = ME_Regions(e); /* Replace vdel with vkeep in all edges connected to vdel */ vedges = MV_Edges(vdel); idx1 = 0; while ((edge = List_Next_Entry(vedges,&idx1))) { ME_Replace_Vertex(edge,vdel,vkeep); } List_Delete(vedges); /* Remove edge 'e' from all faces connected to e */ /* This part of the code is using some reliance on the internal implementation of MF_Edges. While unlikely, it _might_ break if the innards of MF_Edges are changed */ idx1 = 0; while ((face = List_Next_Entry(efaces,&idx1))) { fedges = MF_Edges(face,1,0); nfe = List_Num_Entries(fedges); /* Find the edge before and after e in the face */ oldedges[0] = oldedges[2] = NULL; for (i = 0; i < nfe; i++) { edge = List_Entry(fedges,i); if (edge == e) continue; dir = MF_EdgeDir_i(face,i); if (ME_Vertex(edge,dir) == vkeep) oldedges[0] = edge; else if (ME_Vertex(edge,!dir) == vkeep) oldedges[2] = edge; } oldedges[1] = e; nuedges[0] = oldedges[0]; nuedges[1] = oldedges[2]; /* Replace oldedges[0], oldedges[1] (=e), oldedges[2] with oldedges[0], oldedges[2] since e is degenerate */ MF_Replace_Edges(face,3,oldedges,2,nuedges); List_Delete(fedges); } /* Delete topologically degenerate regions */ /* Defined as two faces of the regions having the same vertices */ if (eregs) { idx1 = 0; while ((reg = List_Next_Entry(eregs,&idx1))) { rfaces = MR_Faces(reg); nrf = List_Num_Entries(rfaces); if (nrf == 4) { List_ptr rverts = MR_Vertices(reg); if (List_Num_Entries(rverts) == 4) { MR_Delete(reg,0); /* This is a tet - it will become degenerate */ } List_Delete(rverts); } else { degenerate = 0; for (i = 0; i < nrf; i++) { rface1 = List_Entry(rfaces,i); fverts1 = MF_Vertices(rface1,1,0); nfv1 = List_Num_Entries(fverts1); for (j = i+1; j < nrf; j++) { rface2 = List_Entry(rfaces,j); fverts2 = MF_Vertices(rface2,1,0); nfv2 = List_Num_Entries(fverts2); if (nfv1 != nfv2) { List_Delete(fverts2); continue; /* can't be exactly coincident */ } allfound = 1; idx2 = 0; while ((vert = List_Next_Entry(fverts2,&idx2))) { if (!List_Contains(fverts1,vert)) { allfound = 0; break; } } List_Delete(fverts2); if (allfound) { degenerate = 1; break; } } /* for (j = i+1 ... */ List_Delete(fverts1); if (degenerate) break; } /* for (i = 0; i < nrf;.... */ if (degenerate) { List_Add(*deleted_entities,reg); MR_Delete(reg,0); } } /* if (nrf == 4) .. else ... */ List_Delete(rfaces); } /* while ((reg = ...)) */ } /* Delete topologically degenerate faces */ if (efaces) { idx1 = 0; while ((face = List_Next_Entry(efaces,&idx1))) { fedges = MF_Edges(face,1,0); if (List_Num_Entries(fedges) == 2) { /* Disconnect the regions from the face before deleting */ List_ptr fregs = MF_Regions(face); if (fregs) { idx2 = 0; while ((reg = List_Next_Entry(fregs,&idx2))) MR_Rem_Face(reg,face); List_Delete(fregs); } List_Add(*deleted_entities,face); MF_Delete(face,0); } List_Delete(fedges); } List_Delete(efaces); } /* Now merge edges which have the same end vertices */ /* Prefer to preserve edges on external boundaries over internal edges */ vedges = MV_Edges(vkeep); idx1 = 0; while ((edge = List_Next_Entry(vedges,&idx1))) { if (edge == e) continue; ev00 = ME_Vertex(edge,0); ev01 = ME_Vertex(edge,1); idx2 = 0; while ((edge2 = List_Next_Entry(vedges,&idx2))) { if (edge == e || edge == edge2) continue; ev10 = ME_Vertex(edge2,0); ev11 = ME_Vertex(edge2,1); if ((ev00 == ev10 && ev01 == ev11) || (ev00 == ev11 && ev10 == ev01)) { int external_edge, external_edge2; int edim = 4; external_edge = 0; edim = ME_GEntDim(edge); if (edim == 1 || edim == 2 || edim == 4) { /* check if external edge */ efaces = ME_Faces(edge); int nef = List_Num_Entries(efaces); if (nef == 1) { external_edge = 1; } else { idx3 = 0; while ((face = List_Next_Entry(efaces,&idx2))) { List_ptr fregs = MF_Regions(face); int nfr = fregs ? List_Num_Entries(fregs) : 0; if (fregs) List_Delete(fregs); if (nfr == 1) { external_edge = 1; break; } } } List_Delete(efaces); } external_edge2 = 0; edim = ME_GEntDim(edge2); if (edim == 1 || edim == 2 || edim == 4) { /* check if external edge */ efaces = ME_Faces(edge2); int nef = List_Num_Entries(efaces); if (nef == 1) { external_edge2 = 1; } else { idx3 = 0; while ((face = List_Next_Entry(efaces,&idx2))) { List_ptr fregs = MF_Regions(face); int nfr = fregs ? List_Num_Entries(fregs) : 0; if (fregs) List_Delete(fregs); if (nfr == 1) { external_edge2 = 1; break; } } } List_Delete(efaces); } /* If edge2 is not external or both edges are external, go ahead and merge (edge2 will be deleted subject to topological checks if topoflag is 1) */ if (!external_edge2 || (external_edge && external_edge2)) { MEs_Merge(edge,edge2,topoflag); List_Rem(vedges,edge2); List_Add(*deleted_entities,edge2); break; } } } } List_Delete(vedges); /* Merge faces with the same set of edges */ vfaces = MV_Faces(vkeep); if (vfaces) { idx1 = 0; while ((face = List_Next_Entry(vfaces,&idx1))) { fedges = MF_Edges(face,1,0); nfe = List_Num_Entries(fedges); idx2 = 0; while ((face2 = List_Next_Entry(vfaces,&idx2))) { List_ptr fedges2; if (face2 == face) continue; fedges2 = MF_Edges(face2,1,0); nfe2 = List_Num_Entries(fedges2); if (nfe != nfe2) { List_Delete(fedges2); continue; } allfound = 1; for (i = 0; i < nfe2; i++) { edge = List_Entry(fedges2,i); if (!List_Contains(fedges,edge)) { allfound = 0; break; } } List_Delete(fedges2); if (allfound) { List_ptr fregs = MF_Regions(face); int external_face = fregs ? (List_Num_Entries(fregs) == 1) : 0; if (fregs) List_Delete(fregs); List_ptr fregs2 = MF_Regions(face2); int external_face2 = fregs2 ? (List_Num_Entries(fregs2) == 1) : 0; if (fregs2) List_Delete(fregs2); /* Proceed with merge (which will delete face2) only if face2 is not an external face or both face and face2 are external */ if (!external_face2 || (external_face && external_face2)) { MFs_Merge(face,face2,topoflag); List_Rem(vfaces,face2); List_Add(*deleted_entities,face2); break; } } } /* while (face2 = List_Next_Entry(vfaces,... */ List_Delete(fedges); } /* while (face = List_Next_Entry(vfaces,... */ List_Delete(vfaces); } /* Now actually delete the collapse edge and the to-be-merged vertex */ ME_Delete(e,0); List_Add(*deleted_entities,e); MV_Delete(vdel,0); List_Add(*deleted_entities,vdel); if (eregs) { idx1 = 0; while ((reg = List_Next_Entry(eregs,&idx1))) MR_Update_ElementType(reg); List_Delete(eregs); } return vkeep; }
void MESH_Renumber(Mesh_ptr mesh, int renum_type, MType mtype) { MVertex_ptr mv, v0=NULL; MEdge_ptr me, e0=NULL; MFace_ptr mf, f0=NULL; MRegion_ptr mr, r0=NULL; int idx, idx2, idx3; int i, j; int done; MAttrib_ptr vidatt; List_ptr vlist; double xyz[3]; double rval; int bandwidth, maxbandwidth1, maxbandwidth2; double avebandwidth1, avebandwidth2; void *pval; if (renum_type == 0) { if (mtype == MVERTEX || mtype == MALLTYPE) { int nv = 0; idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) MV_Set_ID(mv,++nv); } if (mtype == MEDGE || mtype == MALLTYPE) { int ne = 0; idx = 0; while ((me = MESH_Next_Edge(mesh,&idx))) ME_Set_ID(me,++ne); } if (mtype == MFACE || mtype == MALLTYPE) { int nf = 0; idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) MF_Set_ID(mf,++nf); } if (mtype == MREGION || mtype == MALLTYPE) { int nr = 0; idx = 0; while ((mr = MESH_Next_Region(mesh,&idx))) MR_Set_ID(mr,++nr); } } else if (renum_type == 1) { double minx, miny, minz; int minid, maxid; int *nadj, *newmap, *adj, *offset, nconn; int nalloc, depth, maxwidth; #ifdef MSTK_USE_MARKERS int mkid = MSTK_GetMarker(); #else MAttrib_ptr mkatt = MAttrib_New(mesh, "mkatt", INT, MALLTYPE); #endif if (mtype == MVERTEX || mtype == MALLTYPE) { int nv = MESH_Num_Vertices(mesh); /* Compute a graph of vertex connections across elements (faces for surface meshes, regions for solid meshes */ /* Start with the vertex in the lower leftmost corner */ minx = miny = minz = 1.0e+12; v0 = NULL; idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) { MV_Coords(mv,xyz); if (xyz[0] <= minx && xyz[1] <= miny && xyz[2] <= minz) { minx = xyz[0]; miny = xyz[1]; minz = xyz[2]; v0 = mv; } } nadj = (int *) malloc(nv*sizeof(int)); nalloc = nv*5; adj = (int *) malloc(nalloc*sizeof(int)); if (!MESH_Num_Regions(mesh)) { int nentries = 0; i = 0; idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) { List_ptr vfaces, adjvlist; MFace_ptr vf; MVertex_ptr adjv; adjvlist = List_New(0); vfaces = MV_Faces(mv); idx2 = 0; while ((vf = List_Next_Entry(vfaces,&idx2))) { List_ptr fverts = MF_Vertices(vf,1,0); idx3 = 0; while ((adjv = List_Next_Entry(fverts,&idx3))) { if (adjv != mv) { int vmarked; #ifdef MSTK_USE_MARKERS vmarked = MEnt_IsMarked(adjv,mkid); #else MEnt_Get_AttVal(adjv, mkatt, &vmarked, &rval, &pval); #endif if (!vmarked) { List_Add(adjvlist,adjv); #ifdef MSTK_USE_MARKERS MEnt_Mark(adjv,mkid); #else MEnt_Set_AttVal(adjv, mkatt, 1, 0.0, NULL); #endif } } } List_Delete(fverts); } List_Delete(vfaces); #ifdef MSTK_USE_MARKERS List_Unmark(adjvlist,mkid); #endif nadj[i] = List_Num_Entries(adjvlist); if (nentries+nadj[i] > nalloc) { nalloc *= 2; adj = (int *) realloc(adj,nalloc*sizeof(int)); } idx2 = 0; while ((adjv = List_Next_Entry(adjvlist,&idx2))) adj[nentries++] = MV_ID(adjv)-1; List_Delete(adjvlist); i++; } } else { int nentries = 0; i = 0; idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) { List_ptr vregions, adjvlist; MRegion_ptr vr; MVertex_ptr adjv; adjvlist = List_New(0); vregions = MV_Regions(mv); idx2 = 0; while ((vr = List_Next_Entry(vregions,&idx2))) { List_ptr rverts = MR_Vertices(vr); idx3 = 0; while ((adjv = List_Next_Entry(rverts,&idx3))) { if (adjv != mv) { int vmarked; #ifdef MSTK_USE_MARKERS vmarked = MEnt_IsMarked(adjv,mkid); #else MEnt_Get_AttVal(adjv, mkatt, &vmarked, &rval, &pval); #endif if (!vmarked) { List_Add(adjvlist,adjv); #ifdef MSTK_USE_MARKERS MEnt_Mark(adjv,mkid); #else MEnt_Set_AttVal(adjv, mkatt, 1, 0.0, NULL); #endif } } } List_Delete(rverts); } List_Delete(vregions); #ifdef MSTK_USE_MARKERS List_Unmark(adjvlist,mkid); #endif nadj[i] = List_Num_Entries(adjvlist); if (nentries+nadj[i] > nalloc) { nalloc *= 2; adj = (int *) realloc(adj,nalloc*sizeof(int)); } idx2 = 0; while ((adjv = List_Next_Entry(adjvlist,&idx2))) adj[nentries++] = MV_ID(adjv)-1; List_Delete(adjvlist); i++; } } /* Compute offsets into adj array */ offset = (int *) malloc(nv*sizeof(int)); offset[0] = 0; for (i = 1; i < nv; i++) offset[i] = offset[i-1] + nadj[i-1]; /* Compute maximum bandwidth before renumbering */ maxbandwidth1 = 0; avebandwidth1 = 0; for (i = 0; i < nv; i++) { int off = offset[i]; int curid = i; for (j = 0; j < nadj[i]; j++) { int adjid = adj[off+j]; int diff = abs(adjid-curid); maxbandwidth1 = (diff > maxbandwidth1) ? diff : maxbandwidth1; avebandwidth1 += diff; nconn++; } } nconn = offset[nv-1]+nadj[nv-1]; avebandwidth1 /= nconn; fprintf(stderr, "Ave vertex ID difference on elements before renumbering: %-lf\n", avebandwidth1); fprintf(stderr, "Max vertex ID difference on elements before renumbering: %-d\n", maxbandwidth1); fprintf(stderr,"\n"); newmap = (int *) malloc(nv*sizeof(int)); Graph_Renumber_GPS(nv, MV_ID(v0)-1, nadj, adj, newmap, &depth, &maxwidth); /* Compute bandwidth after renumbering */ maxbandwidth2 = 0; avebandwidth2 = 0; for (i = 0; i < nv; i++) { int off = offset[i]; int curid = newmap[i]; for (j = 0; j < nadj[i]; j++) { int adjid = newmap[adj[off+j]]; int diff = abs(adjid-curid); maxbandwidth2 = (diff > maxbandwidth2) ? diff : maxbandwidth2; avebandwidth2 += diff; nconn++; } } nconn = offset[nv-1]+nadj[nv-1]; avebandwidth2 /= nconn; if (maxbandwidth2 < maxbandwidth1 && avebandwidth2 < avebandwidth1) { /* Renumber */ idx = 0; i = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) { MV_Set_ID(mv,newmap[i]+1); i++; } fprintf(stderr, "Ave vertex ID difference on elements after renumbering: %-lf\n", avebandwidth2); fprintf(stderr, "Max vertex ID difference on elements after renumbering: %-d\n", maxbandwidth2); } else { nv = 0; idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) MV_Set_ID(mv,++nv); fprintf(stderr,"Bandwidth did not improve. Keeping old numbering with gaps eliminated\n"); } fprintf(stderr,"\n\n\n"); free(nadj); free(adj); free(offset); free(newmap); } /* Reorder edges according to a breadth first algorithm applied to edges (differs from RCM in that it does not add adjacent nodes in ascending order of their valence) */ if (mtype == MEDGE || mtype == MALLTYPE) { int ne = MESH_Num_Edges(mesh); MEdge_ptr ve; List_ptr elist; /************************* renumbering code ****************************/ ne = MESH_Num_Edges(mesh); if (mtype == MALLTYPE) { /* RCM algorithm already applied on the vertices. Use an edge connected to the starting vertex as the first edge */ List_ptr vedges = MV_Edges(v0); e0 = List_Entry(vedges,0); List_Delete(vedges); } else { /* Find the edge whose mid point is a minimum point */ minx = miny = minz = 1.0e+12; e0 = NULL; idx = 0; while ((me = MESH_Next_Edge(mesh,&idx))) { double exyz[2][3]; MV_Coords(ME_Vertex(me,0),exyz[0]); MV_Coords(ME_Vertex(me,1),exyz[1]); xyz[0] = (exyz[0][0]+exyz[1][0])/2.0; xyz[1] = (exyz[0][1]+exyz[1][1])/2.0; xyz[2] = (exyz[0][2]+exyz[1][2])/2.0; if (xyz[0] < minx && xyz[1] < miny && xyz[2] < minz) { minx = xyz[0]; miny = xyz[1]; minz = xyz[2]; e0 = me; } } } nadj = (int *) malloc(ne*sizeof(int)); nalloc = ne*5; adj = (int *) malloc(nalloc*sizeof(int)); if (!MESH_Num_Regions(mesh)) { int nentries = 0; i = 0; idx = 0; while ((me = MESH_Next_Edge(mesh,&idx))) { List_ptr efaces, adjelist; MFace_ptr ef; MEdge_ptr adje; adjelist = List_New(0); efaces = ME_Faces(me); idx2 = 0; while ((ef = List_Next_Entry(efaces,&idx2))) { List_ptr fedges = MF_Edges(ef,1,0); idx3 = 0; while ((adje = List_Next_Entry(fedges,&idx3))) { if (adje != me) { int emarked; #ifdef MSTK_USE_MARKERS emarked = MEnt_IsMarked(adje,mkid); #else MEnt_Get_AttVal(adje, mkatt, &emarked, &rval, &pval); #endif if (!emarked) { List_Add(adjelist,adje); #ifdef MSTK_USE_MARKERS MEnt_Mark(adje,mkid); #else MEnt_Set_AttVal(adje, mkatt, 1, 0.0, NULL); #endif } } } List_Delete(fedges); } List_Delete(efaces); #ifdef MSTK_USE_MARKERS List_Unmark(adjelist,mkid); #endif nadj[i] = List_Num_Entries(adjelist); if (nentries+nadj[i] > nalloc) { nalloc *= 2; adj = (int *) realloc(adj,nalloc*sizeof(int)); } idx2 = 0; while ((adje = List_Next_Entry(adjelist,&idx2))) adj[nentries++] = ME_ID(adje)-1; List_Delete(adjelist); i++; } } else { int nentries = 0; i = 0; idx = 0; while ((me = MESH_Next_Edge(mesh,&idx))) { List_ptr eregions, adjelist; MRegion_ptr er; MEdge_ptr adje; adjelist = List_New(0); eregions = ME_Regions(me); idx2 = 0; while ((er = List_Next_Entry(eregions,&idx2))) { List_ptr redges = MR_Edges(er); idx3 = 0; while ((adje = List_Next_Entry(redges,&idx3))) { if (adje != me) { int emarked; #ifdef MSTK_USE_MARKERS emarked = MEnt_IsMarked(adje,mkid); #else MEnt_Get_AttVal(adje, mkatt, &emarked, &rval, &pval); #endif if (!emarked) { List_Add(adjelist,adje); #ifdef MSTK_USE_MARKERS MEnt_Mark(adje,mkid); #else MEnt_Set_AttVal(adje, mkatt, 1, 0.0, NULL); #endif } } } List_Delete(redges); } List_Delete(eregions); #ifdef MSTK_USE_MARKERS List_Unmark(adjelist,mkid); #endif nadj[i] = List_Num_Entries(adjelist); if (nentries+nadj[i] > nalloc) { nalloc *= 2; adj = (int *) realloc(adj,nalloc*sizeof(int)); } idx2 = 0; while ((adje = List_Next_Entry(adjelist,&idx2))) adj[nentries++] = ME_ID(adje)-1; List_Delete(adjelist); i++; } } /* Compute offsets into adj array */ offset = (int *) malloc(ne*sizeof(int)); offset[0] = 0; for (i = 1; i < ne; i++) offset[i] = offset[i-1] + nadj[i-1]; /* Compute maximum bandwidth before renumbering */ maxbandwidth1 = 0; avebandwidth1 = 0; for (i = 0; i < ne; i++) { int off = offset[i]; int curid = i; for (j = 0; j < nadj[i]; j++) { int adjid = adj[off+j]; int diff = abs(adjid-curid); maxbandwidth1 = (diff > maxbandwidth1) ? diff : maxbandwidth1; avebandwidth1 += diff; nconn++; } } nconn = offset[ne-1]+nadj[ne-1]; avebandwidth1 /= nconn; fprintf(stderr, "Ave edge ID difference on elements before renumbering: %-lf\n", avebandwidth1); fprintf(stderr, "Max edge ID difference on elements before renumbering: %-d\n", maxbandwidth1); fprintf(stderr,"\n"); /* Call Graph Renumbering algorithm */ newmap = (int *) malloc(ne*sizeof(int)); Graph_Renumber_GPS(ne, ME_ID(e0)-1, nadj, adj, newmap, &depth, &maxwidth); /* Compute bandwidth after renumbering */ maxbandwidth2 = 0; avebandwidth2 = 0; for (i = 0; i < ne; i++) { int off = offset[i]; int curid = newmap[i]; for (j = 0; j < nadj[i]; j++) { int adjid = newmap[adj[off+j]]; int diff = abs(adjid-curid); maxbandwidth2 = (diff > maxbandwidth2) ? diff : maxbandwidth2; avebandwidth2 += diff; nconn++; } } nconn = offset[ne-1]+nadj[ne-1]; avebandwidth2 /= nconn; if (maxbandwidth2 < maxbandwidth1 && avebandwidth2 < avebandwidth1) { /* Renumber */ idx = 0; i = 0; while ((me = MESH_Next_Edge(mesh,&idx))) { ME_Set_ID(me,newmap[i]+1); i++; } fprintf(stderr, "Ave edge ID difference on elements after renumbering: %-lf\n", avebandwidth2); fprintf(stderr, "Max edge ID difference on elements after renumbering: %-d\n", maxbandwidth2); } else { ne = 0; idx = 0; while ((me = MESH_Next_Edge(mesh,&idx))) ME_Set_ID(me,++ne); fprintf(stderr,"Bandwidth did not improve. Keeping old numbering with gaps eliminated\n"); } fprintf(stderr,"\n\n\n"); free(nadj); free(adj); free(offset); free(newmap); } /* Reorder faces according to a breadth first algorithm applied to edges (differs from RCM in that it does not add adjacent graph nodes in ascending order of their valence) */ if (mtype == MFACE || mtype == MALLTYPE) { int nf = MESH_Num_Faces(mesh); if (mtype == MALLTYPE) { /* RCM algorithm already applied on the vertices. Use an edge connected to the starting vertex as the first edge */ List_ptr vfaces = MV_Faces(v0); f0 = List_Entry(vfaces,0); List_Delete(vfaces); } else { /* Find the face whose mid point is a minimum point */ minx = miny = minz = 1.0e+12; f0 = NULL; idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) { double fxyz[MAXPV2][3]; int nfv; MF_Coords(mf,&nfv,fxyz); xyz[0] = fxyz[0][0]; xyz[1] = fxyz[0][1]; xyz[2] = fxyz[0][2]; for (i = 1; i < nfv; i++) { xyz[0] += fxyz[i][0]; xyz[1] += fxyz[i][1]; xyz[2] += fxyz[i][2]; } xyz[0] /= nfv; xyz[1] /= nfv; xyz[2] /= nfv; if (xyz[0] < minx && xyz[1] < miny && xyz[2] < minz) { minx = xyz[0]; miny = xyz[1]; minz = xyz[2]; f0 = mf; } } } nadj = (int *) malloc(nf*sizeof(int)); nalloc = nf*5; adj = (int *) malloc(nalloc*sizeof(int)); if (!MESH_Num_Regions(mesh)) { int nentries = 0; i = 0; idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) { List_ptr vfaces, fverts, adjflist; MFace_ptr vf, adjf; MVertex_ptr fv; adjflist = List_New(0); fverts = MF_Vertices(mf,1,0); idx2 = 0; while ((fv = List_Next_Entry(fverts,&idx2))) { List_ptr vfaces = MV_Faces(fv); idx3 = 0; while ((adjf = List_Next_Entry(vfaces,&idx3))) { if (adjf != mf) { int fmarked; #ifdef MSTK_USE_MARKERS fmarked = MEnt_IsMarked(adjf,mkid); #else MEnt_Get_AttVal(adjf, mkatt, &fmarked, &rval, &pval); #endif if (fmarked) { List_Add(adjflist,adjf); #ifdef MSTK_USE_MARKERS MEnt_Mark(adjf,mkid); #else MEnt_Set_AttVal(adjf, mkatt, 1, 0.0, NULL); #endif } } } List_Delete(vfaces); } List_Delete(fverts); #ifdef MSTK_USE_MARKERS List_Unmark(adjflist,mkid); #endif nadj[i] = List_Num_Entries(adjflist); if (nentries+nadj[i] > nalloc) { nalloc *= 2; adj = (int *) realloc(adj,nalloc*sizeof(int)); } idx2 = 0; while ((adjf = List_Next_Entry(adjflist,&idx2))) adj[nentries++] = MF_ID(adjf)-1; List_Delete(adjflist); i++; } } else { int nentries = 0; i = 0; idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) { List_ptr fregions, adjflist; MRegion_ptr fr; MFace_ptr adjf; adjflist = List_New(0); fregions = MF_Regions(mf); idx2 = 0; while ((fr = List_Next_Entry(fregions,&idx2))) { List_ptr rfaces = MR_Faces(fr); idx3 = 0; while ((adjf = List_Next_Entry(rfaces,&idx3))) { if (adjf != mf) { int fmarked; #ifdef MSTK_USE_MARKERS fmarked = MEnt_IsMarked(adjf,mkid); #else MEnt_Get_AttVal(adjf, mkatt, &fmarked, &rval, &pval); #endif if (fmarked) { List_Add(adjflist,adjf); #ifdef MSTK_USE_MARKERS MEnt_Mark(adjf,mkid); #else MEnt_Set_AttVal(adjf, mkatt, 1, 0.0, NULL); #endif } } } List_Delete(rfaces); } List_Delete(fregions); #ifdef MSTK_USE_MARKERS List_Unmark(adjflist,mkid); #endif nadj[i] = List_Num_Entries(adjflist); if (nentries+nadj[i] > nalloc) { nalloc *= 2; adj = (int *) realloc(adj,nalloc*sizeof(int)); } idx2 = 0; while ((adjf = List_Next_Entry(adjflist,&idx2))) adj[nentries++] = MF_ID(adjf)-1; List_Delete(adjflist); i++; } } /* Compute offsets into adj array */ offset = (int *) malloc(nf*sizeof(int)); offset[0] = 0; for (i = 1; i < nf; i++) offset[i] = offset[i-1] + nadj[i-1]; /* Compute maximum bandwidth before renumbering */ maxbandwidth1 = 0; avebandwidth1 = 0; for (i = 0; i < nf; i++) { int off = offset[i]; int curid = i; for (j = 0; j < nadj[i]; j++) { int adjid = adj[off+j]; int diff = abs(adjid-curid); maxbandwidth1 = (diff > maxbandwidth1) ? diff : maxbandwidth1; avebandwidth1 += diff; nconn++; } } nconn = offset[nf-1]+nadj[nf-1]; avebandwidth1 /= nconn; if (MESH_Num_Regions(mesh)) { fprintf(stderr, "Ave face ID difference on elements before renumbering: %-lf\n", avebandwidth1); fprintf(stderr, "Max face ID difference on elements before renumbering: %-d\n", maxbandwidth1); } else { fprintf(stderr, "Ave face ID difference before renumbering: %-lf\n", avebandwidth1); fprintf(stderr, "Max face ID difference before renumbering: %-d\n", maxbandwidth1); } fprintf(stderr,"\n"); /* Call Graph Renumbering algorithm */ newmap = (int *) malloc(nf*sizeof(int)); Graph_Renumber_GPS(nf, MF_ID(f0)-1, nadj, adj, newmap, &depth, &maxwidth); /* Compute bandwidth after renumbering */ maxbandwidth2 = 0; avebandwidth2 = 0; for (i = 0; i < nf; i++) { int off = offset[i]; int curid = newmap[i]; for (j = 0; j < nadj[i]; j++) { int adjid = newmap[adj[off+j]]; int diff = abs(adjid-curid); maxbandwidth2 = (diff > maxbandwidth2) ? diff : maxbandwidth2; avebandwidth2 += diff; nconn++; } } nconn = offset[nf-1]+nadj[nf-1]; avebandwidth2 /= nconn; if (maxbandwidth2 < maxbandwidth1 && avebandwidth2 < avebandwidth1) { /* Renumber */ idx = 0; i = 0; while ((mf = MESH_Next_Face(mesh,&idx))) { MF_Set_ID(mf,newmap[i]+1); i++; } if (MESH_Num_Regions(mesh)) { fprintf(stderr, "Ave face ID difference on elements after renumbering: %-lf\n", avebandwidth2); fprintf(stderr, "Max face ID difference on elements after renumbering: %-d\n", maxbandwidth2); } else { fprintf(stderr, "Ave face ID difference after renumbering: %-lf\n", avebandwidth2); fprintf(stderr, "Max face ID difference after renumbering: %-d\n", maxbandwidth2); } } else { nf = 0; idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) MF_Set_ID(mf,++nf); fprintf(stderr,"Bandwidth did not improve. Keeping old numbering with gaps eliminated\n"); } fprintf(stderr,"\n\n\n"); free(nadj); free(adj); free(offset); free(newmap); } if (mtype == MREGION || mtype == MALLTYPE) { int nr = MESH_Num_Regions(mesh); if (nr) { if (mtype == MALLTYPE) { /* Renumbering algorithm already applied on the vertices. Use a region connected to the starting vertex as the first region */ List_ptr vregions = MV_Regions(v0); r0 = List_Entry(vregions,0); List_Delete(vregions); } else { /* Find the region whose center point is a minimum point */ minx = miny = minz = 1.0e+12; r0 = NULL; idx = 0; while ((mr = MESH_Next_Region(mesh,&idx))) { double rxyz[MAXPV3][3]; int nrv; MR_Coords(mr,&nrv,rxyz); xyz[0] = rxyz[0][0]; xyz[1] = rxyz[0][1]; xyz[2] = rxyz[0][2]; for (i = 1; i < nrv; i++) { xyz[0] += rxyz[i][0]; xyz[1] += rxyz[i][1]; xyz[2] += rxyz[i][2]; } xyz[0] /= nrv; xyz[1] /= nrv; xyz[2] /= nrv; if (xyz[0] < minx && xyz[1] < miny && xyz[2] < minz) { minx = xyz[0]; miny = xyz[1]; minz = xyz[2]; r0 = mr; } } } nadj = (int *) malloc(nr*sizeof(int)); nalloc = nr*5; adj = (int *) malloc(nalloc*sizeof(int)); int nentries = 0; i = 0; idx = 0; while ((mr = MESH_Next_Region(mesh,&idx))) { List_ptr vregions, rverts, adjrlist; MRegion_ptr vr, adjr; MVertex_ptr rv; adjrlist = List_New(0); rverts = MR_Vertices(mr); idx2 = 0; while ((rv = List_Next_Entry(rverts,&idx2))) { List_ptr vregions = MV_Regions(rv); idx3 = 0; while ((adjr = List_Next_Entry(vregions,&idx3))) { if (adjr != mr) { int rmarked; #ifdef MSTK_USE_MARKERS rmarked = MEnt_IsMarked(adjr,mkid); #else MEnt_Get_AttVal(adjr, mkatt, &rmarked, &rval, &pval); #endif List_Add(adjrlist,adjr); #ifdef MSTK_USE_MARKERS MEnt_Mark(adjr,mkid); #else MEnt_Set_AttVal(adjr, mkatt, 1, 0.0, NULL); #endif } } List_Delete(vregions); } List_Delete(rverts); #ifdef MSTK_USE_MARKERS List_Unmark(adjrlist,mkid); #endif nadj[i] = List_Num_Entries(adjrlist); if (nentries+nadj[i] > nalloc) { nalloc *= 2; adj = (int *) realloc(adj,nalloc*sizeof(int)); } idx2 = 0; while ((adjr = List_Next_Entry(adjrlist,&idx2))) adj[nentries++] = MR_ID(adjr)-1; List_Delete(adjrlist); i++; } /* Compute offsets into adj array */ offset = (int *) malloc(nr*sizeof(int)); offset[0] = 0; for (i = 1; i < nr; i++) offset[i] = offset[i-1] + nadj[i-1]; /* Compute maximum bandwidth before renumbering */ maxbandwidth1 = 0; avebandwidth1 = 0; for (i = 0; i < nr; i++) { int off = offset[i]; int curid = i; for (j = 0; j < nadj[i]; j++) { int adjid = adj[off+j]; int diff = abs(adjid-curid); maxbandwidth1 = (diff > maxbandwidth1) ? diff : maxbandwidth1; avebandwidth1 += diff; nconn++; } } nconn = offset[nr-1]+nadj[nr-1]; avebandwidth1 /= nconn; fprintf(stderr, "Ave region ID difference before renumbering: %-lf\n", avebandwidth1); fprintf(stderr, "Max region ID difference before renumbering: %-d\n", maxbandwidth1); fprintf(stderr,"\n"); /* Call Graph Renumbering algorithm */ newmap = (int *) malloc(nr*sizeof(int)); Graph_Renumber_GPS(nr, MR_ID(r0)-1, nadj, adj, newmap, &depth, &maxwidth); /* Compute bandwidth after renumbering */ maxbandwidth2 = 0; avebandwidth2 = 0; for (i = 0; i < nr; i++) { int off = offset[i]; int curid = newmap[i]; for (j = 0; j < nadj[i]; j++) { int adjid = newmap[adj[off+j]]; int diff = abs(adjid-curid); maxbandwidth2 = (diff > maxbandwidth2) ? diff : maxbandwidth2; avebandwidth2 += diff; nconn++; } } nconn = offset[nr-1]+nadj[nr-1]; avebandwidth2 /= nconn; if (maxbandwidth2 < maxbandwidth1 && avebandwidth2 < avebandwidth1) { /* Renumber */ idx = 0; i = 0; while ((mr = MESH_Next_Region(mesh,&idx))) { MR_Set_ID(mr,newmap[i]+1); i++; } fprintf(stderr, "Ave region ID difference after renumbering: %-lf\n", avebandwidth2); fprintf(stderr, "Max region ID difference after renumbering: %-d\n", maxbandwidth2); } else { nr = 0; idx = 0; while ((mr = MESH_Next_Region(mesh,&idx))) MR_Set_ID(mr,++nr); fprintf(stderr,"Bandwidth did not improve. Keeping old numbering with gaps eliminated\n"); } fprintf(stderr,"\n\n\n"); free(nadj); free(adj); free(offset); free(newmap); } } #ifdef MSTK_USE_MARKERS MSTK_FreeMarker(mkid); #endif } vidatt = MAttrib_New(mesh,"vidrcm",INT,MVERTEX); idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) { MEnt_Set_AttVal(mv,vidatt,MV_ID(mv),0.0,NULL); } /* We have to reset the max IDs stored in the mesh so that we can correctly assign IDs to new entities */ MESH_Reset_Cached_MaxIDs(mesh); return; }
List_ptr ME_Faces_R1R2(MEdge_ptr e) { int idx, idx1, idx2, found; MFace_ptr face, lstface; MRegion_ptr reg; List_ptr rfaces, vfaces1, efaces, vregs0, vregs1, cmnregs=NULL; efaces = List_New(0); vregs0 = MV_Regions(e->vertex[0]); vregs1 = MV_Regions(e->vertex[1]); if (vregs0 || vregs1) { if (vregs0 && vregs1) { cmnregs = List_New(0); idx = 0; while ((reg = List_Next_Entry(vregs0,&idx))) { if (List_Contains(vregs1,reg)) List_Add(cmnregs,reg); } } if (vregs0) List_Delete(vregs0); if (vregs1) List_Delete(vregs1); if (!List_Num_Entries(cmnregs)) { List_Delete(cmnregs); return NULL; } idx = 0; while ((reg = List_Next_Entry(cmnregs,&idx))) { rfaces = MR_Faces(reg); idx1 = 0; while ((face = List_Next_Entry(rfaces,&idx1))) { if (MF_UsesEntity(face,(MEntity_ptr) e,MEDGE)) { idx2 = 0; found = 0; while ((lstface = List_Next_Entry(efaces,&idx2))) { if (MFs_AreSame(face,lstface)) { found = 1; break; } } if (!found) List_Add(efaces,face); } } List_Delete(rfaces); } List_Delete(cmnregs); } else { /* Must be only faces are connected to edge */ vfaces1 = MV_Faces(e->vertex[0]); if (vfaces1) { idx = 0; while ((face = List_Next_Entry(vfaces1,&idx))) { if (MF_UsesEntity(face,e->vertex[1],MVERTEX)) List_Add(efaces,face); } } } if (List_Num_Entries(efaces)) return efaces; else { List_Delete(efaces); return NULL; } }
int MESH_BuildFaceClassfn(Mesh_ptr mesh, int use_geometry) { int i, j, k, idx, idx2, fnd, gfid, gfid2, gdim; int ngfaces, ngfalloc, grid0, grid1; int max_gface_id, processedmk, submk; int nfe, nef, nbf, nfr, nsub, *gfids, (*gfregids)[2]; double PI=3.141592, ang, COSSHARPANG; MEdge_ptr edge; MFace_ptr face, subface, adjface; MRegion_ptr freg0, freg1; List_ptr fregs, fedges, efaces, ebfaces, gffaces, subfaces; COSSHARPANG = cos(9*PI/12); /* 135 degrees */ /* Verify that mesh faces on the boundary have classification information; if not, assign all faces to the same model faces */ ngfaces = 0; ngfalloc = 10; gfids = (int *) malloc(ngfalloc*sizeof(int)); gfregids = (int (*)[2]) malloc(ngfalloc*sizeof(int [2])); /* Take stock of existing model face information */ max_gface_id = 0; idx = 0; while ((face = MESH_Next_Face(mesh,&idx))) { gdim = MF_GEntDim(face); if (gdim != 2) continue; gfid = MF_GEntID(face); if (gfid) { /* Has this model face been encountered? If not, add it to list of model faces */ for (i = 0, fnd = 0; i < ngfaces; i++) if (gfids[i] == gfid) { fnd = 1; break; } if (!fnd) { if (gfid > max_gface_id) max_gface_id = gfid; if (ngfalloc == ngfaces) { ngfalloc *= 2; gfids = (int *) realloc(gfids,ngfalloc*sizeof(int)); gfregids = (int (*)[2])realloc(gfregids,ngfalloc*sizeof(int [2])); } gfids[ngfaces] = gfid; gfregids[ngfaces][0] = gfregids[ngfaces][1] = 0; fregs = MF_Regions(face); if (fregs) { nfr = List_Num_Entries(fregs); freg0 = List_Entry(fregs,0); gfregids[ngfaces][0] = MR_GEntID(freg0); /* NOTE 1 (see EOF) */ if (nfr == 2) { freg1 = List_Entry(fregs,1); gfregids[ngfaces][1] = MR_GEntID(freg1); } List_Delete(fregs); } ngfaces++; } } } /* Build new model face information based on adjacent model region info */ idx = 0; while ((face = MESH_Next_Face(mesh,&idx))) { gdim = MF_GEntDim(face); gfid = MF_GEntID(face); /* Face has no classification? Assign classification info */ /* Face classified as interior face? Verify */ freg0 = freg1 = NULL; grid0 = grid1 = 0; fregs = MF_Regions(face); if (fregs) { nfr = List_Num_Entries(fregs); freg0 = List_Entry(fregs,0); grid0 = MR_GEntID(freg0); if (nfr == 2) { freg1 = List_Entry(fregs,1); grid1 = MR_GEntID(freg1); } List_Delete(fregs); } else nfr = 0; if (nfr == 2 && (grid0 == grid1)) { /* Interior face */ MF_Set_GEntDim(face,3); MF_Set_GEntID(face,grid0); } else { /* Boundary face */ if (gdim > 2 || (gdim == 2 && gfid <= 0)) { MF_Set_GEntDim(face,2); /* Check if this type of face with these adjacent regions has been encountered before; if it has, we just use the existing model face id */ for (i = 0, fnd = 0; i < ngfaces; i++) if ((gfregids[i][0] == grid0 && gfregids[i][1] == grid1) || (gfregids[i][0] == grid1 && gfregids[i][1] == grid0)) { fnd = 1; break; } if (fnd) MF_Set_GEntID(face,gfids[i]); else { max_gface_id++; MF_Set_GEntID(face,max_gface_id); if (ngfalloc == ngfaces) { ngfalloc *= 2; gfids = (int *) realloc(gfids,ngfalloc*sizeof(int)); gfregids = (int (*)[2]) realloc(gfregids,ngfalloc*sizeof(int [2])); } gfids[ngfaces] = max_gface_id; gfregids[ngfaces][0] = grid0; gfregids[ngfaces][1] = grid1; ngfaces++; } } } } if (use_geometry == 1) { /* Now assign model face IDs based on whether a sharp set of edges enclose a set of faces */ for (i = 0; i < ngfaces; i++) { /* Find all mesh faces with this model face id */ gffaces = List_New(10); idx = 0; while ((face = MESH_Next_Face(mesh,&idx))) { if (MF_GEntDim(face) == 2 && MF_GEntID(face) == gfids[i]) List_Add(gffaces,face); } /* Process faces of this list and subdivide them into subfaces */ /* The way we do that is 1) we put an unprocessed face from the original list in a subface list 2) we then add its neighboring faces to subface list if they are of the same color (same model face id) and do not have a sharp edge separating them from the current face 3) we then process the next face in the subface list 4) we are done if we cannot find any more neighbors of faces in the subface list to add to the subface list 5) we then repeat steps 1 through 4 until we are left with no more faces to process from the original list */ processedmk = MSTK_GetMarker(); nsub = 0; idx = 0; while ((face = List_Next_Entry(gffaces,&idx))) { if (MEnt_IsMarked(face,processedmk)) continue; /* Found a face in gffaces that has not been processed */ MEnt_Mark(face,processedmk); submk = MSTK_GetMarker(); subfaces = List_New(10); List_Add(subfaces,face); MEnt_Mark(face,submk); idx2 = 0; while ((subface = List_Next_Entry(subfaces,&idx2))) { gfid = MF_GEntID(subface); fedges = MF_Edges(subface,1,0); nfe = List_Num_Entries(fedges); for (j = 0; j < nfe; j++) { edge = List_Entry(fedges,j); efaces = ME_Faces(edge); nef = List_Num_Entries(efaces); ebfaces = List_New(nef); /* list of boundary faces cnctd 2 edge */ for (k = 0; k < nef; k++) { adjface = List_Entry(efaces,k); if (MF_GEntDim(adjface) == 2) List_Add(ebfaces,adjface); } List_Delete(efaces); nbf = List_Num_Entries(ebfaces); if (nbf == 2) { /* we might be on a model face or on a model edge */ adjface = List_Entry(ebfaces,0); if (adjface == subface) adjface = List_Entry(ebfaces,1); gfid2 = MF_GEntID(adjface); if (gfid == gfid2) { /* The two faces are of the same ID. If the angle between them is not sharp they can be classified as being on the same subface */ ang = MFs_DihedralAngle(subface,adjface,edge); if (ang <= COSSHARPANG) { /* Add face2 to subface list unless its already there */ if (!MEnt_IsMarked(adjface,submk)) { List_Add(subfaces,adjface); MEnt_Mark(adjface,submk); } } else { /* The two faces make a very sharp angle. We will consider the edge b/w them to be a model edge */ /* Tag the edge as being on a model edge (we don't know the model edge ID as yet) and continue */ ME_Set_GEntDim(edge,1); ME_Set_GEntID(edge,0); } } else { /* we reached a model edge */ /* Tag the edge as being on a model edge (we don't know the model edge ID as yet) and continue */ ME_Set_GEntDim(edge,1); ME_Set_GEntID(edge,0); } } else { /* we reached a a model edge */ /* Tag the edge as being on a model edge (we don't know the model edge ID as yet) and continue */ ME_Set_GEntDim(edge,1); ME_Set_GEntID(edge,0); } List_Delete(ebfaces); } /* Finished processing all neighbors of the face */ List_Delete(fedges); } /* Now we have a list of faces which we believe constitutes a model face by itself. If this is the first subface (which means it could also be the entire model face originally considered), leave the model face tag as it is. If not, assign the faces in the subface a new model face ID */ if (nsub != 0) { max_gface_id++; idx2 = 0; while ((subface = List_Next_Entry(subfaces,&idx2))) MF_Set_GEntID(subface,max_gface_id); } nsub++; /* Done with this subface */ idx2 = 0; while ((subface = List_Next_Entry(subfaces,&idx2))) { MEnt_Mark(subface,processedmk); MEnt_Unmark(subface,submk); } MSTK_FreeMarker(submk); List_Delete(subfaces); } List_Unmark(gffaces,processedmk); MSTK_FreeMarker(processedmk); List_Delete(gffaces); } } /* if use_geometry == 1 */ free(gfids); free(gfregids); return 1; }
int MESH_CheckTopo(Mesh_ptr mesh) { int valid = 1; char mesg[256], funcname[32] = "MESH_CheckTopo"; int idx1, idx2, idx3, idx4; MVertex_ptr mv; MEdge_ptr me, ve, fe, re; MFace_ptr mf, vf, ef, rf; MRegion_ptr mr, vr, er, fr; int found, done; int dir; int i, j, k; int nfe; int vid, eid, fid, rid; int gvid, geid, gfid, grid; int gvdim, gedim, gfdim, grdim; int maxiter = 1000; List_ptr vedges, vfaces, vregions; List_ptr efaces; List_ptr fverts, fedges, fregs, fregs1; List_ptr rverts, redges, rfaces; /*****************************************************************/ /* Vertices */ /*****************************************************************/ /* Check that edges connected to vertices reference the vertices */ /* Also check that the classification of the vertex is consistent with respect to the edge */ int first_unknown_classfn = 1; idx1 = 0; while ((mv = MESH_Next_Vertex(mesh,&idx1))) { #ifdef MSTK_HAVE_MPI if (MV_PType(mv) == PGHOST) continue; #endif vid = MV_ID(mv); gvdim = MV_GEntDim(mv); gvid = MV_GEntID(mv); if (gvdim == 4 && first_unknown_classfn) { sprintf(mesg, "Vertex %-d - classification unknown\n", vid); MSTK_Report(funcname, mesg, MSTK_WARN); first_unknown_classfn = 0; } vedges = MV_Edges(mv); if (!vedges) { sprintf(mesg,"Vertex %-d does not have any connected edges\n",vid); MSTK_Report(funcname,mesg,MSTK_WARN); continue; } idx2 = 0; while ((ve = List_Next_Entry(vedges,&idx2))) { eid = ME_ID(ve); if (ME_Vertex(ve,0) != mv && ME_Vertex(ve,1) != mv) { sprintf(mesg,"Vertex %-d connected to edge %-d but edge does not use vertex",vid,eid); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } } if (gvdim == 1) { /* If vertex is classified on a model edge, then it should be connected to two and only two edges that are classified on the same model edge */ int ne = 0; idx2 = 0; while ((ve = List_Next_Entry(vedges,&idx2))) { gedim = ME_GEntDim(ve); geid = ME_GEntID(ve); if (gedim == 1 && geid == gvid) ne++; } if (ne != 2) { sprintf(mesg,"Vertex %-d classified on model edge %-d but it is not \n connected to two edges classified on this model edge",vid,gvid); MSTK_Report(funcname,mesg,MSTK_WARN); } } List_Delete(vedges); if (gvdim == 2) { MEdge_ptr e0, ecur, enxt; MFace_ptr fcur; int flipped = 0; /* If vertex is classified on a model face, then we should be able to find a ring of faces classified on that model face */ vfaces = MV_Faces(mv); found = 0; idx2 = 0; while ((vf = List_Next_Entry(vfaces,&idx2))) { if (MF_GEntDim(vf) == 2) { found = 1; break; } } List_Delete(vfaces); if (!found) { sprintf(mesg,"Vertex %-d classified on model face %-d but could not \n find connected face classified on this model face",vid,gvid); MSTK_Report(funcname,mesg,MSTK_WARN); valid = 0; } fcur = vf; fedges = MF_Edges(fcur,1,mv); nfe = List_Num_Entries(fedges); e0 = List_Entry(fedges,0); ecur = e0; enxt = List_Entry(fedges,nfe-1); List_Delete(fedges); done = 0; i = 0; while (!done) { ecur = enxt; efaces = ME_Faces(ecur); found = 0; idx3 = 0; while ((ef = List_Next_Entry(efaces,&idx3))) { if (ef != fcur && MF_GEntDim(ef) == 2 && MF_GEntID(ef) == gvid) { fcur = ef; found = 1; break; } } List_Delete(efaces); if (!found) { sprintf(mesg,"Could not find next boundary face connected to vertex %-d",vid); MSTK_Report(funcname,mesg,MSTK_WARN); valid = 0; break; } fedges = MF_Edges(fcur,1,mv); nfe = List_Num_Entries(fedges); if (List_Entry(fedges,0) == ecur) enxt = List_Entry(fedges,nfe-1); else if (List_Entry(fedges,nfe-1) == ecur) { enxt = List_Entry(fedges,0); flipped = 1; } else { sprintf(mesg,"Could not find next edge while traversing around vertex %-d on model face %-d",vid,gvid); MSTK_Report(funcname,mesg,MSTK_ERROR); } List_Delete(fedges); if (enxt == e0) done = 1; if (++i > maxiter) break; } if (!done) { sprintf(mesg,"Vertex %-d classified on model face %-d but could not find ring of faces classified on this model face",vid,gvid); MSTK_Report(funcname,mesg,MSTK_WARN); } if (done && flipped) { List_ptr fregs = MF_Regions(fcur); if (List_Num_Entries(fregs) < 2) { sprintf(mesg,"Inconsistent orientations of boundary faces around vertex %-d",vid); MSTK_Report(funcname,mesg,MSTK_WARN); } if (fregs) List_Delete(fregs); } } } /* while ((mv = MESH_Next_Vertex(mesh,&idx1))) */ /*****************************************************************/ /* Edges */ /*****************************************************************/ first_unknown_classfn = 1; idx1 = 0; while ((me = MESH_Next_Edge(mesh,&idx1))) { #ifdef MSTK_HAVE_MPI if (ME_PType(me) == PGHOST) continue; #endif eid = ME_ID(me); gedim = ME_GEntDim(me); geid = ME_GEntID(me); if (gedim == 4 && first_unknown_classfn) { sprintf(mesg, "Edge %-d - unknown classification", eid); MSTK_Report(funcname, mesg, MSTK_WARN); first_unknown_classfn = 0; } if (ME_Vertex(me,0) == ME_Vertex(me,1)) { sprintf(mesg,"Edge %-d has repeated vertices",eid); MSTK_Report(funcname,mesg,MSTK_ERROR); } for (i = 0; i < 2; i++) { MVertex_ptr ev = ME_Vertex(me,i); vid = MV_ID(ev); gvid = MV_GEntID(ev); gvdim = MV_GEntDim(ev); if (gvdim != 4 && gvdim != 4) { /* vertex and edge classifn is known */ if (gedim < gvdim) { sprintf(mesg,"Edge %-d classified on lower dimensional entity than connected vertex %-d",eid,vid); MSTK_Report(funcname,mesg,MSTK_WARN); valid = 0; } else if (gedim == gvdim && geid != gvid) { sprintf(mesg,"Edge %-d and its vertex %-d classified on different entities of the same dimension",eid,vid); MSTK_Report(funcname,mesg,MSTK_WARN); valid = 0; } } vedges = MV_Edges(ev); if (!List_Contains(vedges,me)) { sprintf(mesg,"Edge %-d sees vertex %-d but not vice versa",eid,vid); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } List_Delete(vedges); if (gedim == 2) { MFace_ptr ebf[2], fcur, fnxt; MRegion_ptr rcur; int nf, nfr; List_ptr eregs; /* Edge is classified on model face - it should be connected to two and only two faces also classified on this model face */ ebf[0] = ebf[1] = NULL; nf = 0; efaces = ME_Faces(me); idx2 = 0; while ((ef = List_Next_Entry(efaces,&idx2))) { fid = MF_ID(ef); if (MF_GEntDim(ef) == 2) { nf++; if (gedim == 2 && MF_GEntID(ef) != geid) { sprintf(mesg,"Face %-d connected to edge %-d classified on different model face",fid,eid); MSTK_Report(funcname,mesg,MSTK_WARN); valid = 0; } if (ebf[0] == NULL) ebf[0] = ef; else ebf[1] = ef; } } List_Delete(efaces); if (nf != 2) { sprintf(mesg,"Boundary edge %-d is not connected to exactly two\n faces classified on the boundary",eid); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } eregs = ME_Regions(me); if (!eregs) continue; else List_Delete(eregs); /* Can we go from f0 to f1 in one or two dirs? */ fcur = ebf[0]; fnxt = NULL; fregs = MF_Regions(fcur); if (!fregs) { fid = MF_ID(fcur); sprintf(mesg,"Edge %-d connected to regions but face %-d is not",eid,fid); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } nfr = List_Num_Entries(fregs); for (i = 0; i < nfr; i++) { rcur = List_Entry(fregs,i); rfaces = MR_Faces(rcur); idx3 = 0; found = 0; while ((rf = List_Next_Entry(rfaces,&idx3))) { if (rf != fcur && MF_UsesEntity(rf,me,1)) { found = 1; fnxt = rf; break; } } List_Delete(rfaces); if (!found) { rid = MR_ID(rcur); sprintf(mesg,"Could not find second face in region %-d using edge %-d",rid,eid); } done = 0; j = 0; while (!done) { fcur = fnxt; fid = MF_ID(fcur); if (fnxt == ebf[1]) { done = 1; break; } fregs1 = MF_Regions(fcur); idx3 = 0; while ((fr = List_Next_Entry(fregs1,&idx3))) { if (fr != rcur) { rcur = fr; found = 1; break; } } List_Delete(fregs1); if (!found) { sprintf(mesg,"Could not find next region around edge %-d",eid); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; break; } rfaces = MR_Faces(rcur); idx3 = 0; found = 0; while ((rf = List_Next_Entry(rfaces,&idx3))) { if (rf != fcur && MF_UsesEntity(rf,me,1)) { found = 1; fnxt = rf; break; } } List_Delete(rfaces); if (!found) { rid = MR_ID(rcur); sprintf(mesg,"Could not find second face in region %-d using edge %-d",rid,eid); } if (++j > maxiter) break; } /* while (!done) */ if (!done) { sprintf(mesg,"Could not traverse around edge %-d from face %-d to face %-d",eid,MF_ID(ebf[0]),MF_ID(ebf[1])); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } } /* for (i = 0; i < nfr; i++) */ List_Delete(fregs); } /* if (geid == 2) */ } /* for (i = 0; i < 2; i++) */ } /* while ((me = MESH_Next_Edge(mesh,&idx1))) */ /*****************************************************************/ /* Faces */ /*****************************************************************/ first_unknown_classfn = 1; idx1 = 0; while ((mf = MESH_Next_Face(mesh,&idx1))) { #ifdef MSTK_HAVE_MPI if (MF_PType(mf) == PGHOST) continue; #endif fid = MF_ID(mf); gfid = MF_GEntID(mf); gfdim = MF_GEntDim(mf); if (gfdim == 4 && first_unknown_classfn) { sprintf(mesg, "Face %-d - unknown classification", fid); MSTK_Report(funcname, mesg, MSTK_WARN); first_unknown_classfn = 0; } fedges = MF_Edges(mf,1,0); if (List_Num_Entries(fedges) < 3) { sprintf(mesg,"Face %-d has less than 3 edges",fid); MSTK_Report(funcname,mesg,MSTK_ERROR); } idx2 = 0; while ((fe = List_Next_Entry(fedges,&idx2))) { eid = ME_ID(fe); geid = ME_GEntID(fe); gedim = ME_GEntDim(fe); if (gedim != 4 && gfdim != 4) { /* Edge, Face classfn is known */ if (gfdim < gedim) { sprintf(mesg,"Face %-d classified on lower order entity than edge %-d",fid,ME_ID(fe)); MSTK_Report(funcname,mesg,MSTK_WARN); valid = 0; } else if (gedim == gfdim && geid != gfid) { sprintf(mesg,"Face %-d and edge %-d classified on different\n entities of the same dimension",fid,eid); MSTK_Report(funcname,mesg,MSTK_WARN); } } efaces = ME_Faces(fe); if (!List_Contains(efaces,mf)) { sprintf(mesg,"Face %-d refers to edge %-d but not vice versa",fid,ME_ID(fe)); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } List_Delete(efaces); } List_Delete(fedges); fregs = MF_Regions(mf); if (gfdim == 3) { if (!fregs || List_Num_Entries(fregs) != 2) { sprintf(mesg,"Interior face %-d does not have two connected regions",fid); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } } if (fregs) { if (List_Num_Entries(fregs) == 2) { if (MR_FaceDir(List_Entry(fregs,0),mf) == MR_FaceDir(List_Entry(fregs,1),mf)) { sprintf(mesg,"Both regions using face %-d in the same sense",fid); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } } List_Delete(fregs); } } /* while ((mf = MESH_Next_Face(mesh,&idx1))) */ /*****************************************************************/ /* Regions */ /*****************************************************************/ idx1 = 0; while ((mr = MESH_Next_Region(mesh,&idx1))) { #ifdef MSTK_HAVE_MPI if (MR_PType(mr) == PGHOST) continue; #endif rid = MR_ID(mr); grid = MR_GEntID(mr); rfaces = MR_Faces(mr); int nrf = List_Num_Entries(rfaces); if (nrf < 4) { sprintf(mesg,"Region %-d has less than 4 faces",rid); MSTK_Report(funcname,mesg,MSTK_ERROR); } /* Check that face to region and region to face links are consistent with each other */ int *rfdirs = (int *) malloc(nrf*sizeof(int)); i = 0; idx2 = 0; while ((rf = List_Next_Entry(rfaces,&idx2))) { rfdirs[i] = MR_FaceDir_i(mr,i); if (mr != MF_Region(rf,!rfdirs[i])) { sprintf(mesg,"Region %-d to face %-d dir inconsistent with \n face to region dir",rid,MF_ID(rf)); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } i++; } /* Check that faces of a region have consistent orientation in the region with respect to each other */ for (i = 0; i < nrf; i++) { MFace_ptr rf, rf2; rf = List_Entry(rfaces,i); fedges = MF_Edges(rf,1,0); nfe = List_Num_Entries(fedges); for (j = 0; j < nfe; j++) { fe = List_Entry(fedges,j); int fedir = MF_EdgeDir_i(rf,j); /* Find adjacent face in the region */ found = 0; for (k = 0; k < nrf; k++) { rf2 = List_Entry(rfaces,k); if (rf != rf2 && MF_UsesEntity(rf2,fe,MEDGE)) { found = 1; break; } } if (!found) { sprintf(mesg,"Cannot find another face in region %-d sharing edge %-d (ID = %-d) of face with ID = %-d",MR_ID(mr),j,ME_ID(fe),MF_ID(rf)); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } int fedir_adj = MF_EdgeDir(rf2,fe); /* If the two faces use the edge in opposite directions then the region should use the faces in the same direction and vice versa */ if (((fedir_adj == fedir) && (rfdirs[i] == rfdirs[k])) || ((fedir_adj != fedir) && (rfdirs[i] != rfdirs[k]))) { sprintf(mesg,"Region %-d faces are inconsistently oriented",MR_ID(mr)); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } } List_Delete(fedges); } List_Delete(rfaces); free(rfdirs); } return valid; } /* int MESH_CheckTopo */
int MESH_BuildEdgeClassfn(Mesh_ptr mesh, int use_geometry) { int i, j, k, idx, idx2, fnd, fnd2, geid, geid2, gdim; int ngedges, ngealloc, ngef, max_loc_gfids, *loc_gfids; int max_gedge_id; int nve, nbe, nef, nsub, *geids, **gefaceids; double PI=3.141592, cosang, COSSHARPANG; MVertex_ptr ev[2]; MEdge_ptr edge, subedge, adjedge; MFace_ptr eface; List_ptr efaces, vedges, vbedges, geedges, subedges; double rval; void *pval; COSSHARPANG = cos(5*PI/6); /* 165 degrees */ /* Verify that mesh edges on the boundary have classification information; if not, assign all edges to the same model edge */ ngedges = 0; ngealloc = 10; geids = (int *) malloc(ngealloc*sizeof(int)); /* model edge ids */ /* Number of model faces connected to edge followed by model face ids */ gefaceids = (int **) malloc(ngealloc*sizeof(int *)); /* Take stock of existing model edge information */ max_gedge_id = 0; idx = 0; while ((edge = MESH_Next_Edge(mesh,&idx))) { gdim = ME_GEntDim(edge); if (gdim != 1) continue; geid = ME_GEntID(edge); if (geid) { /* Has this model edge been encountered? If not, add it to list of model edges */ for (i = 0, fnd = 0; i < ngedges; i++) if (geids[i] == geid) { fnd = 1; break; } if (!fnd) { if (geid > max_gedge_id) max_gedge_id = geid; if (ngealloc == ngedges) { ngealloc *= 2; geids = (int *) realloc(geids,ngealloc*sizeof(int)); gefaceids = (int **)realloc(gefaceids,ngealloc*sizeof(int *)); } geids[ngedges] = geid; efaces = ME_Faces(edge); nef = List_Num_Entries(efaces); gefaceids[ngedges] = (int *) malloc((1+nef)*sizeof(int)); ngef = 0; for (i = 0; i < nef; i++) { eface = List_Entry(efaces,i); if (MF_GEntDim(eface) == 2) { gefaceids[ngedges][1+ngef] = MF_GEntID(eface); ngef++; } } gefaceids[ngedges][0] = ngef; ngedges++; List_Delete(efaces); } } } /* Build new model edge information based on adjacent model region info */ /* NOTE: The following cases involve some repetition and can be "cleverly" folded into a shorter piece of code, but then the method by which the individual cases are handled gets a littled obscured. So leave as is */ max_loc_gfids = 10; loc_gfids = (int *) malloc(max_loc_gfids*sizeof(int)); idx = 0; while ((edge = MESH_Next_Edge(mesh,&idx))) { gdim = ME_GEntDim(edge); geid = ME_GEntID(edge); /* Edge has no classification? Assign classification info */ /* Edge classified as face or interior edge? Verify */ efaces = ME_Faces(edge); nef = efaces ? List_Num_Entries(efaces) : 0; if (!nef) { /* Isolated edge (must be on model edge). Did we encounter such an edge before? */ ME_Set_GEntDim(edge,1); for (i = 0, fnd = 0; i < ngedges; i++) { if (gefaceids[i][0] == 0) { fnd = 1; break; } } if (fnd) ME_Set_GEntID(edge,geids[i]); else { max_gedge_id++; ME_Set_GEntID(edge,max_gedge_id); if (ngealloc == ngedges) { ngealloc *= 2; geids = (int *) realloc(geids,ngealloc*sizeof(int)); gefaceids = (int **) realloc(gefaceids,ngealloc*sizeof(int *)); } geids[ngedges] = max_gedge_id; gefaceids[ngedges] = malloc(1*sizeof(int *)); gefaceids[ngedges][0] = 0; } continue; /* nothing else to do */ } if (nef > max_loc_gfids) { loc_gfids = (int *) realloc(loc_gfids,nef*sizeof(int)); max_loc_gfids = nef; } ngef = 0; for (i = 0; i < nef; i++) { eface = List_Entry(efaces,i); if (MF_GEntDim(eface) == 2) { loc_gfids[ngef] = MF_GEntID(eface); ngef++; } } switch (ngef) { case 0: /* Interior edge - we took care of the case of the isolated edge b4 */ ME_Set_GEntDim(edge,3); eface = List_Entry(efaces,0); ME_Set_GEntID(edge,MF_GEntID(eface)); break; case 2: if (loc_gfids[0] == loc_gfids[1]) { if (gdim == 1) { /* Looks like during face classification, this was tagged as being a sharp edge. This means that it is a sharp edge on the interior of a model face (same model face on both sides) */ ME_Set_GEntDim(edge,1); /* Check if such an edge was encountered before */ for (i = 0, fnd = 0; i < ngedges; i++) { if (gefaceids[i][0] != 2) continue; if ((loc_gfids[0] == gefaceids[i][0]) && (gefaceids[i][0] == gefaceids[i][1])) { fnd = 1; break; } } if (fnd) ME_Set_GEntID(edge,geids[i]); else { max_gedge_id++; ME_Set_GEntID(edge,max_gedge_id); if (ngealloc == ngedges) { ngealloc *= 2; geids = (int *) realloc(geids,ngealloc*sizeof(int)); gefaceids = (int **) realloc(gefaceids,ngealloc*sizeof(int *)); } geids[ngedges] = max_gedge_id; gefaceids[ngedges] = malloc((1+ngef)*sizeof(int *)); gefaceids[ngedges][0] = ngef; for (i = 0; i < ngef; i++) gefaceids[ngedges][1+i] = loc_gfids[i]; ngedges++; } } else { /* edge must be on model face */ ME_Set_GEntDim(edge,2); ME_Set_GEntID(edge,loc_gfids[0]); } } else { /* edge is on model edge between two faces */ ME_Set_GEntDim(edge,1); /* Check if such an edge was encountered before */ for (i = 0, fnd = 0; i < ngedges; i++) { if (gefaceids[i][0] != 2) continue; if (((loc_gfids[0] == gefaceids[i][1]) && (loc_gfids[1] == gefaceids[i][2])) || ((loc_gfids[1] == gefaceids[i][1]) && (loc_gfids[0] == gefaceids[i][2]))) { fnd = 1; break; } } if (fnd) ME_Set_GEntID(edge,geids[i]); else { max_gedge_id++; ME_Set_GEntID(edge,max_gedge_id); if (ngealloc == ngedges) { ngealloc *= 2; geids = (int *) realloc(geids,ngealloc*sizeof(int)); gefaceids = (int **) realloc(gefaceids,ngealloc*sizeof(int *)); } geids[ngedges] = max_gedge_id; gefaceids[ngedges] = malloc((1+ngef)*sizeof(int *)); gefaceids[ngedges][0] = ngef; for (i = 0; i < ngef; i++) gefaceids[ngedges][1+i] = loc_gfids[i]; ngedges++; } } break; default: /* if ngef is 1, edge is on model edge of non-manifold model face if ngef is >= 3, edge is on model edge at junction of many model faces */ ME_Set_GEntDim(edge,1); /* Check if a previously encountered model edge has this combination of connected faces */ for (i = 0, fnd = 0; i < ngedges; i++) { if (ngef != gefaceids[i][0]) continue; /* number of connected model faces is different */ /* see if all the model faces of the current edge can be found in the i'th model edge's faces */ fnd2 = 0; for (j = 0; j < ngef; j++) { fnd2 = 0; for (k = 0; k < ngef; k++) { if (loc_gfids[j] == gefaceids[i][1+k]) { fnd2 = 1; break; } } /* Did not find loc_gfid[j] in the list gefaceids[i] */ if (!fnd2) break; } /* if a model face connected to this edge was not found in the model face list of the previously processed, then the two model edges are obviously different */ if (!fnd2) continue; else { fnd = 1; break; } } if (fnd) ME_Set_GEntID(edge,geids[i]); else { max_gedge_id++; ME_Set_GEntID(edge,max_gedge_id); if (ngealloc == ngedges) { ngealloc *= 2; geids = (int *) realloc(geids,ngealloc*sizeof(int)); gefaceids = (int **) realloc(gefaceids,ngealloc*sizeof(int *)); } geids[ngedges] = max_gedge_id; gefaceids[ngedges] = malloc((1+ngef)*sizeof(int *)); gefaceids[ngedges][0] = ngef; for (i = 0; i < ngef; i++) gefaceids[ngedges][1+i] = loc_gfids[i]; ngedges++; } break; } List_Delete(efaces); /* needed efaces in case 0 */ } free(loc_gfids); if (use_geometry == 1) { #ifdef MSTK_USE_MARKERS int processedmk = MSTK_GetMarker(); int submk = MSTK_GetMarker(); #else MAttrib_ptr processedatt = MAttrib_New(mesh, "processed", INT, MEDGE); MAttrib_ptr sublistatt = MAttrib_New(mesh, "sublist", INT, MEDGE); #endif /* Now assign model edge IDs based on whether a sharp set of edges enclose a set of edges */ for (i = 0; i < ngedges; i++) { /* Find all mesh edges with this model edge id */ geedges = List_New(10); idx = 0; while ((edge = MESH_Next_Edge(mesh,&idx))) { if (ME_GEntDim(edge) == 1 && ME_GEntID(edge) == geids[i]) List_Add(geedges,edge); } /* Process edges of this list and subdivide them into subedges */ /* The way we do that is 1) we put an unprocessed edge from the original list in a subedge list 2) we then add its neighboring edges to subedge list if they are of the same color (same model edge id) and do not have a sharp edge separating them from the current edge 3) we then process the next edge in the subedge list 4) we are done if we cannot find any more neighbors of edges in the subedge list to add to the subedge list 5) we then repeat steps 1 through 4 until we are left with no more edges to process from the original list */ nsub = 0; idx = 0; while ((edge = List_Next_Entry(geedges,&idx))) { int emarked; #ifdef MSTK_USE_MARKERS emarked = MEnt_IsMarked(edge,processedmk); #else MEnt_Get_AttVal(edge, processedatt, &emarked, &rval, &pval); #endif if (emarked) continue; /* Found a edge in geedges that has not been processed */ #ifdef MSTK_USE_MARKERS MEnt_Mark(edge,processedmk); #else MEnt_Set_AttVal(edge, processedatt, 1, 0.0, NULL); #endif subedges = List_New(10); List_Add(subedges,edge); #ifdef MSTK_USE_MARKERS MEnt_Mark(edge,submk); #else MEnt_Set_AttVal(edge, sublistatt, 1, 0.0, NULL); #endif idx2 = 0; while ((subedge = List_Next_Entry(subedges,&idx2))) { geid = ME_GEntID(subedge); ev[0] = ME_Vertex(subedge,0); ev[1] = ME_Vertex(subedge,1); for (j = 0; j < 2; j++) { vedges = MV_Edges(ev[j]); nve = List_Num_Entries(vedges); vbedges = List_New(nve); /* list of boundary edges cnctd 2 vert */ for (k = 0; k < nve; k++) { adjedge = List_Entry(vedges,k); if (ME_GEntDim(adjedge) == 1) List_Add(vbedges,adjedge); } nbe = List_Num_Entries(vbedges); if (nbe == 2) { /* we might be on a model vertex or on a model edge */ adjedge = List_Entry(vbedges,0); if (adjedge == subedge) adjedge = List_Entry(vbedges,1); geid2 = ME_GEntID(adjedge); if (geid == geid2) { /* The two edges are of the same ID. If the angle between them is not sharp they can be classified as being on the same subedge */ cosang = MEs_Angle(subedge,adjedge); if (cosang <= COSSHARPANG) { /* Add edge2 to subedge list unless its already there */ int adjemarked; #ifdef MSTK_USE_MARKERS adjemarked = MEnt_IsMarked(adjedge,submk); #else MEnt_Get_AttVal(adjedge, sublistatt, &adjemarked, &rval, &pval); #endif if (!adjemarked) { List_Add(subedges,adjedge); #ifdef MSTK_USE_MARKERS MEnt_Mark(adjedge,submk); #else MEnt_Set_AttVal(adjedge, sublistatt, 1, 0.0, NULL); #endif } } else { /* The two edges make a very sharp angle. We will consider the edge b/w them to be a model vertex */ /* Tag the edge as being on a model vertex (we don't know the model vertex ID as yet) and continue */ MV_Set_GEntDim(ev[j],0); MV_Set_GEntID(ev[j],0); } } else { /* we reached a model vertex */ /* Tag the edge as being on a model vertex (we don't know the model vertex ID as yet) and continue */ MV_Set_GEntDim(ev[j],0); MV_Set_GEntID(ev[j],0); } } else { /* we reached a a model vertex */ /* Tag the edge as being on a model vertex (we don't know the model vertex ID as yet) and continue */ ME_Set_GEntDim(ev[j],0); ME_Set_GEntID(ev[j],0); } List_Delete(vedges); List_Delete(vbedges); } /* Finished processing all neighbors of the edge */ } /* Now we have a list of edges which we believe constitutes a model edge by itself. If this is the first subedge (which means it could also be the entire model edge originally considered), leave the model edge tag as it is. If not, assign the edges in the subedge a new model edge ID */ if (nsub != 0) { max_gedge_id++; idx2 = 0; while ((subedge = List_Next_Entry(subedges,&idx2))) ME_Set_GEntID(subedge,max_gedge_id); } nsub++; /* Done with this subedge */ #ifdef MSTK_USE_MARKERS idx2 = 0; while ((subedge = List_Next_Entry(subedges,&idx2))) { MEnt_Mark(subedge,processedmk); MEnt_Unmark(subedge,submk); } #else idx2 = 0; while ((subedge = List_Next_Entry(subedges,&idx2))) { MEnt_Set_AttVal(subedge, processedatt, 1, 0.0, NULL); MEnt_Set_AttVal(subedge, sublistatt, 0, 0.0, NULL); } #endif List_Delete(subedges); } #ifdef MSTK_USE_MARKERS List_Unmark(geedges,processedmk); #else idx2 = 0; while ((edge = List_Next_Entry(geedges, &idx2))) MEnt_Set_AttVal(edge, processedatt, 1, 0.0, NULL); #endif List_Delete(geedges); } #ifdef MSTK_USE_MARKERS MSTK_FreeMarker(processedmk); MSTK_FreeMarker(submk); #else MAttrib_Delete(processedatt); MAttrib_Delete(sublistatt); #endif } /* if use_geometry == 1 */ free(geids); for (i = 0; i < ngedges; i++) free(gefaceids[i]); free(gefaceids); return 1; }
int MESH_ConcatSubMesh_Face(Mesh_ptr mesh, int num, Mesh_ptr *submeshes) { int nfv, nfe, i, j, k, ival; MVertex_ptr mv, new_mv, sub_mv; MEdge_ptr me, new_me, sub_me; MFace_ptr new_mf, sub_mf; List_ptr mfverts, mfedges; int add_face, idx, global_id, iloc, *loc; double coor[3], rval; void *pval; Mesh_ptr submesh; List_ptr parbndry_verts = List_New(10); List_ptr parbndry_edges = List_New(10); MEdge_ptr *fedges = (MEdge_ptr *) malloc(MAXPV2*sizeof(MEdge_ptr)); int *fedirs = (int *) malloc(MAXPV2*sizeof(int)); MAttrib_ptr parbndryatt = MAttrib_New(mesh, "on_parbndry", INT, MVERTEX); /* collect edges and vertices on the partition boundary */ int num_parbndry_edges = 0; idx = 0; while ((me = MESH_Next_Edge(mesh,&idx))) if (ME_PType(me) != PINTERIOR) { List_Add(parbndry_edges,me); num_parbndry_edges++; } int num_parbndry_verts = 0; idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) if (MV_PType(mv) != PINTERIOR) { List_Add(parbndry_verts,mv); MEnt_Set_AttVal(mv, parbndryatt, 1, 0.0, NULL); num_parbndry_verts++; } /* sort based on global ID */ List_Sort(parbndry_edges,num_parbndry_edges,sizeof(MEdge_ptr),compareGlobalID); List_Sort(parbndry_verts,num_parbndry_verts,sizeof(MVertex_ptr),compareGlobalID); int *parbndry_vert_gids = (int *) malloc(num_parbndry_verts*sizeof(int)); int *parbndry_edge_gids = (int *) malloc(num_parbndry_edges*sizeof(int)); /* store them in array for binary search */ for (i = 0; i < num_parbndry_edges; i++) { me = List_Entry(parbndry_edges,i); parbndry_edge_gids[i] = ME_GlobalID(me); } for (i = 0; i < num_parbndry_verts; i++) { mv = List_Entry(parbndry_verts,i); parbndry_vert_gids[i] = MV_GlobalID(mv); } /* Make list of new edges and vertices which will be updated with each mesh that is concatenated */ int max_vnew = 0, max_enew = 0; for (i = 0; i < num; i++) { max_vnew += MESH_Num_Vertices(submeshes[i]); max_enew += MESH_Num_Edges(submeshes[i]); } int num_new_verts = 0, num_new_edges = 0; int *new_vert_gids = (int *) malloc(max_vnew*sizeof(int)); int *new_edge_gids = (int *) malloc(max_enew*sizeof(int)); List_ptr new_verts = List_New(max_vnew); List_ptr new_edges = List_New(max_enew); /* Now process each mesh and add a layer of ghost elements from each of them to the main partition */ for (i = 0; i < num; i++) { submesh = submeshes[i]; MAttrib_ptr vidatt = MAttrib_New(submesh, "tempvid", POINTER, MVERTEX); MAttrib_ptr eidatt = MAttrib_New(submesh, "tempeid", POINTER, MEDGE); idx = 0; while ((sub_mf = MESH_Next_Face(submesh, &idx))) { add_face = 0; /* Find matching vertices between the submesh and main mesh */ mfverts = MF_Vertices(sub_mf,1,0); nfv = List_Num_Entries(mfverts); for (j = 0; j < nfv; j++) { sub_mv = List_Entry(mfverts,j); /* Does the vertex have a known counterpart on the partition * boundary of the main mesh? */ MEnt_Get_AttVal(sub_mv, vidatt, &ival, &rval, &mv); if (mv) { int on_parbndry=0; MEnt_Get_AttVal(mv, parbndryatt, &on_parbndry, &rval, &pval); if (on_parbndry) add_face = 1; } else { /* Does the global ID of this vertex of the sub mesh face * match the global ID of a partition boundary vertex in * the main mesh? */ global_id = MV_GlobalID(sub_mv); loc = (int *) bsearch(&global_id, parbndry_vert_gids, num_parbndry_verts, sizeof(int), compareINT); if (loc) { /* found a match */ add_face = 1; iloc = loc - parbndry_vert_gids; mv = List_Entry(parbndry_verts,iloc); /* here set the ghost vertex property, only necessary when the input submeshes are not consistent */ if (MV_PType(mv) == PGHOST && MV_PType(sub_mv) != PGHOST) { MV_Set_GEntDim(mv,MV_GEntDim(sub_mv)); MV_Set_GEntID(mv,MV_GEntID(sub_mv)); } MEnt_Set_AttVal(sub_mv, vidatt, 0, 0.0, mv); } } } List_Delete(mfverts); /* Find matching edges between the submesh and main mesh */ mfedges = MF_Edges(sub_mf,1,0); nfe = List_Num_Entries(mfedges); for (j = 0; j < nfe; j++) { sub_me = List_Entry(mfedges,j); /* Does the edge have a known counterpart on the partition * boundary of the main mesh */ MEnt_Get_AttVal(sub_me, eidatt, &ival, &rval, &me); if (!me) { /* Does the global ID of this edge of the sub mesh face * match the global ID of a partition boundary edge in the * main mesh? */ global_id = ME_GlobalID(sub_me); loc = (int *) bsearch(&global_id, parbndry_edge_gids, num_parbndry_edges, sizeof(int), compareINT); if (loc) { iloc = loc - parbndry_edge_gids; me = List_Entry(parbndry_edges,iloc); /* here set the ghost edge property, only necessary when the input submeshes are not consistent */ if (ME_PType(me) == PGHOST && ME_PType(sub_me) != PGHOST) { ME_Set_GEntDim(me,ME_GEntDim(sub_me)); ME_Set_GEntID(me,ME_GEntID(sub_me)); } MEnt_Set_AttVal(sub_me, eidatt, 0, 0.0, me); } } } if (!add_face) { List_Delete(mfedges); continue; } new_mf = MF_New(mesh); /* add face */ MF_Set_GEntDim(new_mf,MF_GEntDim(sub_mf)); MF_Set_GEntID(new_mf,MF_GEntID(sub_mf)); MF_Set_PType(new_mf,PGHOST); MF_Set_MasterParID(new_mf,MF_MasterParID(sub_mf)); MF_Set_GlobalID(new_mf,MF_GlobalID(sub_mf)); nfe = List_Num_Entries(mfedges); for (j = 0; j < nfe; j++) { sub_me = List_Entry(mfedges,j); global_id = ME_GlobalID(sub_me); fedirs[j] = MF_EdgeDir_i(sub_mf,j) == 1 ? 1 : 0; new_me = NULL; MEnt_Get_AttVal(sub_me, eidatt, &ival, &rval, &new_me); if (!new_me) { /* search in the ghost layer if another edge with * this global ID has been added */ loc = (int *) bsearch(&global_id, new_edge_gids, num_new_edges, sizeof(int), compareINT); if (loc) { iloc = loc - new_edge_gids; new_me = List_Entry(new_edges, iloc); MEnt_Set_AttVal(sub_me, eidatt, 0, 0.0, new_me); } } if (new_me) { if (MV_GlobalID(ME_Vertex(new_me,0)) != MV_GlobalID(ME_Vertex(sub_me,0))) fedirs[j] = 1 - fedirs[j]; /* if the edge dir is not the same, reverse the edge dir */ } else { /* add a new edge to main mesh */ new_me = ME_New(mesh); ME_Set_GEntDim(new_me,ME_GEntDim(sub_me)); ME_Set_GEntID(new_me,ME_GEntID(sub_me)); ME_Set_PType(new_me,PGHOST); ME_Set_MasterParID(new_me,ME_MasterParID(sub_me)); ME_Set_GlobalID(new_me,ME_GlobalID(sub_me)); MEnt_Set_AttVal(sub_me, eidatt, 0, 0.0, new_me); List_Add(new_edges, new_me); for (k = 0; k < 2; k++) { sub_mv = ME_Vertex(sub_me,k); global_id = MV_GlobalID(sub_mv); new_mv = NULL; MEnt_Get_AttVal(sub_mv, vidatt, &ival, &rval, &new_mv); if (!new_mv) { /* search in the ghost layer if another vertex with * this global ID has been added */ loc = (int *) bsearch(&global_id, new_vert_gids, num_new_verts, sizeof(int), compareINT); if (loc) { iloc = loc - new_vert_gids; new_mv = List_Entry(new_verts, iloc); MEnt_Set_AttVal(sub_mv, vidatt, 0, 0.0, new_mv); } } if (!new_mv) { /* add a new vertex to main mesh */ new_mv = MV_New(mesh); MV_Set_GEntDim(new_mv,MV_GEntDim(sub_mv)); MV_Set_GEntID(new_mv,MV_GEntID(sub_mv)); MV_Set_PType(new_mv,PGHOST); MV_Set_MasterParID(new_mv,MV_MasterParID(sub_mv)); MV_Set_GlobalID(new_mv,MV_GlobalID(sub_mv)); MV_Coords(sub_mv,coor); MV_Set_Coords(new_mv,coor); MEnt_Set_AttVal(sub_mv, vidatt, 0, 0.0, new_mv); List_Add(new_verts, new_mv); } ME_Set_Vertex(new_me,k,new_mv); /* set edge-vertex */ } } fedges[j] = new_me; } MF_Set_Edges(new_mf,nfe,fedges,fedirs); /* set face-edge */ List_Delete(mfedges); } idx = 0; while ((sub_mv = MESH_Next_Vertex(submesh, &idx))) MEnt_Rem_AttVal(sub_mv, vidatt); MAttrib_Delete(vidatt); idx = 0; while ((sub_me = MESH_Next_Edge(submesh, &idx))) MEnt_Rem_AttVal(sub_me, eidatt); MAttrib_Delete(eidatt); /* Sort the added entity lists by GlobalID */ num_new_edges = List_Num_Entries(new_edges); List_Sort(new_edges, num_new_edges, sizeof(MEdge_ptr), compareGlobalID); for (j = 0; j < num_new_edges; j++) new_edge_gids[j] = ME_GlobalID(List_Entry(new_edges, j)); num_new_verts = List_Num_Entries(new_verts); List_Sort(new_verts, num_new_verts, sizeof(MVertex_ptr), compareGlobalID); for (j = 0; j < num_new_verts; j++) new_vert_gids[j] = MV_GlobalID(List_Entry(new_verts, j)); } idx = 0; while ((mv = List_Next_Entry(parbndry_verts, &idx))) MEnt_Rem_AttVal(mv, parbndryatt); MAttrib_Delete(parbndryatt); List_Delete(parbndry_edges); List_Delete(parbndry_verts); List_Delete(new_edges); List_Delete(new_verts); free(parbndry_vert_gids); free(parbndry_edge_gids); free(new_vert_gids); free(new_edge_gids); free(fedges); free(fedirs); return 1; }
List_ptr MF_Edges_R4(MFace_ptr f, int dir, MVertex_ptr v0) { MFace_Adj_R4 *adj = (MFace_Adj_R4 *) f->adj; int i, j, k, ne, nv; List_ptr fedges; MVertex_ptr v, evtx[2], vtmp; MEdge_ptr e; k = 0; if (v0) { int fnd = 0, idx = 0; while (!fnd && (v = List_Next_Entry(adj->fvertices,&idx))) { if (v == v0) fnd = 1; else k++; } if (!fnd) { MSTK_Report("MF_Edges_R4","Cannot find vertex in face",MSTK_ERROR); return NULL; } } nv = ne = List_Num_Entries(adj->fvertices); fedges = List_New(ne); for (i = 0; i < ne; i++) { j = dir ? (k+i)%ne : (k-i+ne)%ne; evtx[0] = List_Entry(adj->fvertices,j); j = dir ? (k+(i+1))%ne : (k-(i+1)+ne)%ne; evtx[1] = List_Entry(adj->fvertices,j); #ifdef HASHTABLE if (evtx[0]>evtx[1]) { vtmp = evtx[0]; evtx[0] = evtx[1]; evtx[1] = vtmp; } e = Hash_Entry(MESH_Hash_Edges(MEnt_Mesh((MEntity_ptr) f)), 2, evtx); if (e == NULL) { e = ME_New(MEnt_Mesh((MEntity_ptr) f)); MEnt_Set_Volatile(e); ME_Set_Vertex(e,0,evtx[0]); ME_Set_Vertex(e,1,evtx[1]); ME_Set_GInfo_Auto(e); Hash_Add(MESH_Hash_Edges(MEnt_Mesh((MEntity_ptr) f)), e, 2, evtx); } #else e = ME_New(MEnt_Mesh((MEntity_ptr)f)); MEnt_Set_Volatile(e); ME_Set_Vertex(e,0,evtx[0]); ME_Set_Vertex(e,1,evtx[1]); ME_Set_GInfo_Auto(e); #endif List_Add(fedges,e); ME_Lock(e); } if (!MESH_AutoLock(MEnt_Mesh((MEntity_ptr) f))) { i = 0; while ((e = List_Next_Entry(fedges, &i))) { ME_UnLock(e); } } return fedges; }
MFace_ptr MR_Split_with_EdgeLoop(MRegion_ptr rsplit, int nfe, MEdge_ptr *fedges) { Mesh_ptr mesh; int i, j, idx1, idx2, fedirs[MAXPV2], rfdir_adj, curdir, edir, edir_adj;; int gid, mkid, nrf1, nrf2, rfdirs1[MAXPF3], rfdirs2[MAXPF3]; MEdge_ptr fe; MFace_ptr fnew, eface, rfarray1[MAXPF3], rfarray2[MAXPF3], curface; MRegion_ptr rnew[2]; List_ptr felist, efaces; #ifdef DEBUG List_ptr redges; #endif gid = MR_GEntID(rsplit); #ifdef DEBUG /* check to make sure we got meaningful input */ redges = MR_Edges(rsplit); for (i = 0; i < nfe; i++) if (!List_Contains(redges,fedges[i])) MSTK_Report("MR_Split","Input edges are not part of the region boundary", MSTK_FATAL); List_Delete(redges); #endif mesh = MR_Mesh(rsplit); /* Fix a set of directions for the edges */ fedirs[0] = 1; for (i = 1; i < nfe; i++) { MVertex_ptr vprev, v0, v1; vprev = ME_Vertex(fedges[i-1],fedirs[i-1]); v0 = ME_Vertex(fedges[i],0); v1 = ME_Vertex(fedges[i],1); if (vprev == v0) fedirs[i] = 1; else if (vprev == v1) fedirs[i] = 0; else MSTK_Report("MR_Split","Input edges do not form a loop as listed", MSTK_FATAL); } /* Create the splitting face */ fnew = MF_New(mesh); MF_Set_GEntDim(fnew,3); MF_Set_GEntID(fnew,gid); MF_Set_Edges(fnew,nfe,fedges,fedirs); /* Collect info for the first region */ List_ptr processed_faces = List_New(0); rfarray1[0] = fnew; rfdirs1[0] = 1; nrf1 = 1; List_Add(processed_faces,rfarray1[0]); i = 0; while (i < nrf1) { curface = rfarray1[i]; curdir = rfdirs1[i]; i++; /* Get adjacent faces in region of current face and if they are not already in the new region face list (not marked), then add them */ felist = MF_Edges(curface,1,0); idx1 = 0; j = 0; while ((fe = List_Next_Entry(felist,&idx1))) { edir = MF_EdgeDir_i(curface,j); j++; efaces = ME_Faces(fe); if (curface != fnew && List_Contains(efaces,fnew)) { /* we have come back to the starting or splitting face - don't go across this edge */ List_Delete(efaces); continue; } /* Add an adjacent unprocessed face of the region to the list of faces for the new region */ idx2 = 0; while ((eface = List_Next_Entry(efaces,&idx2))) { if (eface == curface) continue; if (List_Contains(processed_faces,eface)) continue; if (!MR_UsesEntity(rsplit,eface,MFACE)) continue; /* does not belong to region */ edir_adj = MF_EdgeDir(eface,fe); rfdir_adj = MR_FaceDir(rsplit,eface); /* add adjacent face based on the check that if two adjacent faces of region are used by the region in the same sense, then their common edge should be used by the two faces in opposite senses (or the opposite of both the conditions should be true) */ if ((edir != edir_adj && curdir == rfdir_adj) || (edir == edir_adj && curdir != rfdir_adj)) { rfarray1[nrf1] = eface; rfdirs1[nrf1] = rfdir_adj; List_Add(processed_faces,rfarray1[nrf1]); nrf1++; break; } } List_Delete(efaces); } List_Delete(felist); } /* collect info for the second region */ rfarray2[0] = fnew; rfdirs2[0] = !rfdirs1[0]; nrf2 = 1; List_Add(processed_faces,rfarray2[0]); i = 0; while (i < nrf2) { curface = rfarray2[i]; curdir = rfdirs2[i]; i++; /* Get adjacent faces in region of current face and if they are not already in the new region face list (not marked), then add them */ felist = MF_Edges(curface,1,0); idx1 = 0; j = 0; while ((fe = List_Next_Entry(felist,&idx1))) { edir = MF_EdgeDir_i(curface,j); j++; efaces = ME_Faces(fe); if (curface != fnew && List_Contains(efaces,fnew)) { /* we have come back to the starting or splitting face - don't go across this edge */ List_Delete(efaces); continue; } /* Add an adjacent unprocessed face of the region to the list of faces for the new region */ idx2 = 0; while ((eface = List_Next_Entry(efaces,&idx2))) { if (eface == curface) continue; if (List_Contains(processed_faces,eface)) continue; if (!MR_UsesEntity(rsplit,eface,MFACE)) continue; /* does not belong to region */ edir_adj = MF_EdgeDir(eface,fe); rfdir_adj = MR_FaceDir(rsplit,eface); /* add adjacent face based on the check that if two adjacent faces of region are used by the region in the same sense, then their common edge should be used by the two faces in opposite senses (or the opposite of both the conditions should be true) */ if ((edir != edir_adj && curdir == rfdir_adj) || (edir == edir_adj && curdir != rfdir_adj)) { rfarray2[nrf2] = eface; rfdirs2[nrf2] = rfdir_adj; List_Add(processed_faces,rfarray2[nrf2]); nrf2++; break; } } List_Delete(efaces); } List_Delete(felist); } /* Delete the original region */ MR_Delete(rsplit,0); /* Make the two new regions */ rnew[0] = MR_New(mesh); MR_Set_GEntDim(rnew[0],3); MR_Set_GEntID(rnew[0],gid); MR_Set_Faces(rnew[0],nrf1,rfarray1,rfdirs1); rnew[1] = MR_New(mesh); MR_Set_GEntDim(rnew[1],3); MR_Set_GEntID(rnew[1],gid); MR_Set_Faces(rnew[1],nrf2,rfarray2,rfdirs2); List_Delete(processed_faces); return fnew; }
int ME_Set_GInfo_Auto(MEdge_ptr e) { MVertex_ptr v0, v1; int gdim0, gdim1, gid0, gid1, egdim, egid; v0 = e->vertex[0]; gdim0 = MV_GEntDim(v0); gid0 = MV_GEntID(v0); v1 = e->vertex[1]; gdim1 = MV_GEntDim(v1); gid1 = MV_GEntID(v1); egdim = 4; egid = -1; if (gdim0 == gdim1) { if (gid0 == gid1) { egdim = gdim0; egid = gid0; } else { /* Unknown classification */ egdim = 4; egid = -1; } } else { if (gdim0 > gdim1) { egdim = gdim0; egid = gid0; } else { egdim = gdim1; egid = gid1; } } /* if the classification could not be determined, look at higher-dimensional entities connected to the edge to see if we can at least find the dimension of the model entity on which it is classified */ if (egdim == 4) { List_ptr efaces; MFace_ptr eface; efaces = ME_Faces(e); if (!efaces) { egdim = 2; egid = -1; } else { int allinterior, allsame, idx, gfid0; /* First check if all faces connected to edge are interior faces */ idx = 0; allinterior = 1; while ((eface = List_Next_Entry(efaces,&idx))) { if (MEnt_GEntDim((MEntity_ptr) eface) != 3) { allinterior = 0; break; } } if (allinterior) { egdim = 3; egid = MEnt_GEntID((MEntity_ptr) List_Entry(efaces,0)); } else { /* edge has some boundary faces connected to it. If all the boundary faces are classified on the same model face, then the edge is on that model face. If boundary faces are on different model faces, the edge is on a model edge, although we don't know which one */ gfid0 = -1; allsame = 1; idx = 0; while ((eface = List_Next_Entry(efaces,&idx))) { if (MEnt_GEntDim((MEntity_ptr) eface) != 2) continue; if (gfid0 == -1) { /* first boundary face */ gfid0 = MEnt_GEntID((MEntity_ptr) eface); } else { if (MEnt_GEntID((MEntity_ptr) eface) != gfid0) { allsame = 0; break; } } } if (allsame && gfid0 != -1) { egdim = 2; egid = gfid0; } else { egdim = 1; egid = -1; } } List_Delete(efaces); } } MEnt_Set_GEntDim((MEntity_ptr) e,egdim); MEnt_Set_GEntID((MEntity_ptr) e,egid); if (egdim == 4) return 0; else return 1; }
int MESH_PartitionWithZoltan(Mesh_ptr mesh, int nparts, int **part, int noptions, char **options, MSTK_Comm comm) { MEdge_ptr fedge; MFace_ptr mf, oppf, rface; MRegion_ptr mr, oppr; List_ptr fedges, efaces, rfaces, fregions; int i, j, k, id; int nv, ne, nf, nr=0, nfe, nef, nfr, nrf, idx, idx2; int numflag, nedgecut, ipos; int wtflag; int rc; float ver; struct Zoltan_Struct *zz; GRAPH_DATA graph; int changes, numGidEntries, numLidEntries, numImport, numExport; ZOLTAN_ID_PTR importGlobalGids, importLocalGids, exportGlobalGids, exportLocalGids; int *importProcs, *importToPart, *exportProcs, *exportToPart; int rank; MPI_Comm_rank(comm,&rank); rc = Zoltan_Initialize(0, NULL, &ver); if (rc != ZOLTAN_OK){ MSTK_Report("MESH_PartitionWithZoltan","Could not initialize Zoltan",MSTK_FATAL); MPI_Finalize(); exit(0); } /****************************************************************** ** Create a Zoltan library structure for this instance of partition ********************************************************************/ zz = Zoltan_Create(comm); /***************************************************************** ** Figure out partitioning method *****************************************************************/ char partition_method_str[32]; strcpy(partition_method_str,"RCB"); /* Default - Recursive Coordinate Bisection */ if (noptions) { for (i = 0; i < noptions; i++) { if (strncmp(options[i],"LB_PARTITION",12) == 0) { char *result = NULL, instring[256]; strcpy(instring,options[i]); result = strtok(instring,"="); result = strtok(NULL," "); strcpy(partition_method_str,result); } } } if (rank == 0) { char mesg[256]; sprintf(mesg,"Using partitioning method %s for ZOLTAN\n",partition_method_str); MSTK_Report("MESH_PartitionWithZoltan",mesg,MSTK_MESG); } /* General parameters for Zoltan */ Zoltan_Set_Param(zz, "DEBUG_LEVEL", "0"); Zoltan_Set_Param(zz, "LB_METHOD", partition_method_str); Zoltan_Set_Param(zz, "LB_APPROACH", "PARTITION"); Zoltan_Set_Param(zz, "NUM_GID_ENTRIES", "1"); Zoltan_Set_Param(zz, "NUM_LID_ENTRIES", "1"); Zoltan_Set_Param(zz, "RETURN_LISTS", "ALL"); graph.numMyNodes = 0; graph.numAllNbors = 0; graph.nodeGID = NULL; graph.nodeCoords = NULL; graph.nborIndex = NULL; graph.nborGID = NULL; graph.nborProc = NULL; if (strcmp(partition_method_str,"RCB") == 0) { if (rank == 0) { nr = MESH_Num_Regions(mesh); nf = MESH_Num_Faces(mesh); if (!nf && !nr) MSTK_Report("MESH_PartitionWithZoltan","Cannot partition wire meshes", MSTK_FATAL); if (nr == 0) { /* Surface or planar mesh */ int ndim = 2; /* assume mesh is planar */ idx = 0; MVertex_ptr mv; while ((mv = MESH_Next_Vertex(mesh,&idx))) { double vxyz[3]; MV_Coords(mv,vxyz); if (vxyz[2] != 0.0) { ndim = 3; /* non-planar or planar with non-zero z */ break; } } NDIM_4_ZOLTAN = ndim-1; /* ignore last dimension to avoid partitioning in that dimension */ graph.numMyNodes = nf; graph.nodeGID = (ZOLTAN_ID_TYPE *) malloc(sizeof(ZOLTAN_ID_TYPE) * nf); graph.nodeCoords = (double *) malloc(sizeof(double) * NDIM_4_ZOLTAN * nf); idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) { double fxyz[MAXPV2][3], cen[3]; int nfv; MF_Coords(mf,&nfv,fxyz); cen[0] = cen[1] = cen[2] = 0.0; for (j = 0; j < nfv; j++) for (k = 0; k < NDIM_4_ZOLTAN; k++) cen[k] += fxyz[j][k]; for (k = 0; k < NDIM_4_ZOLTAN; k++) cen[k] /= nfv; id = MF_ID(mf); graph.nodeGID[id-1] = id; memcpy(&(graph.nodeCoords[NDIM_4_ZOLTAN*(id-1)]),cen,NDIM_4_ZOLTAN*sizeof(double)); } } else { /* Volume mesh */ int ndim = 3; NDIM_4_ZOLTAN = ndim-1; /* ignore last dimension to avoid partitioning in that dimension */ graph.numMyNodes = nr; graph.nodeGID = (ZOLTAN_ID_TYPE *) malloc(sizeof(ZOLTAN_ID_TYPE) * nr); graph.nodeCoords = (double *) malloc(sizeof(double) * NDIM_4_ZOLTAN * nr); idx = 0; while ((mr = MESH_Next_Region(mesh,&idx))) { double rxyz[MAXPV3][3], cen[3]; int nrv; MR_Coords(mr,&nrv,rxyz); cen[0] = cen[1] = cen[2] = 0.0; for (j = 0; j < nrv; j++) for (k = 0; k < NDIM_4_ZOLTAN; k++) cen[k] += rxyz[j][k]; for (k = 0; k < NDIM_4_ZOLTAN; k++) cen[k] /= nrv; for (k = 0; k < NDIM_4_ZOLTAN; k++) if (fabs(cen[k]) < 1.0e-10) cen[k] = 0.0; id = MR_ID(mr); graph.nodeGID[id-1] = id; memcpy(&(graph.nodeCoords[NDIM_4_ZOLTAN*(id-1)]),cen,NDIM_4_ZOLTAN*sizeof(double)); } } } MPI_Bcast(&NDIM_4_ZOLTAN,1,MPI_INT,0,comm); /* Set some default values */ Zoltan_Set_Param(zz, "RCB_RECTILINEAR_BLOCKS","1"); // Zoltan_Set_Param(zz, "AVERAGE_CUTS", "1"); if (noptions > 1) { for (i = 1; i < noptions; i++) { char *paramstr = NULL, *valuestr = NULL, instring[256]; strcpy(instring,options[i]); paramstr = strtok(instring,"="); valuestr = strtok(NULL," "); Zoltan_Set_Param(zz,paramstr,valuestr); } } /* Query functions - defined in simpleQueries.h */ Zoltan_Set_Num_Obj_Fn(zz, get_number_of_nodes, &graph); Zoltan_Set_Obj_List_Fn(zz, get_node_list, &graph); Zoltan_Set_Num_Geom_Fn(zz, get_num_dimensions_reduced, &graph); /* reduced dimensions */ Zoltan_Set_Geom_Multi_Fn(zz, get_element_centers_reduced, &graph); /* reduced dimension centers */ } else if (strcmp(partition_method_str,"GRAPH") == 0) { if(rank == 0) { nv = MESH_Num_Vertices(mesh); ne = MESH_Num_Edges(mesh); nf = MESH_Num_Faces(mesh); nr = MESH_Num_Regions(mesh); ipos = 0; /* build nodes and neighbors list, similar as in partition with metis Assign processor 0 the whole mesh, assign other processors a NULL mesh */ if (nr == 0) { if (nf == 0) { MSTK_Report("MESH_PartitionWithZoltan", "Cannot partition wire meshes with Zoltan",MSTK_FATAL); exit(-1); } graph.nodeGID = (ZOLTAN_ID_TYPE *)malloc(sizeof(ZOLTAN_ID_TYPE) * nf); graph.nborIndex = (int *)malloc(sizeof(int) * (nf + 1)); graph.nborGID = (ZOLTAN_ID_TYPE *)malloc(sizeof(ZOLTAN_ID_TYPE) * 2*ne); graph.nborProc = (int *)malloc(sizeof(int) * 2*ne); graph.nborIndex[0] = 0; /* Surface mesh */ idx = 0; i = 0; while ((mf = MESH_Next_Face(mesh,&idx))) { graph.nodeGID[i] = MF_ID(mf); fedges = MF_Edges(mf,1,0); nfe = List_Num_Entries(fedges); idx2 = 0; while ((fedge = List_Next_Entry(fedges,&idx2))) { efaces = ME_Faces(fedge); nef = List_Num_Entries(efaces); if (nef == 1) { continue; /* boundary edge; nothing to do */ } else { int j; for (j = 0; j < nef; j++) { oppf = List_Entry(efaces,j); if (oppf == mf) { graph.nborGID[ipos] = MF_ID(oppf); /* initially set all nodes on processor 0 */ graph.nborProc[ipos] = 0; ipos++; } } } List_Delete(efaces); } List_Delete(fedges); i++; graph.nborIndex[i] = ipos; } graph.numMyNodes = i; graph.numAllNbors = ipos; } else { graph.nodeGID = (ZOLTAN_ID_TYPE *)malloc(sizeof(ZOLTAN_ID_TYPE) * nr); graph.nborIndex = (int *)malloc(sizeof(int) * (nr + 1)); graph.nborGID = (ZOLTAN_ID_TYPE *)malloc(sizeof(ZOLTAN_ID_TYPE) * 2*nf); graph.nborProc = (int *)malloc(sizeof(int) * 2*nf); graph.nborIndex[0] = 0; /* Volume mesh */ idx = 0; i = 0; while ((mr = MESH_Next_Region(mesh,&idx))) { graph.nodeGID[i] = MR_ID(mr); rfaces = MR_Faces(mr); nrf = List_Num_Entries(rfaces); idx2 = 0; while ((rface = List_Next_Entry(rfaces,&idx2))) { fregions = MF_Regions(rface); nfr = List_Num_Entries(fregions); if (nfr > 1) { oppr = List_Entry(fregions,0); if (oppr == mr) oppr = List_Entry(fregions,1); graph.nborGID[ipos] = MR_ID(oppr); /* initially set all nodes on processor 0 */ graph.nborProc[ipos] = 0; ipos++; } List_Delete(fregions); } List_Delete(rfaces); i++; graph.nborIndex[i] = ipos; } graph.numMyNodes = i; graph.numAllNbors = ipos; } } /* Graph parameters */ /* Zoltan_Set_Param(zz, "CHECK_GRAPH", "2"); */ Zoltan_Set_Param(zz, "PHG_EDGE_SIZE_THRESHOLD", ".35"); /* 0-remove all, 1-remove none */ /* Query functions - defined in simpleQueries.h */ Zoltan_Set_Num_Obj_Fn(zz, get_number_of_nodes, &graph); Zoltan_Set_Obj_List_Fn(zz, get_node_list, &graph); Zoltan_Set_Num_Edges_Multi_Fn(zz, get_num_edges_list, &graph); Zoltan_Set_Edge_List_Multi_Fn(zz, get_edge_list, &graph); } /* Partition the graph */ /****************************************************************** ** Zoltan can now partition the graph. ** We assume the number of partitions is ** equal to the number of processes. Process rank 0 will own ** partition 0, process rank 1 will own partition 1, and so on. ******************************************************************/ rc = Zoltan_LB_Partition(zz, /* input (all remaining fields are output) */ &changes, /* 1 if partitioning was changed, 0 otherwise */ &numGidEntries, /* Number of integers used for a global ID */ &numLidEntries, /* Number of integers used for a local ID */ &numImport, /* Number of nodes to be sent to me */ &importGlobalGids, /* Global IDs of nodes to be sent to me */ &importLocalGids, /* Local IDs of nodes to be sent to me */ &importProcs, /* Process rank for source of each incoming node */ &importToPart, /* New partition for each incoming node */ &numExport, /* Number of nodes I must send to other processes*/ &exportGlobalGids, /* Global IDs of the nodes I must send */ &exportLocalGids, /* Local IDs of the nodes I must send */ &exportProcs, /* Process to which I send each of the nodes */ &exportToPart); /* Partition to which each node will belong */ if (rc != ZOLTAN_OK){ if (rank == 0) MSTK_Report("MESH_PartitionWithZoltan","Could not partition mesh with ZOLTAN", MSTK_ERROR); Zoltan_Destroy(&zz); MPI_Finalize(); return 0; } if(rank == 0) { *part = (int *) calloc(graph.numMyNodes,sizeof(int)); for ( i = 0; i < numExport; i++ ) { (*part)[exportGlobalGids[i]-1] = exportToPart[i]; } if (graph.nodeGID) free(graph.nodeGID); if (graph.nodeCoords) free(graph.nodeCoords); if (graph.nborIndex) free(graph.nborIndex); if (graph.nborGID) free(graph.nborGID); if (graph.nborProc) free(graph.nborProc); } else { *part = NULL; } Zoltan_LB_Free_Part(&exportGlobalGids, &exportLocalGids, &exportProcs, &exportToPart); Zoltan_LB_Free_Part(&importGlobalGids, &importLocalGids, &importProcs, &importToPart); Zoltan_Destroy(&zz); return 1; }
MRegion_ptr MRs_Join(MRegion_ptr r1, MRegion_ptr r2, MFace_ptr f) { int i, j, nrf1, nrf2, gdim, gid, *rfdir2; MFace_ptr *rf2, fcmn=f; Mesh_ptr mesh; List_ptr rfaces2; mesh = MF_Mesh(r1); gid = MF_GEntID(r1); if (mesh != MF_Mesh(r2)) { MSTK_Report("MRs_Join","Regions not from same mesh",MSTK_ERROR); return 0; } else if (gid != MR_GEntID(r2)) { MSTK_Report("MRs_Join","Regions not from same geometric entity",MSTK_ERROR); return 0; } rfaces2 = MR_Faces(r2); nrf2 = List_Num_Entries(rfaces2); if (fcmn) { if (!MR_UsesEntity(r1,fcmn,MFACE)) { MSTK_Report("MRs_Join","Cannot find common face in region",MSTK_ERROR); return 0; } } else { /* find the common face */ List_ptr rfaces1 = MR_Faces(r1); int idx = 0; MFace_ptr rf; while ((rf = List_Next_Entry(rfaces2,&idx))) { if (List_Contains(rfaces1,rf)) { fcmn = rf; break; } } List_Delete(rfaces1); } rf2 = (MFace_ptr) malloc(nrf2*sizeof(MFace_ptr)); rfdir2 = (int *) malloc(nrf2*sizeof(int)); int found; for (i = 0, j = 0, found = 0; i < nrf2; i++) { MFace_ptr rface = List_Entry(rfaces2,i); if (rface == fcmn) found = 1; else { rf2[j] = rface; rfdir2[j] = MR_FaceDir_i(r2,i); j++; } } List_Delete(rfaces2); if (!found) { MSTK_Report("MRs_Join","Cannot find common face in region",MSTK_ERROR); return 0; } MR_Delete(r2,0); MR_Replace_Faces(r1,1,&fcmn,nrf2-1,rf2,rfdir2); MF_Delete(fcmn,0); free(rf2); free(rfdir2); return r1; }
int MESH_PartitionWithMetis(Mesh_ptr mesh, int nparts, int **part) { MEdge_ptr fedge; MFace_ptr mf, oppf, rface; MRegion_ptr mr, oppr; List_ptr fedges, efaces, rfaces, fregions; int i, ncells, ipos; int nv, ne, nf, nr, nfe, nef, nfr, nrf, idx, idx2; #ifdef METIS_5 idx_t ngraphvtx, numflag, nedgecut, numparts, ncons; idx_t wtflag, metisopts[METIS_NOPTIONS]; idx_t *vsize, *idxpart; idx_t *xadj, *adjncy, *vwgt, *adjwgt; real_t *tpwgts, *ubvec; #else idxtype ngraphvtx, numflag, nedgecut, numparts; idxtype wtflag, metisopts[5] = {0,0,0,0,0}; idxtype *xadj, *adjncy, *vwgt, *adjwgt, *idxpart; #endif /* First build a nodal graph of the mesh in the format required by metis */ nv = MESH_Num_Vertices(mesh); ne = MESH_Num_Edges(mesh); nf = MESH_Num_Faces(mesh); nr = MESH_Num_Regions(mesh); ipos = 0; if (nr == 0) { if (nf == 0) { fprintf(stderr,"Cannot partition wire meshes\n"); exit(-1); } #ifdef METIS_5 xadj = (idx_t *) malloc((nf+1)*sizeof(idx_t)); adjncy = (idx_t *) malloc(2*ne*sizeof(idx_t)); #else xadj = (idxtype *) malloc((nf+1)*sizeof(idxtype)); adjncy = (idxtype *) malloc(2*ne*sizeof(idxtype)); #endif ncells = nf; /* Surface mesh */ idx = 0; i = 0; xadj[i] = ipos; while ((mf = MESH_Next_Face(mesh,&idx))) { fedges = MF_Edges(mf,1,0); nfe = List_Num_Entries(fedges); idx2 = 0; while ((fedge = List_Next_Entry(fedges,&idx2))) { efaces = ME_Faces(fedge); nef = List_Num_Entries(efaces); if (nef == 1) { continue; /* boundary edge; nothing to do */ } else { int j; for (j = 0; j < nef; j++) { oppf = List_Entry(efaces,j); if (oppf != mf) { adjncy[ipos] = MF_ID(oppf)-1; ipos++; } } } List_Delete(efaces); } List_Delete(fedges); i++; xadj[i] = ipos; } } else { #ifdef METIS_5 xadj = (idx_t *) malloc((nr+1)*sizeof(idx_t)); adjncy = (idx_t *) malloc(2*nf*sizeof(idx_t)); #else xadj = (idxtype *) malloc((nr+1)*sizeof(idxtype)); adjncy = (idxtype *) malloc(2*nf*sizeof(idxtype)); #endif ncells = nr; /* Volume mesh */ idx = 0; i = 0; xadj[i] = ipos; while ((mr = MESH_Next_Region(mesh,&idx))) { rfaces = MR_Faces(mr); nrf = List_Num_Entries(rfaces); idx2 = 0; while ((rface = List_Next_Entry(rfaces,&idx2))) { fregions = MF_Regions(rface); nfr = List_Num_Entries(fregions); if (nfr > 1) { oppr = List_Entry(fregions,0); if (oppr == mr) oppr = List_Entry(fregions,1); adjncy[ipos] = MR_ID(oppr)-1; ipos++; } List_Delete(fregions); } List_Delete(rfaces); i++; xadj[i] = ipos; } } /* Partition the graph */ wtflag = 0; /* No weights are specified */ vwgt = adjwgt = NULL; numflag = 0; /* C style numbering of elements (nodes of the dual graph) */ ngraphvtx = ncells; /* we want the variable to be of type idxtype or idx_t */ numparts = nparts; /* we want the variable to be of type idxtype or idx_t */ #ifdef METIS_5 idxpart = (idx_t *) malloc(ncells*sizeof(idx_t)); ncons = 1; /* Number of constraints */ vsize = NULL; tpwgts = NULL; ubvec = NULL; METIS_SetDefaultOptions(metisopts); metisopts[METIS_OPTION_NUMBERING] = 0; if (nparts <= 8) METIS_PartGraphRecursive(&ngraphvtx,&ncons,xadj,adjncy,vwgt,vsize,adjwgt, &numparts,tpwgts,ubvec,metisopts,&nedgecut, idxpart); else METIS_PartGraphKway(&ngraphvtx,&ncons,xadj,adjncy,vwgt,vsize,adjwgt, &numparts,tpwgts,ubvec,metisopts,&nedgecut,idxpart); #else idxpart = (idxtype *) malloc(ncells*sizeof(idxtype)); if (nparts <= 8) METIS_PartGraphRecursive(&ngraphvtx,xadj,adjncy,vwgt,adjwgt,&wtflag, &numflag,&numparts,metisopts,&nedgecut,idxpart); else METIS_PartGraphKway(&ngraphvtx,xadj,adjncy,vwgt,adjwgt,&wtflag,&numflag, &numparts,metisopts,&nedgecut,idxpart); #endif free(xadj); free(adjncy); *part = (int *) malloc(ncells*sizeof(int)); for (i = 0; i < ncells; i++) (*part)[i] = (int) idxpart[i]; free(idxpart); return 1; }
int MESH_CopyAttr(Mesh_ptr mesh, int num, Mesh_ptr *submeshes, const char *attr_name) { int i, ncomp, ival, idx; double rval, *pval_arr=NULL; void *pval; MType mtype; MAttrib_ptr *local_attrib, global_attrib, g2latt; MAttType atttype; global_attrib = MESH_AttribByName(mesh,attr_name); if(!global_attrib) { MSTK_Report("MESH_CopyAttr","Root mesh has no attribute of given name",MSTK_WARN); return 0; } g2latt = MESH_AttribByName(mesh,"Global2Local"); local_attrib = (MAttrib_ptr *) malloc(num*sizeof(MAttrib_ptr)); for (i = 0; i < num; i++) { local_attrib[i] = MESH_AttribByName(submeshes[i],attr_name); /* if there is no such attribute */ if(!local_attrib[i]) { MSTK_Report("MESH_CopyAttr","Submesh has no attribute of given name",MSTK_WARN); return 0; } } /* get attribute properties */ ncomp = MAttrib_Get_NumComps(global_attrib); mtype = MAttrib_Get_EntDim(global_attrib); atttype = MAttrib_Get_Type(global_attrib); if (atttype == POINTER) { free(local_attrib); return 0; /* Don't see why one would want to transmit pointer info to the submesh */ } /* attribute entity type */ if (mtype == MVERTEX || mtype == MALLTYPE) { MVertex_ptr gmv, lmv; List_ptr lmvlist; idx = 0; while ((gmv = MESH_Next_Vertex(mesh,&idx))) { MEnt_Get_AttVal(gmv,global_attrib,&ival,&rval,&pval); /* Don't copy null values */ if ((atttype == INT && ival == 0) || (atttype == DOUBLE && rval == 0.0) || (atttype == POINTER && pval == NULL)) continue; int dummy_ival; double dummy_rval; MEnt_Get_AttVal(gmv,g2latt,&dummy_ival,&dummy_rval,&lmvlist); if (!lmvlist) continue; int idx2 = 0; while ((lmv = List_Next_Entry(lmvlist,&idx2))) { if (ncomp > 1) { pval_arr = (void *)malloc(ncomp*sizeof(double)); memcpy(pval_arr,pval,ncomp*sizeof(double)); } else pval_arr = NULL; Mesh_ptr entmesh = MEnt_Mesh(lmv); for (i = 0; i < num; i++) if (entmesh == submeshes[i]) { MEnt_Set_AttVal(lmv,local_attrib[i],ival,rval,(void *)pval_arr); break; } } } } if (mtype == MEDGE || mtype == MALLTYPE) { MVertex_ptr gme, lme; List_ptr lmelist; idx = 0; while ((gme = MESH_Next_Edge(mesh,&idx))) { MEnt_Get_AttVal(gme,global_attrib,&ival,&rval,&pval); /* Don't copy null values */ if ((atttype == INT && ival == 0) || (atttype == DOUBLE && rval == 0.0) || (atttype == POINTER && pval == NULL)) continue; int dummy_ival; double dummy_rval; MEnt_Get_AttVal(gme,g2latt,&dummy_ival,&dummy_rval,&lmelist); if (!lmelist) continue; int idx2 = 0; while ((lme = List_Next_Entry(lmelist,&idx2))) { if (ncomp > 1) { pval_arr = (void *)malloc(ncomp*sizeof(double)); memcpy(pval_arr,pval,ncomp*sizeof(double)); } else pval_arr = NULL; Mesh_ptr entmesh = MEnt_Mesh(lme); for (i = 0; i < num; i++) if (entmesh == submeshes[i]) { MEnt_Set_AttVal(lme,local_attrib[i],ival,rval,(void *)pval_arr); break; } } } } if (mtype == MFACE || mtype == MALLTYPE) { MFace_ptr gmf, lmf; List_ptr lmflist; idx = 0; while ((gmf = MESH_Next_Face(mesh,&idx))) { MEnt_Get_AttVal(gmf,global_attrib,&ival,&rval,&pval); /* Don't copy null values */ if ((atttype == INT && ival == 0) || (atttype == DOUBLE && rval == 0.0) || (atttype == POINTER && pval == NULL)) continue; int dummy_ival; double dummy_rval; MEnt_Get_AttVal(gmf,g2latt,&dummy_ival,&dummy_rval,&lmflist); if (!lmflist) continue; int idx2 = 0; while ((lmf = List_Next_Entry(lmflist,&idx2))) { if (ncomp > 1) { pval_arr = (void *)malloc(ncomp*sizeof(double)); memcpy(pval_arr,pval,ncomp*sizeof(double)); } else pval_arr = NULL; Mesh_ptr entmesh = MEnt_Mesh(lmf); for (i = 0; i < num; i++) if (entmesh == submeshes[i]) { MEnt_Set_AttVal(lmf,local_attrib[i],ival,rval,(void *)pval_arr); break; } } } } if (mtype == MREGION || mtype == MALLTYPE) { MRegion_ptr gmr, lmr; List_ptr lmrlist; idx = 0; while ((gmr = MESH_Next_Region(mesh,&idx))) { MEnt_Get_AttVal(gmr,global_attrib,&ival,&rval,&pval); /* Don't copy null values */ if ((atttype == INT && ival == 0) || (atttype == DOUBLE && rval == 0.0) || (atttype == POINTER && pval == NULL)) continue; int dummy_ival; double dummy_rval; MEnt_Get_AttVal(gmr,g2latt,&dummy_ival,&dummy_rval,&lmrlist); if (!lmrlist) continue; int idx2 = 0; while ((lmr = List_Next_Entry(lmrlist,&idx2))) { if (ncomp > 1) { pval_arr = (void *)malloc(ncomp*sizeof(double)); memcpy(pval_arr,pval,ncomp*sizeof(double)); } else pval_arr = NULL; Mesh_ptr entmesh = MEnt_Mesh(lmr); for (i = 0; i < num; i++) if (entmesh == submeshes[i]) { MEnt_Set_AttVal(lmr,local_attrib[i],ival,rval,(void *)pval_arr); break; } } } } free(local_attrib); return 1; }