示例#1
0
/*
  read the rangefinder and update height estimate
 */
void Plane::read_rangefinder(void)
{
#if RANGEFINDER_ENABLED == ENABLED

    // notify the rangefinder of our approximate altitude above ground to allow it to power on
    // during low-altitude flight when configured to power down during higher-altitude flight
    float height;
#if AP_TERRAIN_AVAILABLE
    if (terrain.status() == AP_Terrain::TerrainStatusOK && terrain.height_above_terrain(height, true)) {
        rangefinder.set_estimated_terrain_height(height);
    } else
#endif
    {
        // use the best available alt estimate via baro above home
        if (flight_stage == AP_SpdHgtControl::FLIGHT_LAND_APPROACH ||
            flight_stage == AP_SpdHgtControl::FLIGHT_LAND_PREFLARE ||
            flight_stage == AP_SpdHgtControl::FLIGHT_LAND_FINAL) {
            // ensure the rangefinder is powered-on when land alt is higher than home altitude.
            // This is done using the target alt which we know is below us and we are sinking to it
            height = height_above_target();
        } else {
            // otherwise just use the best available baro estimate above home.
            height = relative_altitude();
        }
        rangefinder.set_estimated_terrain_height(height);
    }

    rangefinder.update();

    if (should_log(MASK_LOG_SONAR))
        Log_Write_Sonar();

    rangefinder_height_update();
#endif
}
示例#2
0
/*
  read the rangefinder and update height estimate
 */
void Plane::read_rangefinder(void)
{
#if RANGEFINDER_ENABLED == ENABLED
    rangefinder.update();

    if (should_log(MASK_LOG_SONAR))
        Log_Write_Sonar();

    rangefinder_height_update();
#endif
}
示例#3
0
// read the sonars
void Rover::read_sonars(void)
{
    sonar.update();

    if (sonar.status() == RangeFinder::RangeFinder_NotConnected) {
        // this makes it possible to disable sonar at runtime
        return;
    }

    if (sonar.has_data(1)) {
        // we have two sonars
        obstacle.sonar1_distance_cm = sonar.distance_cm(0);
        obstacle.sonar2_distance_cm = sonar.distance_cm(1);
        if (obstacle.sonar1_distance_cm <= (uint16_t)g.sonar_trigger_cm &&
            obstacle.sonar1_distance_cm <= (uint16_t)obstacle.sonar2_distance_cm)  {
            // we have an object on the left
            if (obstacle.detected_count < 127) {
                obstacle.detected_count++;
            }
            if (obstacle.detected_count == g.sonar_debounce) {
                gcs_send_text_fmt(MAV_SEVERITY_INFO, "Sonar1 obstacle %u cm",
                                  (unsigned)obstacle.sonar1_distance_cm);
            }
            obstacle.detected_time_ms = hal.scheduler->millis();
            obstacle.turn_angle = g.sonar_turn_angle;
        } else if (obstacle.sonar2_distance_cm <= (uint16_t)g.sonar_trigger_cm) {
            // we have an object on the right
            if (obstacle.detected_count < 127) {
                obstacle.detected_count++;
            }
            if (obstacle.detected_count == g.sonar_debounce) {
                gcs_send_text_fmt(MAV_SEVERITY_INFO, "Sonar2 obstacle %u cm",
                                  (unsigned)obstacle.sonar2_distance_cm);
            }
            obstacle.detected_time_ms = hal.scheduler->millis();
            obstacle.turn_angle = -g.sonar_turn_angle;
        }
    } else {
        // we have a single sonar
        obstacle.sonar1_distance_cm = sonar.distance_cm(0);
        obstacle.sonar2_distance_cm = 0;
        if (obstacle.sonar1_distance_cm <= (uint16_t)g.sonar_trigger_cm)  {
            // obstacle detected in front 
            if (obstacle.detected_count < 127) {
                obstacle.detected_count++;
            }
            if (obstacle.detected_count == g.sonar_debounce) {
                gcs_send_text_fmt(MAV_SEVERITY_NOTICE, "Sonar obstacle %u cm",
                                  (unsigned)obstacle.sonar1_distance_cm);
            }
            obstacle.detected_time_ms = hal.scheduler->millis();
            obstacle.turn_angle = g.sonar_turn_angle;
        }
    }

    Log_Write_Sonar();

    // no object detected - reset after the turn time
    if (obstacle.detected_count >= g.sonar_debounce &&
        hal.scheduler->millis() > obstacle.detected_time_ms + g.sonar_turn_time*1000) { 
        gcs_send_text_fmt(MAV_SEVERITY_INFO, "Obstacle passed");
        obstacle.detected_count = 0;
        obstacle.turn_angle = 0;
    }
}