示例#1
0
	void
	V4LFrameSource::updateVideoFormat() {
		#ifdef USE_V4L

		struct v4l2_format fmt;
		uint32_t v4lCode = m_srcFormat.getV4LPixelFormat();
		MEMCLEAR(fmt);
		fmt.type 				= V4L2_BUF_TYPE_VIDEO_CAPTURE;
		fmt.fmt.pix.width		= m_width;
		fmt.fmt.pix.height		= m_height;
		fmt.fmt.pix.pixelformat = v4lCode;
		fmt.fmt.pix.field 		= V4L2_FIELD_NONE;

		if (xioctl(m_fd, VIDIOC_S_FMT, &fmt) == -1)	{
			throw IOException("Cannot set camera format parameters, invalid resolution?");
		}
		MEMCLEAR(fmt);
		fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
		xioctl(m_fd, VIDIOC_G_FMT, &fmt);	// get format information!

		if ((int)fmt.fmt.pix.bytesperline != PixelFormat::s_calcByteWidth(m_srcFormat, 0, m_width)) {
			std::cout << "Expected " << PixelFormat::s_calcByteWidth(m_srcFormat, 0, m_width) << " got " << fmt.fmt.pix.bytesperline << " for format " << m_srcFormat.toString() << std::endl;
			throw IOException("source format bytes/pixel mismatch");
		}
		
		if (fmt.fmt.pix.pixelformat != v4lCode) {
			std::cerr << "source format: " << fmt.fmt.pix.pixelformat
					  << " vs: " << m_srcFormat;
			throw IOException("invalid source format!");
		}

		#endif
	}
示例#2
0
void SignalException (
  SLONG code, ULONG count, SLONG subcode, ULONG subcount, ...)
{
  ULONG i;
  va_list ap;

  MSGVEC *msgvecP = new MSGVEC;

  // Initialize the exception codes and argument counts.

  MEMCLEAR (msgvecP, sizeof(MSGVEC));

  msgvecP->code = code;
  msgvecP->count = count;

  msgvecP->subcode = subcode;
  msgvecP->subcount = subcount;

  // Initialize the arguments.

  va_start (ap, subcount);

  for (i = 0; i < count; i++)
    msgvecP->param[i] = va_arg(ap, ULONG);

  for (i = 0; i < subcount; i++)
    msgvecP->subparam[i] = va_arg(ap, ULONG);

  va_end (ap);

  // Throw the exception.

  throw (msgvecP);
}
示例#3
0
	int
	V4LFrameSource::dequeueBuffer(int *bytesUsed, int64_t *usecs) {
		#ifdef USE_V4L

		struct v4l2_buffer buf;
		MEMCLEAR(buf);
		buf.index	= 0;
		buf.type	= V4L2_BUF_TYPE_VIDEO_CAPTURE;
		buf.memory	= V4L2_MEMORY_MMAP;
		for (int cnt = 0; *bytesUsed == 0 && cnt < 10; cnt++) {
			if (xioctl(m_fd, VIDIOC_DQBUF, &buf) == -1) {
				switch (errno) {
				case EAGAIN:
					std::cerr << "eagain: " << buf.index << " bu: " << buf.bytesused << std::endl;
					sleep(1);
					continue;
					break;
				default:
					throw IOException("VIDIOC_DQBUF err: " + MMUtils::s_errToStr(errno));
				}
			}
			*bytesUsed	= buf.bytesused;
			*usecs		= buf.timestamp.tv_sec * 1000000 + buf.timestamp.tv_usec;
		}
		if (*bytesUsed <= 0) {
			throw IOException("dequeue failed!");
		}
		return (buf.index);

		#else
		return -1;

		#endif
	}
示例#4
0
	V4LFrameSource::V4LFrameSource() :
		m_isOpen(false),
		
		m_deviceName(""),
		m_width(-1),
		m_height(-1),
		m_exposureTime(-1),
		m_frameRate(-1),
		m_fd(-1),
		m_numBuffers(1),
		m_srcFormat(PixelFormat::FMT_YUYV422),
		m_tgtFormat(PixelFormat::FMT_RGB24),
		m_converter(),
		m_lastFrame(),
		m_framePtrMutex(),
		m_isRunning(false),
		m_threadMutex(),
		m_runningMutex(),
		m_thread(NULL) {

		assert(m_numBuffers < VLAB_V4L2_MAX_NUM_BUFFERS);

		m_converter.setDestFormat(m_tgtFormat);
		
		MEMCLEAR(m_buffer);
	}
示例#5
0
STATIC void resizePricer(lprec *lp)
{
  if(!applyPricer(lp))
    return;

  /* Reallocate vector for new size */
  lp->edgeVector = (REAL *) realloc(lp->edgeVector, (lp->sum_alloc + 1) * sizeof(*lp->edgeVector));

  /* Signal that we have not yet initialized the price vector */
  MEMCLEAR(lp->edgeVector, lp->sum_alloc+1);
  lp->edgeVector[0] = -1;
}
示例#6
0
	void
	V4LFrameSource::mmapBuffers() {
		#ifdef USE_V4L

		struct v4l2_requestbuffers req;
		MEMCLEAR(req);
		req.count	= m_numBuffers;
		req.type	= V4L2_BUF_TYPE_VIDEO_CAPTURE;
		req.memory	= V4L2_MEMORY_MMAP;
		
		if (xioctl(m_fd, VIDIOC_REQBUFS, &req) == -1) {
			throw IOException("V4L camera buffer request failed: " + MMUtils::s_errToStr(errno));
		}
		
		if ((int)req.count < m_numBuffers) {
			std::cerr << "Not enough buffers! Have " << req.count <<
				         " need " << m_numBuffers << std::endl;
			throw IOException("Not enough buffers for v4l camera");
		}
		for (int i = 0; i < m_numBuffers; i++) {
			struct v4l2_buffer buf;
			MEMCLEAR(buf);
			buf.type	= V4L2_BUF_TYPE_VIDEO_CAPTURE;
			buf.memory	= V4L2_MEMORY_MMAP;
			buf.index	= i;
			if (xioctl(m_fd, VIDIOC_QUERYBUF, &buf) == -1) {
				throw IOException("buffer query failed: " + MMUtils::s_errToStr(errno));
			}
			m_buffer[i].size = buf.length;
			m_buffer[i].ptr = (const char *)mmap (NULL, buf.length,
												  PROT_READ | PROT_WRITE, MAP_SHARED, m_fd, buf.m.offset);
			if (!m_buffer[i].ptr) {
				throw IOException("buffer mmap failed!");
			}
		}

		#endif
	}
示例#7
0
STATIC MYBOOL resizePricer(lprec *lp)
{
  if(!applyPricer(lp))
    return( TRUE );

  /* Reallocate vector for new size */
  if(!allocREAL(lp, &(lp->edgeVector), lp->sum_alloc+1, AUTOMATIC))
    return( FALSE );

  /* Signal that we have not yet initialized the price vector */
  MEMCLEAR(lp->edgeVector, lp->sum_alloc+1);
  lp->edgeVector[0] = -1;
  return( TRUE );
}
示例#8
0
void REPORT_constraintinfo(lprec *lp, char *datainfo)
{
  int i, tally[ROWCLASS_MAX+1];

  MEMCLEAR(tally, ROWCLASS_MAX+1);
  for(i = 1; i <= lp->rows; i++)
    tally[get_constr_class(lp, i)]++;

  if(datainfo != NULL)
    report(lp, NORMAL, "%s\n", datainfo);

  for(i = 0; i <= ROWCLASS_MAX; i++)
    if(tally[i] > 0)
      report(lp, NORMAL, "%-15s %4d\n", get_str_constr_class(lp, i), tally[i]);
}
示例#9
0
void jsi_PstateFree(jsi_Pstate *ps)
{
    /* TODO: when do we free opcodes */
    jsi_PstateClear(ps);
    Jsi_Free(ps->lexer);
    if (ps->opcodes)
        jsi_FreeOpcodes(ps->opcodes);
    if (ps->hPtr)
        Jsi_HashEntryDelete(ps->hPtr);
    Jsi_HashDelete(ps->argsTbl);
    Jsi_HashDelete(ps->strTbl);
    Jsi_HashDelete(ps->fastVarTbl);
    MEMCLEAR(ps);
    Jsi_Free(ps);
}
示例#10
0
void jsi_UserObjFree(Jsi_Interp *interp, Jsi_UserObj *uobj)
{
    Jsi_UserObjReg *udr =uobj->reg;
    if (interp != uobj->interp) {
        Jsi_LogError("UDID bad interp");
        return;
    }
    if (uobj->hPtr)
        Jsi_HashEntryDelete(uobj->hPtr);
    if (udr->freefun) {
        udr->freefun(interp, uobj->data);
    }
    MEMCLEAR(uobj);
    Jsi_Free(uobj);
}
示例#11
0
	void
	V4LFrameSource::enqueueBuffer(int bufIdx) {
		#ifdef USE_V4L

		struct v4l2_buffer buf;
		MEMCLEAR(buf);
		buf.index	= 0;
		buf.type	= V4L2_BUF_TYPE_VIDEO_CAPTURE;
		buf.memory	= V4L2_MEMORY_MMAP;

		if (xioctl(m_fd, VIDIOC_QBUF, &buf) == -1) {
			throw IOException("enqueing buffer failed: " + MMUtils::s_errToStr(errno));
		}

		#endif
	}
示例#12
0
文件: Camera1.cpp 项目: Yadoms/yadoms
   boost::shared_ptr<std::queue<shared::communication::CByteBuffer> > CCamera1::encode(boost::shared_ptr<ISequenceNumberProvider> seqNumberProvider) const
   {
      RBUF rbuf;
      MEMCLEAR(rbuf.CAMERA1);

      rbuf.CAMERA1.packetlength = ENCODE_PACKET_LENGTH(CAMERA1);
      rbuf.CAMERA1.packettype = pTypeCamera;
      rbuf.CAMERA1.subtype = m_subType;
      rbuf.CAMERA1.seqnbr = seqNumberProvider->next();
      rbuf.CAMERA1.housecode = m_houseCode;
      rbuf.CAMERA1.cmnd = toProtocolState(*m_camera);
      rbuf.CAMERA1.rssi = 0;
      rbuf.CAMERA1.filler = 0;

      return toBufferQueue(rbuf, GET_RBUF_STRUCT_SIZE(CAMERA1));
   }
示例#13
0
文件: Chime.cpp 项目: Yadoms/yadoms
boost::shared_ptr<std::queue<shared::communication::CByteBuffer> > CChime::encode(boost::shared_ptr<ISequenceNumberProvider> seqNumberProvider) const
{
    RBUF rbuf;
    MEMCLEAR(rbuf.CHIME);

    rbuf.CHIME.packetlength = ENCODE_PACKET_LENGTH(CHIME);
    rbuf.CHIME.packettype = pTypeChime;
    rbuf.CHIME.subtype = m_subType;
    rbuf.CHIME.seqnbr = seqNumberProvider->next();
    m_subTypeManager->idToProtocol(m_id, rbuf.CHIME.id1, rbuf.CHIME.id2, rbuf.CHIME.sound);
    m_subTypeManager->toProtocolState(rbuf.CHIME.sound);
    rbuf.CHIME.rssi = 0;
    rbuf.CHIME.filler = 0;

    return toBufferQueue(rbuf, GET_RBUF_STRUCT_SIZE(CHIME));
}
示例#14
0
	void
	V4LFrameSource::updateCropping() {
		#ifdef USE_V4L

		// Reset the cropping
		struct v4l2_cropcap cropcap;
		MEMCLEAR(cropcap);
		if (xioctl(m_fd, VIDIOC_CROPCAP, &cropcap) == 0) {
			struct v4l2_crop crop;
			crop.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
			crop.c = cropcap.defrect; /* reset to default */
			if (xioctl(m_fd, VIDIOC_S_CROP, &crop) == -1) {
				throw IOException("Cannot reset V4L camera crop: " + MMUtils::s_errToStr(errno));
			}
		}

		#endif
	}
示例#15
0
	void
	V4LFrameSource::checkCapabilities() {
		#ifdef USE_V4L

		struct v4l2_capability caps;
		MEMCLEAR(caps);
		if (xioctl(m_fd, VIDIOC_QUERYCAP, &caps) == -1) {
			throw IOException("Cannot query V4L camera capabilities!");
		}
		if (!(caps.capabilities & V4L2_CAP_VIDEO_CAPTURE)) {
			throw IOException("V4L device is not a capture device: " + m_deviceName);
		}
		if (!(caps.capabilities & V4L2_CAP_STREAMING)) {
			throw IOException("V4L device is not a streaming device: " + m_deviceName);
		}

		#endif
	}
示例#16
0
STATIC MYBOOL allocREAL(lprec *lp, REAL **ptr, int size, MYBOOL clear)
{
  if(clear == TRUE)
    *ptr = (REAL *) calloc(size, sizeof(**ptr));
  else if(clear & AUTOMATIC) {
    *ptr = (REAL *) realloc(*ptr, size * sizeof(**ptr));
    if(clear & TRUE)
      MEMCLEAR(*ptr, size);
  }
  else
    *ptr = (REAL *) malloc(size * sizeof(**ptr));
  if(((*ptr) == NULL) && (size > 0)) {
    lp->report(lp, CRITICAL, "alloc of %d 'REAL' failed\n", size);
    lp->spx_status = NOMEMORY;
    return( FALSE );
  }
  else
    return( TRUE );
}
示例#17
0
boost::shared_ptr<std::queue<shared::communication::CByteBuffer> > CHomeConfort::encode(boost::shared_ptr<ISequenceNumberProvider> seqNumberProvider) const
{
    RBUF rbuf;
    MEMCLEAR(rbuf.HOMECONFORT);

    rbuf.HOMECONFORT.packetlength = ENCODE_PACKET_LENGTH(HOMECONFORT);
    rbuf.HOMECONFORT.packettype = pTypeHomeConfort;
    rbuf.HOMECONFORT.subtype = m_subType;
    rbuf.HOMECONFORT.seqnbr = seqNumberProvider->next();
    rbuf.HOMECONFORT.id1 = static_cast<unsigned char>((m_id & 0x070000) >> 16);
    rbuf.HOMECONFORT.id2 = static_cast<unsigned char>((m_id & 0xFF00) >> 8);
    rbuf.HOMECONFORT.id3 = static_cast<unsigned char>(m_id & 0xFF);
    rbuf.HOMECONFORT.housecode = m_houseCode;
    rbuf.HOMECONFORT.unitcode = m_unitCode;
    rbuf.HOMECONFORT.cmnd = toProtocolState(*m_state);
    rbuf.HOMECONFORT.rssi = 0;
    rbuf.HOMECONFORT.filler = 0;

    return toBufferQueue(rbuf, GET_RBUF_STRUCT_SIZE(HOMECONFORT));
}
示例#18
0
文件: Rfy.cpp 项目: Yadoms/yadoms
   boost::shared_ptr<std::queue<shared::communication::CByteBuffer> > CRfy::encode(boost::shared_ptr<ISequenceNumberProvider> seqNumberProvider) const
   {
      RBUF rbuf;
      MEMCLEAR(rbuf.RFY);

      rbuf.RFY.packetlength = ENCODE_PACKET_LENGTH(RFY);
      rbuf.RFY.packettype = pTypeRFY;
      rbuf.RFY.subtype = m_subType;
      rbuf.RFY.seqnbr = seqNumberProvider->next();
      rbuf.RFY.id1 = static_cast<unsigned char>((m_id & 0xFF0000) >> 16);
      rbuf.RFY.id2 = static_cast<unsigned char>((m_id & 0xFF00) >> 8);
      rbuf.RFY.id3 = static_cast<unsigned char>(m_id & 0xFF);
      rbuf.RFY.unitcode = m_unitCode;
      rbuf.RFY.cmnd = toProtocolState(*m_state);
      rbuf.RFY.rfu1 = 0;
      rbuf.RFY.rfu2 = 0;
      rbuf.RFY.rfu3 = 0;
      rbuf.RFY.rssi = 0;
      rbuf.LIGHTING1.filler = 0;

      return toBufferQueue(rbuf, GET_RBUF_STRUCT_SIZE(RFY));
   }
示例#19
0
文件: lusol.c 项目: SimonRit/RTK
void LUSOL_clear(LUSOLrec *LUSOL, MYBOOL nzonly)
{
  int len;

  LUSOL->nelem = 0;
  if(!nzonly) {

   /* lena arrays */
    len = LUSOL->lena + LUSOL_ARRAYOFFSET;
    MEMCLEAR(LUSOL->a,    len);
    MEMCLEAR(LUSOL->indc, len);
    MEMCLEAR(LUSOL->indr, len);

   /* maxm arrays */
    len = LUSOL->maxm + LUSOL_ARRAYOFFSET;
    MEMCLEAR(LUSOL->lenr,  len);
    MEMCLEAR(LUSOL->ip,    len);
    MEMCLEAR(LUSOL->iqloc, len);
    MEMCLEAR(LUSOL->ipinv, len);
    MEMCLEAR(LUSOL->locr,  len);

#ifndef ClassicHamaxR
    if((LUSOL->amaxr != NULL)
#ifdef AlwaysSeparateHamaxR
       && (LUSOL->luparm[LUSOL_IP_PIVOTTYPE] == LUSOL_PIVMOD_TRP)
#endif
      )
      MEMCLEAR(LUSOL->amaxr, len);
#endif

   /* maxn arrays */
    len = LUSOL->maxn + LUSOL_ARRAYOFFSET;
    MEMCLEAR(LUSOL->lenc,  len);
    MEMCLEAR(LUSOL->iq,    len);
    MEMCLEAR(LUSOL->iploc, len);
    MEMCLEAR(LUSOL->iqinv, len);
    MEMCLEAR(LUSOL->locc,  len);
    MEMCLEAR(LUSOL->w,     len);

    if(LUSOL->luparm[LUSOL_IP_PIVOTTYPE] == LUSOL_PIVMOD_TCP) {
      MEMCLEAR(LUSOL->Ha,  len);
      MEMCLEAR(LUSOL->Hj,  len);
      MEMCLEAR(LUSOL->Hk,  len);
    }
#ifndef ClassicdiagU
    if(LUSOL->luparm[LUSOL_IP_KEEPLU] == FALSE) {
      MEMCLEAR(LUSOL->diagU, len);
    }
#endif

  }
}
示例#20
0
MYBOOL __WINAPI guess_basis(lprec *lp, REAL *guessvector, int *basisvector)
{
  MYBOOL *isnz = NULL, status = FALSE;
  REAL   *values = NULL, *violation = NULL,
         eps = lp->epsprimal,
         *value, error, upB, loB, sortorder = -1.0;
  int    i, j, jj, n, *rownr, *colnr, *slkpos = NULL,
         nrows = lp->rows, ncols = lp->columns, nsum = lp->sum;
  int    *basisnr;
  MATrec *mat = lp->matA;

  if(!mat_validate(mat))
    return( status );

  /* Create helper arrays, providing for multiple use of the violation array */
  if(!allocREAL(lp, &values, nsum+1, TRUE) ||
     !allocREAL(lp, &violation, nsum+1, TRUE))
    goto Finish;

  /* Compute the values of the constraints for the given guess vector */
  i = 0;
  n = get_nonzeros(lp);
  rownr = &COL_MAT_ROWNR(i);
  colnr = &COL_MAT_COLNR(i);
  value = &COL_MAT_VALUE(i);
  for(; i < n; i++, rownr += matRowColStep, colnr += matRowColStep, value += matValueStep)
    values[*rownr] += unscaled_mat(lp, my_chsign(is_chsign(lp, *rownr), *value), *rownr, *colnr) *
                      guessvector[*colnr];
  MEMMOVE(values+nrows+1, guessvector+1, ncols);

  /* Initialize bound "violation" or primal non-degeneracy measures, expressed
     as the absolute value of the differences from the closest bound. */
  for(i = 1; i <= nsum; i++) {
    if(i <= nrows) {
      loB = get_rh_lower(lp, i);
      upB = get_rh_upper(lp, i);
    }
    else {
      loB = get_lowbo(lp, i-nrows);
      upB = get_upbo(lp, i-nrows);
    }

    /* Free constraints/variables */
    if(my_infinite(lp, loB) && my_infinite(lp, upB))
      error = 0;
    /* Violated constraints/variable bounds */
    else if(values[i]+eps < loB)
      error = loB-values[i];
    else if(values[i]-eps > upB)
      error = values[i]-upB;
    /* Non-violated constraints/variables bounds */
    else if(my_infinite(lp, upB))
      error = MAX(0, values[i]-loB);
    else if(my_infinite(lp, loB))
      error = MAX(0, upB-values[i]);
    else
      error = MIN(upB-values[i], values[i]-loB); /* MAX(upB-values[i], values[i]-loB); */
    if(error != 0)
      violation[i] = sortorder*error;
    basisvector[i] = i;
  }

  /* Sort decending , meaning that variables with the largest
     "violations" will be designated basic. Effectively, we are performing a
     greedy type algorithm, but start at the "least interesting" end. */
  sortByREAL(basisvector, violation, nsum, 1, FALSE);
  error = violation[1]; /* Used for setting the return value */

  /* Let us check for obvious row singularities and try to fix these.
     Note that we reuse the memory allocated to the violation array.
     First assemble necessary basis statistics... */
  slkpos = (int *) violation;
  n = nrows+1;
  MEMCLEAR(slkpos, n);
  isnz = (MYBOOL *) (slkpos+n+1);
  MEMCLEAR(isnz, n);
  for(i = 1; i <= nrows; i++) {
    j = abs(basisvector[i]);
    if(j <= nrows) {
      isnz[j] = TRUE;
      slkpos[j] = i;
    }
    else {
      j-= nrows;
      jj = mat->col_end[j-1];
      jj = COL_MAT_ROWNR(jj);
      isnz[jj] = TRUE;
    }
  }
  for(; i <= nsum; i++) {
    j = abs(basisvector[i]);
    if(j <= nrows)
      slkpos[j] = i;
  }

  /* ...then set the corresponding slacks basic for row rank deficient positions */
  for(j = 1; j <= nrows; j++) {
    if(slkpos[j] == 0)
      report(lp, SEVERE, "guess_basis: Internal error");
    if(!isnz[j]) {
      isnz[j] = TRUE;
      i = slkpos[j];
      swapINT(&basisvector[i], &basisvector[j]);
      basisvector[j] = abs(basisvector[j]);
    }
  }

  /* Adjust the non-basic indeces for the (proximal) bound state */
  for(i = nrows+1, basisnr = basisvector+i; i <= nsum; i++, basisnr++) {
    n = *basisnr;
    if(n <= nrows) {
      values[n] -= get_rh_lower(lp, n);
      if(values[n] <= eps)
        *basisnr = -(*basisnr);
    }
    else
      if(values[n]-eps <= get_lowbo(lp, n-nrows))
        *basisnr = -(*basisnr);
  }

/* Lastly normalize all basic variables to be coded as lower-bounded,
   or effectively zero-based in the case of free variables. */
  for(i = 1; i <= nrows; i++)
    basisvector[i] = -abs(basisvector[i]);

  /* Clean up and return status */
  status = (MYBOOL) (error <= eps);
Finish:
  FREE(values);
  FREE(violation);

  return( status );
}
示例#21
0
/* ==================================================================
   lu7for  (forward sweep) updates the LU factorization  A = L*U
   when row  iw = ip(klast)  of  U  is eliminated by a forward
   sweep of stabilized row operations, leaving  ip * U * iq  upper
   triangular.
   The row permutation  ip  is updated to preserve stability and/or
   sparsity.  The column permutation  iq  is not altered.
   kfirst  is such that row  ip(kfirst)  is the first row involved
   in eliminating row  iw.  (Hence,  kfirst  marks the first nonzero
   in row  iw  in pivotal order.)  If  kfirst  is unknown it may be
   input as  1.
   klast   is such that row  ip(klast)  is the row being eliminated.
   klast   is not altered.
   lu7for  should be called only if  kfirst .le. klast.
   If  kfirst = klast,  there are no nonzeros to eliminate, but the
   diagonal element of row  ip(klast)  may need to be moved to the
   front of the row.
   ------------------------------------------------------------------
   On entry,  locc(*)  must be zero.

   On exit:
   inform = 0  if row iw has a nonzero diagonal (could be small).
   inform = 1  if row iw has no diagonal.
   inform = 7  if there is not enough storage to finish the update.

   On a successful exit (inform le 1),  locc(*)  will again be zero.
   ------------------------------------------------------------------
      Jan 1985: Final f66 version.
   09 May 1988: First f77 version.
   ================================================================== */
void LU7FOR(LUSOLrec *LUSOL, int KFIRST, int KLAST, int *LENL, int *LENU,
                     int *LROW, int *INFORM, REAL *DIAG)
{
  MYBOOL SWAPPD;
  int    KBEGIN, IW, LENW, LW1, LW2, JFIRST, MINFRE, NFREE, L, J, KSTART, KSTOP, K,
         LFIRST, IV, LENV, LV1, JLAST, LV2, LV3, LV, JV, LW, LDIAG, LIMIT;
  REAL   AMULT, LTOL, USPACE, SMALL, VJ, WJ;

  LTOL   = LUSOL->parmlu[LUSOL_RP_UPDATEMAX_Lij];
  SMALL  = LUSOL->parmlu[LUSOL_RP_ZEROTOLERANCE];
  USPACE = LUSOL->parmlu[LUSOL_RP_COMPSPACE_U];
  KBEGIN = KFIRST;
  SWAPPD = FALSE;

/*      We come back here from below if a row interchange is performed. */
x100:
  IW = LUSOL->ip[KLAST];
  LENW = LUSOL->lenr[IW];
  if(LENW==0)
    goto x910;
  LW1 = LUSOL->locr[IW];
  LW2 = (LW1+LENW)-1;
  JFIRST = LUSOL->iq[KBEGIN];
  if(KBEGIN>=KLAST)
    goto x700;
/*      Make sure there is room at the end of the row file
        in case row  iw  is moved there and fills in completely. */
  MINFRE = LUSOL->n+1;
  NFREE = LUSOL->lena-(*LENL)-(*LROW);
  if(NFREE<MINFRE) {
    LU1REC(LUSOL, LUSOL->m,TRUE,LROW,LUSOL->indr,LUSOL->lenr,LUSOL->locr);
    LW1 = LUSOL->locr[IW];
    LW2 = (LW1+LENW)-1;
    NFREE = LUSOL->lena-(*LENL)-(*LROW);
    if(NFREE<MINFRE)
      goto x970;

  }
/*      Set markers on row  iw. */
  for(L = LW1; L <= LW2; L++) {
    J = LUSOL->indr[L];
    LUSOL->locc[J] = L;
  }
/*      ==================================================================
        Main elimination loop.
        ================================================================== */
  KSTART = KBEGIN;
  KSTOP = MIN(KLAST,LUSOL->n);
  for(K = KSTART; K <= KSTOP; K++) {
    JFIRST = LUSOL->iq[K];
    LFIRST = LUSOL->locc[JFIRST];
    if(LFIRST==0)
      goto x490;
/*         Row  iw  has its first element in column  jfirst. */
    WJ = LUSOL->a[LFIRST];
    if(K==KLAST)
      goto x490;
/*         ---------------------------------------------------------------
           We are about to use the first element of row  iv
                  to eliminate the first element of row  iw.
           However, we may wish to interchange the rows instead,
           to preserve stability and/or sparsity.
           --------------------------------------------------------------- */
    IV = LUSOL->ip[K];
    LENV = LUSOL->lenr[IV];
    LV1 = LUSOL->locr[IV];
    VJ = ZERO;
    if(LENV==0)
      goto x150;
    if(LUSOL->indr[LV1]!=JFIRST)
      goto x150;
    VJ = LUSOL->a[LV1];
    if(SWAPPD)
      goto x200;
    if(LTOL*fabs(WJ)<fabs(VJ))
      goto x200;
    if(LTOL*fabs(VJ)<fabs(WJ))
      goto x150;
    if(LENV<=LENW)
      goto x200;
/*         ---------------------------------------------------------------
           Interchange rows  iv  and  iw.
           --------------------------------------------------------------- */
x150:
    LUSOL->ip[KLAST] = IV;
    LUSOL->ip[K] = IW;
    KBEGIN = K;
    SWAPPD = TRUE;
    goto x600;
/*         ---------------------------------------------------------------
           Delete the eliminated element from row  iw
           by overwriting it with the last element.
           --------------------------------------------------------------- */
x200:
    LUSOL->a[LFIRST] = LUSOL->a[LW2];
    JLAST = LUSOL->indr[LW2];
    LUSOL->indr[LFIRST] = JLAST;
    LUSOL->indr[LW2] = 0;
    LUSOL->locc[JLAST] = LFIRST;
    LUSOL->locc[JFIRST] = 0;
    LENW--;
    (*LENU)--;
    if(*LROW==LW2)
      (*LROW)--;
    LW2 = LW2-1;
/*         ---------------------------------------------------------------
           Form the multiplier and store it in the  L  file.
           --------------------------------------------------------------- */
    if(fabs(WJ)<=SMALL)
      goto x490;
    AMULT = -WJ/VJ;
    L = LUSOL->lena-(*LENL);
    LUSOL->a[L] = AMULT;
    LUSOL->indr[L] = IV;
    LUSOL->indc[L] = IW;
    (*LENL)++;
/*         ---------------------------------------------------------------
           Add the appropriate multiple of row  iv  to row  iw.
           We use two different inner loops.  The first one is for the
           case where row  iw  is not at the end of storage.
           --------------------------------------------------------------- */
    if(LENV==1)
      goto x490;
    LV2 = LV1+1;
    LV3 = (LV1+LENV)-1;
    if(LW2==*LROW)
      goto x400;
/*         ...............................................................
           This inner loop will be interrupted only if
           fill-in occurs enough to bump into the next row.
           ............................................................... */
    for(LV = LV2; LV <= LV3; LV++) {
      JV = LUSOL->indr[LV];
      LW = LUSOL->locc[JV];
      if(LW>0) {
/*               No fill-in. */
        LUSOL->a[LW] += AMULT*LUSOL->a[LV];
        if(fabs(LUSOL->a[LW])<=SMALL) {
/*                  Delete small computed element. */
          LUSOL->a[LW] = LUSOL->a[LW2];
          J = LUSOL->indr[LW2];
          LUSOL->indr[LW] = J;
          LUSOL->indr[LW2] = 0;
          LUSOL->locc[J] = LW;
          LUSOL->locc[JV] = 0;
          (*LENU)--;
          LENW--;
          LW2--;
        }
      }
      else {
/*               Row  iw  doesn't have an element in column  jv  yet
                 so there is a fill-in. */
        if(LUSOL->indr[LW2+1]!=0)
          goto x360;
        (*LENU)++;
        LENW++;
        LW2++;
        LUSOL->a[LW2] = AMULT*LUSOL->a[LV];
        LUSOL->indr[LW2] = JV;
        LUSOL->locc[JV] = LW2;
      }
    }
    goto x490;
/*         Fill-in interrupted the previous loop.
           Move row  iw  to the end of the row file. */
x360:
    LV2 = LV;
    LUSOL->locr[IW] = (*LROW)+1;

#ifdef LUSOLFastMove
    L = LW2-LW1+1;
    if(L > 0) {
      int loci, *locp;
      for(loci = LW1, locp = LUSOL->indr+LW1;
          loci <= LW2; loci++, locp++) {
        (*LROW)++;
        LUSOL->locc[*locp] = *LROW;
      }
      LW2 = (*LROW)-L+1;
      MEMMOVE(LUSOL->a+LW2,    LUSOL->a+LW1, L);
      MEMMOVE(LUSOL->indr+LW2, LUSOL->indr+LW1, L);
      MEMCLEAR(LUSOL->indr+LW1, L);
    }
#else
    for(L = LW1; L <= LW2; L++) {
      (*LROW)++;
      LUSOL->a[*LROW] = LUSOL->a[L];
      J = LUSOL->indr[L];
      LUSOL->indr[L] = 0;
      LUSOL->indr[*LROW] = J;
      LUSOL->locc[J] = *LROW;
    }
#endif
    LW1 = LUSOL->locr[IW];
    LW2 = *LROW;
/*         ...............................................................
           Inner loop with row  iw  at the end of storage.
           ............................................................... */
x400:
    for(LV = LV2; LV <= LV3; LV++) {
      JV = LUSOL->indr[LV];
      LW = LUSOL->locc[JV];
      if(LW>0) {
/*               No fill-in. */
        LUSOL->a[LW] += AMULT*LUSOL->a[LV];
        if(fabs(LUSOL->a[LW])<=SMALL) {
/*                  Delete small computed element. */
          LUSOL->a[LW] = LUSOL->a[LW2];
          J = LUSOL->indr[LW2];
          LUSOL->indr[LW] = J;
          LUSOL->indr[LW2] = 0;
          LUSOL->locc[J] = LW;
          LUSOL->locc[JV] = 0;
          (*LENU)--;
          LENW--;
          LW2--;
        }
      }
      else {
/*               Row  iw  doesn't have an element in column  jv  yet
                 so there is a fill-in. */
        (*LENU)++;
        LENW++;
        LW2++;
        LUSOL->a[LW2] = AMULT*LUSOL->a[LV];
        LUSOL->indr[LW2] = JV;
        LUSOL->locc[JV] = LW2;
      }
    }
    *LROW = LW2;
/*         The  k-th  element of row  iw  has been processed.
           Reset  swappd  before looking at the next element. */
x490:
    SWAPPD = FALSE;
  }
/*      ==================================================================
        End of main elimination loop.
        ==================================================================

        Cancel markers on row  iw. */
x600:
  LUSOL->lenr[IW] = LENW;
  if(LENW==0)
    goto x910;
  for(L = LW1; L <= LW2; L++) {
    J = LUSOL->indr[L];
    LUSOL->locc[J] = 0;
  }
/*      Move the diagonal element to the front of row  iw.
        At this stage,  lenw gt 0  and  klast le n. */
x700:
  for(L = LW1; L <= LW2; L++) {
    LDIAG = L;
    if(LUSOL->indr[L]==JFIRST)
      goto x730;
  }
  goto x910;

x730:
  *DIAG = LUSOL->a[LDIAG];
  LUSOL->a[LDIAG] = LUSOL->a[LW1];
  LUSOL->a[LW1] = *DIAG;
  LUSOL->indr[LDIAG] = LUSOL->indr[LW1];
  LUSOL->indr[LW1] = JFIRST;
/*      If an interchange is needed, repeat from the beginning with the
        new row  iw,  knowing that the opposite interchange cannot occur. */
  if(SWAPPD)
    goto x100;
  *INFORM = LUSOL_INFORM_LUSUCCESS;
  goto x950;
/*      Singular. */
x910:
  *DIAG = ZERO;
  *INFORM = LUSOL_INFORM_LUSINGULAR;
/*      Force a compression if the file for  U  is much longer than the
        no. of nonzeros in  U  (i.e. if  lrow  is much bigger than  lenU).
        This should prevent memory fragmentation when there is far more
        memory than necessary  (i.e. when  lena  is huge). */
x950:
  LIMIT = (int) (USPACE*(*LENU))+LUSOL->m+LUSOL->n+1000;
  if(*LROW>LIMIT)
    LU1REC(LUSOL, LUSOL->m,TRUE,LROW,LUSOL->indr,LUSOL->lenr,LUSOL->locr);
  goto x990;
/*      Not enough storage. */
x970:
  *INFORM = LUSOL_INFORM_ANEEDMEM;
/*      Exit. */
x990:
;
}
示例#22
0
MYBOOL crash_basis(lprec *lp)
{
  int     i;
  MATrec  *mat = lp->matA;
  MYBOOL  ok = TRUE;

  /* Initialize basis indicators */
  if(lp->basis_valid)
    lp->var_basic[0] = FALSE;
  else
    default_basis(lp);

  /* Set initial partial pricing blocks */
  if(lp->rowblocks != NULL)
    lp->rowblocks->blocknow = 1;
  if(lp->colblocks != NULL)
    lp->colblocks->blocknow = ((lp->crashmode == CRASH_NONE) || (lp->colblocks->blockcount == 1) ? 1 : 2);

  /* Construct a basis that is in some measure the "most feasible" */
  if((lp->crashmode == CRASH_MOSTFEASIBLE) && mat_validate(mat)) {
    /* The logic here follows Maros */
    LLrec   *rowLL = NULL, *colLL = NULL;
    int     ii, rx, cx, ix, nz;
    REAL    wx, tx, *rowMAX = NULL, *colMAX = NULL;
    int     *rowNZ = NULL, *colNZ = NULL, *rowWT = NULL, *colWT = NULL;
    REAL    *value;
    int     *rownr, *colnr;

    report(lp, NORMAL, "crash_basis: 'Most feasible' basis crashing selected\n");

    /* Tally row and column non-zero counts */
    ok = allocINT(lp,  &rowNZ, lp->rows+1,     TRUE) &&
         allocINT(lp,  &colNZ, lp->columns+1,  TRUE) &&
         allocREAL(lp, &rowMAX, lp->rows+1,    FALSE) &&
         allocREAL(lp, &colMAX, lp->columns+1, FALSE);
    if(!ok)
      goto Finish;

    nz = mat_nonzeros(mat);
    rownr = &COL_MAT_ROWNR(0);
    colnr = &COL_MAT_COLNR(0);
    value = &COL_MAT_VALUE(0);
    for(i = 0; i < nz;
        i++, rownr += matRowColStep, colnr += matRowColStep, value += matValueStep) {
      rx = *rownr;
      cx = *colnr;
      wx = fabs(*value);
      rowNZ[rx]++;
      colNZ[cx]++;
      if(i == 0) {
        rowMAX[rx] = wx;
        colMAX[cx] = wx;
        colMAX[0]  = wx;
      }
      else {
        SETMAX(rowMAX[rx], wx);
        SETMAX(colMAX[cx], wx);
        SETMAX(colMAX[0],  wx);
      }
    }
    /* Reduce counts for small magnitude to preserve stability */
    rownr = &COL_MAT_ROWNR(0);
    colnr = &COL_MAT_COLNR(0);
    value = &COL_MAT_VALUE(0);
    for(i = 0; i < nz;
        i++, rownr += matRowColStep, colnr += matRowColStep, value += matValueStep) {
      rx = *rownr;
      cx = *colnr;
      wx = fabs(*value);
#ifdef CRASH_SIMPLESCALE
      if(wx < CRASH_THRESHOLD * colMAX[0]) {
        rowNZ[rx]--;
        colNZ[cx]--;
      }
#else
      if(wx < CRASH_THRESHOLD * rowMAX[rx])
        rowNZ[rx]--;
      if(wx < CRASH_THRESHOLD * colMAX[cx])
        colNZ[cx]--;
#endif
    }

    /* Set up priority tables */
    ok = allocINT(lp, &rowWT, lp->rows+1, TRUE);
    createLink(lp->rows,    &rowLL, NULL);
    ok &= (rowLL != NULL);
    if(!ok)
      goto Finish;
    for(i = 1; i <= lp->rows; i++) {
      if(get_constr_type(lp, i)==EQ)
        ii = 3;
      else if(lp->upbo[i] < lp->infinite)
        ii = 2;
      else if(fabs(lp->rhs[i]) < lp->infinite)
        ii = 1;
      else
        ii = 0;
      rowWT[i] = ii;
      if(ii > 0)
        appendLink(rowLL, i);
    }
    ok = allocINT(lp, &colWT, lp->columns+1, TRUE);
    createLink(lp->columns, &colLL, NULL);
    ok &= (colLL != NULL);
    if(!ok)
      goto Finish;
    for(i = 1; i <= lp->columns; i++) {
      ix = lp->rows+i;
      if(is_unbounded(lp, i))
        ii = 3;
      else if(lp->upbo[ix] >= lp->infinite)
        ii = 2;
      else if(fabs(lp->upbo[ix]-lp->lowbo[ix]) > lp->epsmachine)
        ii = 1;
      else
        ii = 0;
      colWT[i] = ii;
      if(ii > 0)
        appendLink(colLL, i);
    }

    /* Loop over all basis variables */
    for(i = 1; i <= lp->rows; i++) {

      /* Select row */
      rx = 0;
      wx = -lp->infinite;
      for(ii = firstActiveLink(rowLL); ii > 0; ii = nextActiveLink(rowLL, ii)) {
        tx = rowWT[ii] - CRASH_SPACER*rowNZ[ii];
        if(tx > wx) {
          rx = ii;
          wx = tx;
        }
      }
      if(rx == 0)
        break;
      removeLink(rowLL, rx);

      /* Select column */
      cx = 0;
      wx = -lp->infinite;
      for(ii = mat->row_end[rx-1]; ii < mat->row_end[rx]; ii++) {

        /* Update NZ column counts for row selected above */
        tx = fabs(ROW_MAT_VALUE(ii));
        ix = ROW_MAT_COLNR(ii);
#ifdef CRASH_SIMPLESCALE
        if(tx >= CRASH_THRESHOLD * colMAX[0])
#else
        if(tx >= CRASH_THRESHOLD * colMAX[ix])
#endif
          colNZ[ix]--;
        if(!isActiveLink(colLL, ix) || (tx < CRASH_THRESHOLD * rowMAX[rx]))
          continue;

        /* Now do the test for best pivot */
        tx = my_sign(lp->orig_obj[ix]) - my_sign(ROW_MAT_VALUE(ii));
        tx = colWT[ix] + CRASH_WEIGHT*tx - CRASH_SPACER*colNZ[ix];
        if(tx > wx) {
          cx = ix;
          wx = tx;
        }
      }
      if(cx == 0)
        break;
      removeLink(colLL, cx);

      /* Update row NZ counts */
      ii = mat->col_end[cx-1];
      rownr = &COL_MAT_ROWNR(ii);
      value = &COL_MAT_VALUE(ii);
      for(; ii < mat->col_end[cx];
          ii++, rownr += matRowColStep, value += matValueStep) {
        wx = fabs(*value);
        ix = *rownr;
#ifdef CRASH_SIMPLESCALE
        if(wx >= CRASH_THRESHOLD * colMAX[0])
#else
        if(wx >= CRASH_THRESHOLD * rowMAX[ix])
#endif
          rowNZ[ix]--;
      }

      /* Set new basis variable */
      set_basisvar(lp, rx, lp->rows+cx);
    }

    /* Clean up */
Finish:
    FREE(rowNZ);
    FREE(colNZ);
    FREE(rowMAX);
    FREE(colMAX);
    FREE(rowWT);
    FREE(colWT);
    freeLink(&rowLL);
    freeLink(&colLL);
  }

  /* Construct a basis that is in some measure the "least degenerate" */
  else if((lp->crashmode == CRASH_LEASTDEGENERATE) && mat_validate(mat)) {
    /* The logic here follows Maros */
    LLrec   *rowLL = NULL, *colLL = NULL;
    int     ii, rx, cx, ix, nz, *merit = NULL;
    REAL    *value, wx, hold, *rhs = NULL, *eta = NULL;
    int     *rownr, *colnr;

    report(lp, NORMAL, "crash_basis: 'Least degenerate' basis crashing selected\n");

    /* Create temporary arrays */
    ok = allocINT(lp,  &merit, lp->columns + 1, FALSE) &&
         allocREAL(lp, &eta, lp->rows + 1, FALSE) &&
         allocREAL(lp, &rhs, lp->rows + 1, FALSE);
    createLink(lp->columns, &colLL, NULL);
    createLink(lp->rows, &rowLL, NULL);
    ok &= (colLL != NULL) && (rowLL != NULL);
    if(!ok)
      goto FinishLD;
    MEMCOPY(rhs, lp->orig_rhs, lp->rows + 1);
    for(i = 1; i <= lp->columns; i++)
      appendLink(colLL, i);
    for(i = 1; i <= lp->rows; i++)
      appendLink(rowLL, i);

    /* Loop until we have found enough new bases */
    while(colLL->count > 0) {

      /* Tally non-zeros matching in RHS and each active column */
      nz = mat_nonzeros(mat);
      rownr = &COL_MAT_ROWNR(0);
      colnr = &COL_MAT_COLNR(0);
      ii = 0;
      MEMCLEAR(merit, lp->columns + 1);
      for(i = 0; i < nz;
          i++, rownr += matRowColStep, colnr += matRowColStep) {
        rx = *rownr;
        cx = *colnr;
        if(isActiveLink(colLL, cx) && (rhs[rx] != 0)) {
          merit[cx]++;
          ii++;
        }
      }
      if(ii == 0)
        break;

      /* Find maximal match; break ties with column length */
      i = firstActiveLink(colLL);
      cx = i;
      for(i = nextActiveLink(colLL, i); i != 0; i = nextActiveLink(colLL, i)) {
        if(merit[i] >= merit[cx]) {
          if((merit[i] > merit[cx]) || (mat_collength(mat, i) > mat_collength(mat, cx)))
            cx = i;
        }
      }

      /* Determine the best pivot row */
      i = mat->col_end[cx-1];
      nz = mat->col_end[cx];
      rownr = &COL_MAT_ROWNR(i);
      value = &COL_MAT_VALUE(i);
      rx = 0;
      wx = 0;
      MEMCLEAR(eta, lp->rows + 1);
      for(; i < nz;
          i++, rownr += matRowColStep, value += matValueStep) {
        ix = *rownr;
        hold = *value;
        eta[ix] = rhs[ix] / hold;
        hold = fabs(hold);
        if(isActiveLink(rowLL, ix) && (hold > wx)) {
          wx = hold;
          rx = ix;
        }
      }

      /* Set new basis variable */
      if(rx > 0) {

        /* We have to update the rhs vector for the implied transformation
          in order to be able to find the new RHS non-zero pattern */
        for(i = 1; i <= lp->rows; i++)
           rhs[i] -= wx * eta[i];
        rhs[rx] = wx;

        /* Do the exchange */
        set_basisvar(lp, rx, lp->rows+cx);
        removeLink(rowLL, rx);
      }
      removeLink(colLL, cx);

    }

    /* Clean up */
FinishLD:
    FREE(merit);
    FREE(rhs);
    freeLink(&rowLL);
    freeLink(&colLL);

  }
  return( ok );
}
示例#23
0
main(int argc, char *argv[])
{
  CDWriter *cdwriterP;

  RECORDOPTIONS options;

  FILEHANDLE image_file;

  UWORD display_speed;
  ULONG offset, datalen, data_blkcnt;

  // Enable exception handling.

  EXCEPTION_HANDLER_START

  // Get the environment variables.

  GetEnvironmentVariables ();

  // Parse the command line arguments.

  ParseCommandLine (argc, argv);

  // Register the event callback function.

  EventRegisterCallback (ConsoleEventCallback);

  // Startup the ASPI manager.

  ASPIAdapter::StartupManager (FALSE, FALSE, TRUE);

  // Find a CD-R device...

  if (cdwriter_id_specified)
    {
    if ((cdwriterP = (CDWriter *)ASPIAdapter::FindDeviceObject (
          ASPI_M_DEVTYPE_WORM,
          cdwriter_adapter, cdwriter_id, cdwriter_lun)) == NULL)
      {
      fprintf (stderr,
        "\nError: Specified device (%u:%u:%u) is not a CD-Recorder or is unknown!\n",
        cdwriter_adapter, cdwriter_id, cdwriter_lun);
      exit (1);
      }
    }
  else
    {
    if ((cdwriterP = (CDWriter *)ASPIAdapter::FindDeviceObject (ASPI_M_DEVTYPE_WORM)) == NULL) {
      fprintf (stderr,
        "\nError: Unable to find a known CD-Recorder device!\n");
      exit (1);
      }
    }

  if (log_flag)
    {
    printf ("CD-Recorder device found...\n");
    printf ("  HA #%u - ASPI ID #%u - %-8s %-16s %-4s\n",
      cdwriterP->GetAdapter(), cdwriterP->GetId(),
      cdwriterP->GetVendorId(), cdwriterP->GetProductId(),
      cdwriterP->GetFirmwareLevel());
    }

  // Prompt the user to continue?

  if (confirm_flag)
    {
    printf ("\n");
    if (test_flag) printf ("TEST recording mode is enabled!\n");
    printf ("Hit <ENTER> to begin recording (or CTRL/C to exit)...");
    getchar();
    }

  if (log_flag) printf ("\n");

  // Initialize the recording options.

  MEMCLEAR (&options, sizeof(RECORDOPTIONS));

  options.speed = record_speed;
  options.disc_datatype = DATATYPE_CDDA;
  options.close_session_flag = close_session_flag;
  options.multisession_flag = multisession_flag;
  options.test_flag = test_flag;
  options.underrun_protect_flag = underrun_protect_flag;
  options.beep_flag = beep_flag;
  options.eject_flag = eject_flag;
  options.log_flag = log_flag;

  // Record the image file using track-at-once recording.

  cdwriterP->RecordTrackAtOnce (
    image_filnam, filetype, DATATYPE_CDDA, SECTOR_CDDA_BLKLEN, &options);

  // Success.

  if (log_flag) printf ("\nCD successfully recorded!\n");

  // Shutdown the ASPI manager.

  ASPIAdapter::ShutdownManager();

  // End exception handling.

  EXCEPTION_HANDLER_EXIT

  return (0);
}
示例#24
0
MYBOOL __WINAPI guess_basis(lprec *lp, REAL *guessvector, int *basisvector)
{
  MYBOOL *isnz, status = FALSE;
  REAL   *values = NULL, *violation = NULL,
         eps = lp->epsprimal,
         *value, error, upB, loB, sortorder = 1.0;
  int    i, j, jj, n, *rownr, *colnr, *slkpos,
         nrows = lp->rows, ncols = lp->columns;
  MATrec *mat = lp->matA;

  if(!mat_validate(mat))
    return( status );

  /* Create helper arrays */
  if(!allocREAL(lp, &values, lp->sum+1, TRUE) ||
     !allocREAL(lp, &violation, lp->sum+1, TRUE))
    goto Finish;

  /* Compute values of slack variables for given guess vector */
  i = 0;
  n = get_nonzeros(lp);
  rownr = &COL_MAT_ROWNR(i);
  colnr = &COL_MAT_COLNR(i);
  value = &COL_MAT_VALUE(i);
  for(; i < n; i++, rownr += matRowColStep, colnr += matRowColStep, value += matValueStep)
    values[*rownr] += unscaled_mat(lp, my_chsign(is_chsign(lp, *rownr), *value), *rownr, *colnr) *
                      guessvector[*colnr];
  MEMMOVE(values+nrows+1, guessvector+1, ncols);

  /* Initialize constraint bound violation measures (expressed as positive values) */
  for(i = 1; i <= nrows; i++) {
    upB = get_rh_upper(lp, i);
    loB = get_rh_lower(lp, i);
    error = values[i] - upB;
    if(error > -eps)
      violation[i] = sortorder*MAX(0,error);
    else {
      error = loB - values[i];
      if(error > -eps)
        violation[i] = sortorder*MAX(0,error);
      else if(my_infinite(lp, loB) && my_infinite(lp, upB))
        ;
      else if(my_infinite(lp, upB))
        violation[i] = sortorder*(loB - values[i]);
      else if(my_infinite(lp, loB))
        violation[i] = sortorder*(values[i] - upB);
      else
        violation[i] = -sortorder*MAX(upB - values[i], values[i] - loB);
    }
    basisvector[i] = i;
  }

  /* Initialize user variable bound violation measures (expressed as positive values) */
  for(i = 1; i <= ncols; i++) {
    n = nrows+i;
    upB = get_upbo(lp, i);
    loB = get_lowbo(lp, i);
    error = guessvector[i] - upB;
    if(error > -eps)
      violation[n] = sortorder*MAX(0,error);
    else {
      error = loB - values[n];
      if(error > -eps)
        violation[n] = sortorder*MAX(0,error);
      else if(my_infinite(lp, loB) && my_infinite(lp, upB))
        ;
      else if(my_infinite(lp, upB))
        violation[n] = sortorder*(loB - values[n]);
      else if(my_infinite(lp, loB))
        violation[n] = sortorder*(values[n] - upB);
      else
        violation[n] = -sortorder*MAX(upB - values[n], values[n] - loB);
    }
    basisvector[n] = n;
  }

  /* Sort decending by violation; this means that variables with
     the largest violations will be designated as basic */
  sortByREAL(basisvector, violation, lp->sum, 1, FALSE);
  error = violation[1];

  /* Adjust the non-basic indeces for the (proximal) bound state */
  for(i = nrows+1, rownr = basisvector+i; i <= lp->sum; i++, rownr++) {
    if(*rownr <= nrows) {
      values[*rownr] -= lp->orig_rhs[*rownr];
      if(values[*rownr] <= eps)
        *rownr = -(*rownr);
    }
    else
      if(values[i] <= get_lowbo(lp, (*rownr)-nrows)+eps)
        *rownr = -(*rownr);
  }

  /* Let us check for obvious row singularities and try to fix these;
     First assemble necessary basis statistics... */
  isnz = (MYBOOL *) values;
  MEMCLEAR(isnz, nrows+1);
  slkpos = (int *) violation;
  MEMCLEAR(slkpos, nrows+1);
  for(i = 1; i <= nrows; i++) {
    j = abs(basisvector[i]);
    if(j <= nrows) {
      isnz[j] = TRUE;
      slkpos[j] = i;
    }
    else {
      j-= nrows;
      jj = mat->col_end[j-1];
      isnz[COL_MAT_ROWNR(jj)] = TRUE;
/*      if(++jj < mat->col_end[j])
        isnz[COL_MAT_ROWNR(jj)] = TRUE; */
    }
  }
  for(; i <= lp->sum; i++) {
    j = abs(basisvector[i]);
    if(j <= nrows)
      slkpos[j] = i;
  }

  /* ...then set the corresponding slacks basic for row rank deficient positions */
  for(j = 1; j <= nrows; j++) {
#ifdef Paranoia
    if(slkpos[j] == 0)
      report(lp, SEVERE, "guess_basis: Internal error");
#endif
    if(!isnz[j]) {
      isnz[j] = TRUE;
      i = slkpos[j];
      swapINT(&basisvector[i], &basisvector[j]);
      basisvector[j] = abs(basisvector[j]);
    }
  }

  /* Lastly normalize all basic variables to be coded as lower-bounded */
  for(i = 1; i <= nrows; i++)
    basisvector[i] = -abs(basisvector[i]);

  /* Clean up and return status */
  status = (MYBOOL) (error <= eps);
Finish:
  FREE(values);
  FREE(violation);

  return( status );
}
示例#25
0
main(int argc, char *argv[])
{
  #define SECTOR_MODE1_BLKLEN 2048
  #define SECTOR_RAW_BLKLEN   2352

  ULONG filelen, data_blkcnt, blk;
  UWORD cur_percent = 0;

  FILE *isofile, *rawfile;

  SECTORSUBHEADER subheader;

  // Parse the command line arguments.

  ParseCommandLine (argc, argv);

  // Allocate input and output buffers.

  IOBUF *inbufP  = new IOBUF;
  IOBUF *outbufP = new IOBUF;

  // Open the input ISO file.

  if ((isofile = fopen (isofilnam, "rb")) == NULL) {
    fprintf (stderr, "Error opening \"%s\"\n", isofilnam);
    exit (1);
    }

  // Create the output RAW file.

  if ((rawfile = fopen (rawfilnam, "wb")) == NULL) {
    fprintf (stderr, "Error creating \"%s\"\n", rawfilnam);
    exit (1);
    }

  // Get the length of the input file and make sure that it is
  // a multiple of 2048 bytes.

  filelen = filelength (fileno (isofile));

  if (filelen % SECTOR_MODE1_BLKLEN) {
    fprintf (stderr, "Error: Input file length is not a multiple of 2048!\n");
    exit (1);
    }

  data_blkcnt = filelen / SECTOR_MODE1_BLKLEN;

  printf ("File contains %luMb of data (%lu blocks)\n",
    CDIV (filelen, 0x100000), data_blkcnt);

  // Calculate the I/O lengths (base this on the amount of data
  // that can be written from the output buffer).

  UWORD blocks_per_io = sizeof(outbufP->data) / SECTOR_RAW_BLKLEN;

  // Convert the ISO file to a RAW (2352 byte sector) file.

  SLONG lba = 0;
  ULONG blocks_written = 0;

  printf ("Processing...\n");
  printf (" 0%% completed.\r");

  for (blk = 0; blk < data_blkcnt; blk += blocks_per_io)
    {
    UWORD blocks = MIN (blocks_per_io, data_blkcnt - blk);

    // Read the ISO file.

    if (fread (inbufP->data, SECTOR_MODE1_BLKLEN, blocks, isofile) != blocks) {
      fprintf (stderr, "\nUnexpected error reading input file!\n");
      exit (1);
      }

    // If the sector type is MODE2 FORM1, then generate a default subheader.

    if (sectortype == SECTORTYPE_MODE2FORM1)
      {
      MEMCLEAR (&subheader, sizeof(SECTORSUBHEADER));
      subheader.submode.data_flag = TRUE;
      }

    // Convert the blocks to raw CDROM sectors.

    UBYTE *dataP = (UBYTE *)inbufP->data;
    CDSector *sectorP = (CDSector *)outbufP->data;

    for (UWORD b = 0; b < blocks; b++)
      {
      sectorP->Format (
        sectortype, lba, &subheader, dataP, TRUE, FALSE, scramble_flag);

      dataP += SECTOR_MODE1_BLKLEN; sectorP++; lba++;
      }

    // Write the buffer to the output file.

    if (fwrite (outbufP->data, sizeof(CDSector), blocks, rawfile) != blocks) {
      fprintf (stderr, "\nUnexpected error writing output file!\n");
      exit (1);
      }

    // Increment the number of blocks written.

    blocks_written += blocks;

    // Percent complete status change?

    UWORD percent = (blocks_written * 100) / data_blkcnt;

    if (percent > cur_percent) {
      printf (" %u%% completed.\r", percent);
      cur_percent = percent;
      }
    }

  printf ("Conversion completed!\n");

  // Write postgap?

  if (postgap_flag)
    {
    printf ("Writing POSTGAP (150 blocks)...");

    CDSector *sectorP = (CDSector *)outbufP->data;

    for (int i = 0; i < 150; i++)
      {
      sectorP->Format (
        sectortype, lba++, NULL, NULL, TRUE, FALSE, scramble_flag);

      if (fwrite (sectorP, sizeof(CDSector), 1, rawfile) != 1) {
        fprintf (stderr, "\nUnexpected error writing output file!\n");
        exit (1);
        }
      }

    printf ("\n");
    }

  // Close the files.

  fclose (isofile);
  fclose (rawfile);

  // Free the I/O buffers.

  delete inbufP;
  delete outbufP;

  return (0);
}
示例#26
0
/* ==================================================================
   lu7add  inserts the first nrank elements of the vector v(*)
   as column  jadd  of  U.  We assume that  U  does not yet have any
   entries in this column.
   Elements no larger than  parmlu(3)  are treated as zero.
   klast  will be set so that the last row to be affected
   (in pivotal order) is row  ip(klast).
   ------------------------------------------------------------------
   09 May 1988: First f77 version.
   ================================================================== */
void LU7ADD(LUSOLrec *LUSOL, int JADD, REAL V[], int LENL, int *LENU,
  int *LROW, int NRANK, int *INFORM, int *KLAST, REAL *VNORM)
{
  REAL SMALL;
  int  K, I, LENI, MINFRE, NFREE, LR1, LR2, L;
#ifndef LUSOLFastMove
  int J;
#endif

  SMALL = LUSOL->parmlu[LUSOL_RP_ZEROTOLERANCE];
  *VNORM = ZERO;
  *KLAST = 0;
  for(K = 1; K <= NRANK; K++) {
    I = LUSOL->ip[K];
    if(fabs(V[I])<=SMALL)
      continue;
    *KLAST = K;
    (*VNORM) += fabs(V[I]);
    LENI = LUSOL->lenr[I];
/*         Compress row file if necessary. */
    MINFRE = LENI+1;
    NFREE = LUSOL->lena - LENL - *LROW;
    if(NFREE<MINFRE) {
      LU1REC(LUSOL, LUSOL->m, TRUE,LROW,LUSOL->indr,LUSOL->lenr,LUSOL->locr);
      NFREE = LUSOL->lena - LENL - *LROW;
      if(NFREE<MINFRE)
        goto x970;
    }
/*         Move row  i  to the end of the row file,
           unless it is already there.
           No need to move if there is a gap already. */
    if(LENI==0)
      LUSOL->locr[I] = (*LROW) + 1;
    LR1 = LUSOL->locr[I];
    LR2 = (LR1+LENI)-1;
    if(LR2==*LROW)
      goto x150;
    if(LUSOL->indr[LR2+1]==0)
      goto x180;
    LUSOL->locr[I] = (*LROW) + 1;
#ifdef LUSOLFastMove
    L = LR2-LR1+1;
    if(L > 0) {
      LR2 = (*LROW)+1;
      MEMMOVE(LUSOL->a+LR2,    LUSOL->a+LR1, L);
      MEMMOVE(LUSOL->indr+LR2, LUSOL->indr+LR1, L);
      MEMCLEAR(LUSOL->indr+LR1, L);
      *LROW += L;
    }
#else
    for(L = LR1; L <= LR2; L++) {
      (*LROW)++;
      LUSOL->a[*LROW] = LUSOL->a[L];
      J = LUSOL->indr[L];
      LUSOL->indr[L] = 0;
      LUSOL->indr[*LROW] = J;
    }
#endif
x150:
    LR2 = *LROW;
    (*LROW)++;
/*         Add the element of  v. */
x180:
    LR2++;
    LUSOL->a[LR2] = V[I];
    LUSOL->indr[LR2] = JADD;
    LUSOL->lenr[I] = LENI+1;
    (*LENU)++;
  }
/*      Normal exit. */
  *INFORM = LUSOL_INFORM_LUSUCCESS;
  goto x990;
/*      Not enough storage. */
x970:
  *INFORM = LUSOL_INFORM_ANEEDMEM;
x990:
;
}