int ML_Epetra::MultiLevelPreconditioner::SetupCoordinates()
{
  ML*     ml_ptr = 0;
  int     NumDimensions;
  double* in_x_coord = 0;
  double* in_y_coord = 0;
  double* in_z_coord = 0;

  // Check first for node coordinates, then for edge coordinates
  for (int ii=0; ii<2; ii++)
  {
    switch (ii) {
    case 0:
      ml_ptr = ml_;
      //??else ml_ptr = ml_;
      in_x_coord = List_.get("x-coordinates", (double *)0);
      in_y_coord = List_.get("y-coordinates", (double *)0);
      in_z_coord = List_.get("z-coordinates", (double *)0);
      break;

    case 1:
      if (AMGSolver_ == ML_MAXWELL) {
        ml_ptr = ml_nodes_;
        in_x_coord = List_.get("node: x-coordinates", (double *)0);
        in_y_coord = List_.get("node: y-coordinates", (double *)0);
        in_z_coord = List_.get("node: z-coordinates", (double *)0);
      }
      else {
        in_x_coord = NULL;
        in_y_coord = NULL;
        in_z_coord = NULL;
      }
      break;
    }

    NumDimensions  = 0;

    if (!(in_x_coord == 0 && in_y_coord == 0 && in_z_coord == 0))
    {
      ML_Aggregate_Viz_Stats *grid_info =
        (ML_Aggregate_Viz_Stats *) ml_ptr->Grid[LevelID_[0]].Grid;
      ML_Operator* AAA = &(ml_ptr->Amat[LevelID_[0]]);

      int n = AAA->invec_leng, Nghost = 0;

      if (AAA->getrow->pre_comm)
      {
        if (AAA->getrow->pre_comm->total_rcv_length <= 0)
          ML_CommInfoOP_Compute_TotalRcvLength(AAA->getrow->pre_comm);
        Nghost = AAA->getrow->pre_comm->total_rcv_length;
      }

      std::vector<double> tmp(Nghost + n);
      for (int i = 0 ; i < Nghost + n ; ++i)
        tmp[i] = 0.0;

      n /= NumPDEEqns_;
      Nghost /= NumPDEEqns_;

      if (in_x_coord)
      {
        NumDimensions++;
        double* x_coord = (double *) ML_allocate(sizeof(double) * (Nghost+n));

        for (int i = 0 ; i < n ; ++i)
          tmp[i * NumPDEEqns_] = in_x_coord[i];

        ML_exchange_bdry(&tmp[0],AAA->getrow->pre_comm, NumPDEEqns_ * n,
                         AAA->comm, ML_OVERWRITE,NULL);

        for (int i = 0 ; i < n + Nghost ; ++i)
          x_coord[i] = tmp[i * NumPDEEqns_];

        grid_info->x = x_coord;
      }

      if (in_y_coord)
      {
        NumDimensions++;
        double* y_coord = (double *) ML_allocate(sizeof(double) * (Nghost+n));

        for (int i = 0 ; i < n ; ++i)
          tmp[i * NumPDEEqns_] = in_y_coord[i];

        ML_exchange_bdry(&tmp[0],AAA->getrow->pre_comm, NumPDEEqns_ * n,
                         AAA->comm, ML_OVERWRITE,NULL);

        for (int i = 0 ; i < n + Nghost ; ++i)
          y_coord[i] = tmp[i * NumPDEEqns_];

        grid_info->y = y_coord;
      }

      if (in_z_coord)
      {
        NumDimensions++;
        double* z_coord = (double *) ML_allocate(sizeof(double) * (Nghost+n));

        for (int i = 0 ; i < n ; ++i)
          tmp[i * NumPDEEqns_] = in_z_coord[i];

        ML_exchange_bdry(&tmp[0],AAA->getrow->pre_comm, NumPDEEqns_ * n,
                         AAA->comm, ML_OVERWRITE,NULL);

        for (int i = 0 ; i < n + Nghost ; ++i)
          z_coord[i] = tmp[i * NumPDEEqns_];

        grid_info->z = z_coord;
      }

      grid_info->Ndim = NumDimensions;
    } // if (!(in_x_coord == 0 && in_y_coord == 0 && in_z_coord == 0))
  } //for (int ii=0; ii<2; ii++)

  return(0);
}
示例#2
0
// ================================================ ====== ==== ==== == =
// Copied from ml_agg_genP.c
static void ML_Init_Aux(ML_Operator* A, Teuchos::ParameterList &List) {
  int i, j, n, count, num_PDEs, BlockRow, BlockCol;
  double threshold;
  int* columns;
  double* values;
  int allocated, entries = 0;
  int N_dimensions;
  int DiagID;
  double DiagValue;
  int** filter;
  double dist;
  double *LaplacianDiag;
  int     Nghost;


  // Boundary exchange the coords
  double *x_coord=0, *y_coord=0, *z_coord=0;
  RefMaxwell_SetupCoordinates(A,List,x_coord,y_coord,z_coord);
  int dim=(x_coord!=0) + (y_coord!=0) + (z_coord!=0);

  /* Sanity Checks */
  if(dim == 0 || ((!x_coord && (y_coord || z_coord)) || (x_coord && !y_coord && z_coord))){
    std::cerr<<"Error: Coordinates not defined.  This is necessary for aux aggregation (found "<<dim<<" coordinates).\n";
    exit(-1);
  }

  num_PDEs = A->num_PDEs;
  N_dimensions = dim;
  threshold = A->aux_data->threshold;

  ML_Operator_AmalgamateAndDropWeak(A, num_PDEs, 0.0);
  n = A->invec_leng;
  Nghost = ML_CommInfoOP_Compute_TotalRcvLength(A->getrow->pre_comm);

  LaplacianDiag = (double *) ML_allocate((A->getrow->Nrows+Nghost+1)*
                                         sizeof(double));

  filter = (int**) ML_allocate(sizeof(int*) * n);

  allocated = 128;
  columns = (int *)    ML_allocate(allocated * sizeof(int));
  values  = (double *) ML_allocate(allocated * sizeof(double));

  for (i = 0 ; i < n ; ++i) {
    BlockRow = i;
    DiagID = -1;
    DiagValue = 0.0;

    ML_get_matrix_row(A,1,&i,&allocated,&columns,&values, &entries,0);

    for (j = 0; j < entries; j++) {
      BlockCol = columns[j];
      if (BlockRow != BlockCol) {
        dist = 0.0;

        switch (N_dimensions) {
        case 3:
          dist += (z_coord[BlockRow] - z_coord[BlockCol]) * (z_coord[BlockRow] - z_coord[BlockCol]);
        case 2:
          dist += (y_coord[BlockRow] - y_coord[BlockCol]) * (y_coord[BlockRow] - y_coord[BlockCol]);
        case 1:
          dist += (x_coord[BlockRow] - x_coord[BlockCol]) * (x_coord[BlockRow] - x_coord[BlockCol]);
        }

        if (dist == 0.0) {
          printf("node %d = %e ", i, x_coord[BlockRow]);
          if (N_dimensions > 1) printf(" %e ", y_coord[BlockRow]);
          if (N_dimensions > 2) printf(" %e ", z_coord[BlockRow]);
          printf("\n");
          printf("node %d = %e ", j, x_coord[BlockCol]);
          if (N_dimensions > 1) printf(" %e ", y_coord[BlockCol]);
          if (N_dimensions > 2) printf(" %e ", z_coord[BlockCol]);
          printf("\n");
          printf("Operator has inlen = %d and outlen = %d\n",
                 A->invec_leng, A->outvec_leng);
        }

        dist = 1.0 / dist;
        DiagValue += dist;
      }
      else if (columns[j] == i) {
        DiagID = j;
      }
    }

    if (DiagID == -1) {
      fprintf(stderr, "ERROR: matrix has no diagonal!\n"
              "ERROR: (file %s, line %d)\n",
              __FILE__, __LINE__);
      exit(EXIT_FAILURE);
    }
    LaplacianDiag[BlockRow] = DiagValue;
  }
  if ( A->getrow->pre_comm != NULL )
     ML_exchange_bdry(LaplacianDiag,A->getrow->pre_comm,A->getrow->Nrows,
                      A->comm, ML_OVERWRITE,NULL);


  for (i = 0 ; i < n ; ++i) {
    BlockRow = i;

    ML_get_matrix_row(A,1,&i,&allocated,&columns,&values, &entries,0);

    for (j = 0; j < entries; j++) {
      BlockCol = columns[j];
      if (BlockRow != BlockCol) {
        dist = 0.0;
        switch (N_dimensions) {
        case 3:
          dist += (z_coord[BlockRow] - z_coord[BlockCol]) * (z_coord[BlockRow] - z_coord[BlockCol]);
        case 2:
          dist += (y_coord[BlockRow] - y_coord[BlockCol]) * (y_coord[BlockRow] - y_coord[BlockCol]);
        case 1:
          dist += (x_coord[BlockRow] - x_coord[BlockCol]) * (x_coord[BlockRow] - x_coord[BlockCol]);
        }

        dist = 1.0 / dist;
        values[j] = dist;
      }
    }

    count = 0;
    for (j = 0 ; j < entries ; ++j) {
      if (  (i != columns[j]) &&
            (values[j]*values[j] <
       LaplacianDiag[BlockRow]*LaplacianDiag[columns[j]]*threshold*threshold)){
        columns[count++] = columns[j];
      }
    }

    /* insert the rows */
    filter[BlockRow] = (int*) ML_allocate(sizeof(int) * (count + 1));
    filter[BlockRow][0] = count;

    for (j = 0 ; j < count ; ++j)
      filter[BlockRow][j + 1] = columns[j];

  }

  ML_free(columns);
  ML_free(values);

  ML_free(LaplacianDiag);

  ML_Operator_UnAmalgamateAndDropWeak(A, num_PDEs, 0.0);

  A->aux_data->aux_func_ptr  = A->getrow->func_ptr;
  A->getrow->func_ptr = ML_Aux_Getrow;
  A->aux_data->filter = filter;
  A->aux_data->filter_size = n;

  // Cleanup
  ML_free(x_coord);
  ML_free(y_coord);
  ML_free(z_coord);

}
// ====================================================================== 
int ML_Operator_Add2(ML_Operator *A, ML_Operator *B, ML_Operator *C,
		    int matrix_type, double scalarA, double scalarB)
{
  int A_allocated = 0, *A_bindx = NULL, B_allocated = 0, *B_bindx = NULL;
  double *A_val = NULL, *B_val = NULL, *hashed_vals;
  int i, A_length, B_length, *hashed_inds;
  int max_nz_per_row = 0, min_nz_per_row=1e6, j;
  int hash_val, index_length;
  int *columns, *rowptr, nz_ptr, hash_used, global_col;
  double *values;
  struct ML_CSR_MSRdata *temp;
  int *A_gids, *B_gids;
  int max_per_proc;
#ifdef ML_WITH_EPETRA
  int count;
#endif

  if (A->getrow == NULL) 
    pr_error("ML_Operator_Add: A does not have a getrow function.\n");

  if (B->getrow == NULL) 
    pr_error("ML_Operator_Add: B does not have a getrow function.\n");

  if (A->getrow->Nrows != B->getrow->Nrows) {
    printf("ML_Operator_Add: Can not add, two matrices do not have the same");
    printf(" number of rows %d vs %d",A->getrow->Nrows,B->getrow->Nrows);
    exit(1);
  }

  if (A->invec_leng != B->invec_leng) {
    printf("ML_Operator_Add: Can not add, two matrices do not have the same");
    printf(" number of columns %d vs %d",A->getrow->Nrows,B->getrow->Nrows);
    exit(1);
  }

  /* let's just count some things */
  index_length = A->invec_leng + 1;
  if (A->getrow->pre_comm != NULL) {
    ML_CommInfoOP_Compute_TotalRcvLength(A->getrow->pre_comm);
    index_length += A->getrow->pre_comm->total_rcv_length;
  }
  if (B->getrow->pre_comm != NULL) {
    ML_CommInfoOP_Compute_TotalRcvLength(B->getrow->pre_comm);
    index_length += B->getrow->pre_comm->total_rcv_length;
  }

  ML_create_unique_col_id(A->invec_leng, &A_gids, A->getrow->pre_comm,
			  &max_per_proc,A->comm);
  ML_create_unique_col_id(B->invec_leng, &B_gids, B->getrow->pre_comm,
			  &max_per_proc,B->comm);


  hashed_inds = (int *) ML_allocate(sizeof(int)*index_length);
  hashed_vals = (double *) ML_allocate(sizeof(double)*index_length);

  for (i = 0; i < index_length; i++) hashed_inds[i] = -1;
  for (i = 0; i < index_length; i++) hashed_vals[i] = 0.;

  nz_ptr = 0;
  for (i = 0 ; i < A->getrow->Nrows; i++) {
    hash_used = 0;
      ML_get_matrix_row(A, 1, &i, &A_allocated, &A_bindx, &A_val,
                        &A_length, 0);
      for (j = 0; j < A_length; j++) {
	global_col = A_gids[A_bindx[j]];
	ML_hash_it(global_col, hashed_inds, index_length,&hash_used,&hash_val);
        hashed_inds[hash_val] = global_col;
        hashed_vals[hash_val] += scalarA * A_val[j];
	A_bindx[j] = hash_val;
      }

      ML_get_matrix_row(B, 1, &i, &B_allocated, &B_bindx, &B_val,
                        &B_length, 0);
      for (j = 0; j < B_length; j++) {
	global_col = B_gids[B_bindx[j]];
	ML_hash_it(global_col, hashed_inds, index_length,&hash_used, &hash_val);
        hashed_inds[hash_val] = global_col;
        hashed_vals[hash_val] += scalarB*B_val[j];
        B_bindx[j] = hash_val;
      }

      for (j = 0; j < A_length; j++) {
        nz_ptr++;
	hashed_inds[A_bindx[j]] = -1;
	hashed_vals[A_bindx[j]] = 0.;
      }
      for (j = 0; j < B_length; j++) {
        if (hashed_inds[B_bindx[j]] != -1) {
	  nz_ptr++;
	  hashed_inds[B_bindx[j]] = -1;
	  hashed_vals[B_bindx[j]] = 0.;
	}
      }
  }
  nz_ptr++;

  columns = 0;
  values = 0;

  rowptr = (int    *) ML_allocate(sizeof(int)*(A->outvec_leng+1));
  if (matrix_type == ML_CSR_MATRIX) {
    columns= (int    *) ML_allocate(sizeof(int)*nz_ptr);
    values = (double *) ML_allocate(sizeof(double)*nz_ptr);
  }
#ifdef ML_WITH_EPETRA
  else if (matrix_type == ML_EpetraCRS_MATRIX) {
    columns= (int    *) ML_allocate(sizeof(int)*(index_length+1));
    values = (double *) ML_allocate(sizeof(double)*(index_length+1));
  }
#endif
  else {
    pr_error("ML_Operator_Add: Unknown matrix type\n");
  }

  nz_ptr = 0;
  rowptr[0] = 0;
  for (i = 0 ; i < A->getrow->Nrows; i++) {
    hash_used = 0;
      ML_get_matrix_row(A, 1, &i, &A_allocated, &A_bindx, &A_val,
                        &A_length, 0);
      for (j = 0; j < A_length; j++) {
	global_col = A_gids[A_bindx[j]];
	ML_hash_it(global_col, hashed_inds, index_length,&hash_used, &hash_val);
        hashed_inds[hash_val] = global_col;
        hashed_vals[hash_val] += scalarA * A_val[j];
	A_bindx[j] = hash_val;
      }

      ML_get_matrix_row(B, 1, &i, &B_allocated, &B_bindx, &B_val,
                        &B_length, 0);
      for (j = 0; j < B_length; j++) {
	global_col = B_gids[B_bindx[j]];
	ML_hash_it(global_col, hashed_inds, index_length,&hash_used, &hash_val);
        hashed_inds[hash_val] = global_col;
        hashed_vals[hash_val] += scalarB*B_val[j];
        B_bindx[j] = hash_val;
      }
#ifdef ML_WITH_EPETRA
      if (matrix_type == ML_EpetraCRS_MATRIX) {
	for (j = 0; j < A_length; j++) {
	  columns[j] = hashed_inds[A_bindx[j]];
	  values[j]  = hashed_vals[A_bindx[j]];
	  nz_ptr++;
	  hashed_inds[A_bindx[j]] = -1;
	  hashed_vals[A_bindx[j]] = 0.;
	}
	count = A_length;
	for (j = 0; j < B_length; j++) {
	  if (hashed_inds[B_bindx[j]] != -1) {
	    columns[count] = hashed_inds[B_bindx[j]];
	    values[count++]  = hashed_vals[B_bindx[j]];
	    nz_ptr++;
	    hashed_inds[B_bindx[j]] = -1;
	    hashed_vals[B_bindx[j]] = 0.;
	  }
	}
	ML_Epetra_CRSinsert(C,i,columns,values,count);
      }
      else {
#endif
	for (j = 0; j < A_length; j++) {
	  columns[nz_ptr] = hashed_inds[A_bindx[j]];
	  values[nz_ptr]  = hashed_vals[A_bindx[j]];
	  nz_ptr++;
	  hashed_inds[A_bindx[j]] = -1;
	  hashed_vals[A_bindx[j]] = 0.;
	}
	for (j = 0; j < B_length; j++) {
	  if (hashed_inds[B_bindx[j]] != -1) {
	    columns[nz_ptr] = hashed_inds[B_bindx[j]];
	    values[nz_ptr]  = hashed_vals[B_bindx[j]];
	    nz_ptr++;
	    hashed_inds[B_bindx[j]] = -1;
	    hashed_vals[B_bindx[j]] = 0.;
	  }
	}
#ifdef ML_WITH_EPETRA
      }
#endif
      rowptr[i+1] = nz_ptr;
      j = rowptr[i+1] - rowptr[i];
      if (j > max_nz_per_row)
        max_nz_per_row = j;
      if (j < min_nz_per_row && j>0)
        min_nz_per_row = j;
  }
  if (matrix_type == ML_CSR_MATRIX) {
    temp = (struct ML_CSR_MSRdata *) ML_allocate(sizeof(struct ML_CSR_MSRdata));
    if (temp == NULL) pr_error("ML_Operator_Add: no space for temp\n");
    temp->columns = columns;
    temp->values  = values;
    temp->rowptr   = rowptr;

    ML_Operator_Set_ApplyFuncData(C, B->invec_leng, A->outvec_leng, 
				  temp,A->outvec_leng, NULL,0);
    ML_Operator_Set_Getrow(C, A->outvec_leng, CSR_getrow);
    ML_Operator_Set_ApplyFunc (C, CSR_matvec);
    ML_globalcsr2localcsr(C, max_per_proc);
    C->data_destroy = ML_CSR_MSRdata_Destroy;

    C->max_nz_per_row = max_nz_per_row;
    C->min_nz_per_row = min_nz_per_row;
    C->N_nonzeros     = nz_ptr;
  }
#ifdef ML_WITH_EPETRA
  else {
    ML_free(rowptr); 
    ML_free(columns);
    ML_free(values);
  }
#endif

  ML_free(A_gids);
  ML_free(B_gids);
  ML_free(hashed_vals);
  ML_free(hashed_inds);
  ML_free(A_val);
  ML_free(A_bindx);
  ML_free(B_val);
  ML_free(B_bindx);

  return 1;

}
示例#4
0
// ================================================ ====== ==== ==== == =
int RefMaxwell_SetupCoordinates(ML_Operator* A, Teuchos::ParameterList &List_, double *&coordx, double *&coordy, double *&coordz)
// Coppied From int ML_Epetra::MultiLevelPreconditioner::SetupCoordinates()
{
  double* in_x_coord = 0;
  double* in_y_coord = 0;
  double* in_z_coord = 0;
  int NumPDEEqns_ =1;  // Always use 1 because A is a nodal matrix.

  // For node coordinates
  in_x_coord = List_.get("x-coordinates", (double *)0);
  in_y_coord = List_.get("y-coordinates", (double *)0);
  in_z_coord = List_.get("z-coordinates", (double *)0);

  if (!(in_x_coord == 0 && in_y_coord == 0 && in_z_coord == 0))
    {
      ML_Operator* AAA = A;

      int n = AAA->invec_leng, Nghost = 0;

      if (AAA->getrow->pre_comm)
	{
	  if (AAA->getrow->pre_comm->total_rcv_length <= 0)
	    ML_CommInfoOP_Compute_TotalRcvLength(AAA->getrow->pre_comm);
	  Nghost = AAA->getrow->pre_comm->total_rcv_length;
	}

      std::vector<double> tmp(Nghost + n);
      for (int i = 0 ; i < Nghost + n ; ++i)
        tmp[i] = 0.0;

      n /= NumPDEEqns_;
      Nghost /= NumPDEEqns_;

      if (in_x_coord)
	{
	  double* x_coord = (double *) ML_allocate(sizeof(double) * (Nghost+n));

	  for (int i = 0 ; i < n ; ++i)
	    tmp[i * NumPDEEqns_] = in_x_coord[i];

	  ML_exchange_bdry(&tmp[0],AAA->getrow->pre_comm, NumPDEEqns_ * n,
			   AAA->comm, ML_OVERWRITE,NULL);

	  for (int i = 0 ; i < n + Nghost ; ++i)
	    x_coord[i] = tmp[i * NumPDEEqns_];

	  coordx = x_coord;
	}

      if (in_y_coord)
	{
	  double* y_coord = (double *) ML_allocate(sizeof(double) * (Nghost+n));

	  for (int i = 0 ; i < n ; ++i)
	    tmp[i * NumPDEEqns_] = in_y_coord[i];

	  ML_exchange_bdry(&tmp[0],AAA->getrow->pre_comm, NumPDEEqns_ * n,
			   AAA->comm, ML_OVERWRITE,NULL);

	  for (int i = 0 ; i < n + Nghost ; ++i)
	    y_coord[i] = tmp[i * NumPDEEqns_];

	  coordy = y_coord;
	}

      if (in_z_coord)
	{
	  double* z_coord = (double *) ML_allocate(sizeof(double) * (Nghost+n));

	  for (int i = 0 ; i < n ; ++i)
	    tmp[i * NumPDEEqns_] = in_z_coord[i];

	  ML_exchange_bdry(&tmp[0],AAA->getrow->pre_comm, NumPDEEqns_ * n,
			   AAA->comm, ML_OVERWRITE,NULL);

	  for (int i = 0 ; i < n + Nghost ; ++i)
	    z_coord[i] = tmp[i * NumPDEEqns_];

	  coordz = z_coord;
	}

    } // if (!(in_x_coord == 0 && in_y_coord == 0 && in_z_coord == 0))

  return(0);
 }