/* This function does not change the flags. */ static void mpfr_get_zexp (mpz_ptr ez, mpfr_srcptr x) { mpz_init (ez); if (MPFR_IS_UBF (x)) mpz_set (ez, MPFR_ZEXP (x)); else { mp_limb_t e_limb[MPFR_EXP_LIMB_SIZE]; mpfr_t e; int inex; MPFR_SAVE_EXPO_DECL (expo); /* TODO: Once this has been tested, optimize based on whether _MPFR_EXP_FORMAT <= 3. */ MPFR_TMP_INIT1 (e_limb, e, sizeof (mpfr_exp_t) * CHAR_BIT); MPFR_SAVE_EXPO_MARK (expo); MPFR_DBGRES (inex = mpfr_set_exp_t (e, MPFR_GET_EXP (x), MPFR_RNDN)); MPFR_ASSERTD (inex == 0); MPFR_DBGRES (inex = mpfr_get_z (ez, e, MPFR_RNDN)); MPFR_ASSERTD (inex == 0); MPFR_SAVE_EXPO_FREE (expo); } }
/* Convert an mpz_t to an mpfr_exp_t, restricted to the interval [MPFR_EXP_MIN,MPFR_EXP_MAX]. */ mpfr_exp_t mpfr_ubf_zexp2exp (mpz_ptr ez) { mp_size_t n; mpfr_eexp_t e; mpfr_t d; int inex; MPFR_SAVE_EXPO_DECL (expo); n = ABSIZ (ez); /* limb size of ez */ if (n == 0) return 0; MPFR_SAVE_EXPO_MARK (expo); mpfr_init2 (d, n * GMP_NUMB_BITS); MPFR_DBGRES (inex = mpfr_set_z (d, ez, MPFR_RNDN)); MPFR_ASSERTD (inex == 0); e = mpfr_get_exp_t (d, MPFR_RNDZ); mpfr_clear (d); MPFR_SAVE_EXPO_FREE (expo); if (MPFR_UNLIKELY (e < MPFR_EXP_MIN)) return MPFR_EXP_MIN; if (MPFR_UNLIKELY (e > MPFR_EXP_MAX)) return MPFR_EXP_MAX; return e; }
/* We use the reflection formula Gamma(1+t) Gamma(1-t) = - Pi t / sin(Pi (1 + t)) in order to treat the case x <= 1, i.e. with x = 1-t, then Gamma(x) = -Pi*(1-x)/sin(Pi*(2-x))/GAMMA(2-x) */ int mpfr_gamma (mpfr_ptr gamma, mpfr_srcptr x, mpfr_rnd_t rnd_mode) { mpfr_t xp, GammaTrial, tmp, tmp2; mpz_t fact; mpfr_prec_t realprec; int compared, is_integer; int inex = 0; /* 0 means: result gamma not set yet */ MPFR_GROUP_DECL (group); MPFR_SAVE_EXPO_DECL (expo); MPFR_ZIV_DECL (loop); MPFR_LOG_FUNC (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode), ("gamma[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (gamma), mpfr_log_prec, gamma, inex)); /* Trivial cases */ if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN (x)) { MPFR_SET_NAN (gamma); MPFR_RET_NAN; } else if (MPFR_IS_INF (x)) { if (MPFR_IS_NEG (x)) { MPFR_SET_NAN (gamma); MPFR_RET_NAN; } else { MPFR_SET_INF (gamma); MPFR_SET_POS (gamma); MPFR_RET (0); /* exact */ } } else /* x is zero */ { MPFR_ASSERTD(MPFR_IS_ZERO(x)); MPFR_SET_INF(gamma); MPFR_SET_SAME_SIGN(gamma, x); MPFR_SET_DIVBY0 (); MPFR_RET (0); /* exact */ } } /* Check for tiny arguments, where gamma(x) ~ 1/x - euler + .... We know from "Bound on Runs of Zeros and Ones for Algebraic Functions", Proceedings of Arith15, T. Lang and J.-M. Muller, 2001, that the maximal number of consecutive zeroes or ones after the round bit is n-1 for an input of n bits. But we need a more precise lower bound. Assume x has n bits, and 1/x is near a floating-point number y of n+1 bits. We can write x = X*2^e, y = Y/2^f with X, Y integers of n and n+1 bits. Thus X*Y^2^(e-f) is near from 1, i.e., X*Y is near from 2^(f-e). Two cases can happen: (i) either X*Y is exactly 2^(f-e), but this can happen only if X and Y are themselves powers of two, i.e., x is a power of two; (ii) or X*Y is at distance at least one from 2^(f-e), thus |xy-1| >= 2^(e-f), or |y-1/x| >= 2^(e-f)/x = 2^(-f)/X >= 2^(-f-n). Since ufp(y) = 2^(n-f) [ufp = unit in first place], this means that the distance |y-1/x| >= 2^(-2n) ufp(y). Now assuming |gamma(x)-1/x| <= 1, which is true for x <= 1, if 2^(-2n) ufp(y) >= 2, the error is at most 2^(-2n-1) ufp(y), and round(1/x) with precision >= 2n+2 gives the correct result. If x < 2^E, then y > 2^(-E), thus ufp(y) > 2^(-E-1). A sufficient condition is thus EXP(x) + 2 <= -2 MAX(PREC(x),PREC(Y)). */ if (MPFR_GET_EXP (x) + 2 <= -2 * (mpfr_exp_t) MAX(MPFR_PREC(x), MPFR_PREC(gamma))) { int sign = MPFR_SIGN (x); /* retrieve sign before possible override */ int special; MPFR_BLOCK_DECL (flags); MPFR_SAVE_EXPO_MARK (expo); /* for overflow cases, see below; this needs to be done before x possibly gets overridden. */ special = MPFR_GET_EXP (x) == 1 - MPFR_EMAX_MAX && MPFR_IS_POS_SIGN (sign) && MPFR_IS_LIKE_RNDD (rnd_mode, sign) && mpfr_powerof2_raw (x); MPFR_BLOCK (flags, inex = mpfr_ui_div (gamma, 1, x, rnd_mode)); if (inex == 0) /* x is a power of two */ { /* return RND(1/x - euler) = RND(+/- 2^k - eps) with eps > 0 */ if (rnd_mode == MPFR_RNDN || MPFR_IS_LIKE_RNDU (rnd_mode, sign)) inex = 1; else { mpfr_nextbelow (gamma); inex = -1; } } else if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags))) { /* Overflow in the division 1/x. This is a real overflow, except in RNDZ or RNDD when 1/x = 2^emax, i.e. x = 2^(-emax): due to the "- euler", the rounded value in unbounded exponent range is 0.111...11 * 2^emax (not an overflow). */ if (!special) MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, flags); } MPFR_SAVE_EXPO_FREE (expo); /* Note: an overflow is possible with an infinite result; in this case, the overflow flag will automatically be restored by mpfr_check_range. */ return mpfr_check_range (gamma, inex, rnd_mode); } is_integer = mpfr_integer_p (x); /* gamma(x) for x a negative integer gives NaN */ if (is_integer && MPFR_IS_NEG(x)) { MPFR_SET_NAN (gamma); MPFR_RET_NAN; } compared = mpfr_cmp_ui (x, 1); if (compared == 0) return mpfr_set_ui (gamma, 1, rnd_mode); /* if x is an integer that fits into an unsigned long, use mpfr_fac_ui if argument is not too large. If precision is p, fac_ui costs O(u*p), whereas gamma costs O(p*M(p)), so for u <= M(p), fac_ui should be faster. We approximate here M(p) by p*log(p)^2, which is not a bad guess. Warning: since the generic code does not handle exact cases, we want all cases where gamma(x) is exact to be treated here. */ if (is_integer && mpfr_fits_ulong_p (x, MPFR_RNDN)) { unsigned long int u; mpfr_prec_t p = MPFR_PREC(gamma); u = mpfr_get_ui (x, MPFR_RNDN); if (u < 44787929UL && bits_fac (u - 1) <= p + (rnd_mode == MPFR_RNDN)) /* bits_fac: lower bound on the number of bits of m, where gamma(x) = (u-1)! = m*2^e with m odd. */ return mpfr_fac_ui (gamma, u - 1, rnd_mode); /* if bits_fac(...) > p (resp. p+1 for rounding to nearest), then gamma(x) cannot be exact in precision p (resp. p+1). FIXME: remove the test u < 44787929UL after changing bits_fac to return a mpz_t or mpfr_t. */ } MPFR_SAVE_EXPO_MARK (expo); /* check for overflow: according to (6.1.37) in Abramowitz & Stegun, gamma(x) >= exp(-x) * x^(x-1/2) * sqrt(2*Pi) >= 2 * (x/e)^x / x for x >= 1 */ if (compared > 0) { mpfr_t yp; mpfr_exp_t expxp; MPFR_BLOCK_DECL (flags); /* quick test for the default exponent range */ if (mpfr_get_emax () >= 1073741823UL && MPFR_GET_EXP(x) <= 25) { MPFR_SAVE_EXPO_FREE (expo); return mpfr_gamma_aux (gamma, x, rnd_mode); } /* 1/e rounded down to 53 bits */ #define EXPM1_STR "0.010111100010110101011000110110001011001110111100111" mpfr_init2 (xp, 53); mpfr_init2 (yp, 53); mpfr_set_str_binary (xp, EXPM1_STR); mpfr_mul (xp, x, xp, MPFR_RNDZ); mpfr_sub_ui (yp, x, 2, MPFR_RNDZ); mpfr_pow (xp, xp, yp, MPFR_RNDZ); /* (x/e)^(x-2) */ mpfr_set_str_binary (yp, EXPM1_STR); mpfr_mul (xp, xp, yp, MPFR_RNDZ); /* x^(x-2) / e^(x-1) */ mpfr_mul (xp, xp, yp, MPFR_RNDZ); /* x^(x-2) / e^x */ mpfr_mul (xp, xp, x, MPFR_RNDZ); /* lower bound on x^(x-1) / e^x */ MPFR_BLOCK (flags, mpfr_mul_2ui (xp, xp, 1, MPFR_RNDZ)); expxp = MPFR_GET_EXP (xp); mpfr_clear (xp); mpfr_clear (yp); MPFR_SAVE_EXPO_FREE (expo); return MPFR_OVERFLOW (flags) || expxp > __gmpfr_emax ? mpfr_overflow (gamma, rnd_mode, 1) : mpfr_gamma_aux (gamma, x, rnd_mode); } /* now compared < 0 */ /* check for underflow: for x < 1, gamma(x) = Pi*(x-1)/sin(Pi*(2-x))/gamma(2-x). Since gamma(2-x) >= 2 * ((2-x)/e)^(2-x) / (2-x), we have |gamma(x)| <= Pi*(1-x)*(2-x)/2/((2-x)/e)^(2-x) / |sin(Pi*(2-x))| <= 12 * ((2-x)/e)^x / |sin(Pi*(2-x))|. To avoid an underflow in ((2-x)/e)^x, we compute the logarithm. */ if (MPFR_IS_NEG(x)) { int underflow = 0, sgn, ck; mpfr_prec_t w; mpfr_init2 (xp, 53); mpfr_init2 (tmp, 53); mpfr_init2 (tmp2, 53); /* we want an upper bound for x * [log(2-x)-1]. since x < 0, we need a lower bound on log(2-x) */ mpfr_ui_sub (xp, 2, x, MPFR_RNDD); mpfr_log (xp, xp, MPFR_RNDD); mpfr_sub_ui (xp, xp, 1, MPFR_RNDD); mpfr_mul (xp, xp, x, MPFR_RNDU); /* we need an upper bound on 1/|sin(Pi*(2-x))|, thus a lower bound on |sin(Pi*(2-x))|. If 2-x is exact, then the error of Pi*(2-x) is (1+u)^2 with u = 2^(-p) thus the error on sin(Pi*(2-x)) is less than 1/2ulp + 3Pi(2-x)u, assuming u <= 1, thus <= u + 3Pi(2-x)u */ w = mpfr_gamma_2_minus_x_exact (x); /* 2-x is exact for prec >= w */ w += 17; /* to get tmp2 small enough */ mpfr_set_prec (tmp, w); mpfr_set_prec (tmp2, w); MPFR_DBGRES (ck = mpfr_ui_sub (tmp, 2, x, MPFR_RNDN)); MPFR_ASSERTD (ck == 0); /* tmp = 2-x exactly */ mpfr_const_pi (tmp2, MPFR_RNDN); mpfr_mul (tmp2, tmp2, tmp, MPFR_RNDN); /* Pi*(2-x) */ mpfr_sin (tmp, tmp2, MPFR_RNDN); /* sin(Pi*(2-x)) */ sgn = mpfr_sgn (tmp); mpfr_abs (tmp, tmp, MPFR_RNDN); mpfr_mul_ui (tmp2, tmp2, 3, MPFR_RNDU); /* 3Pi(2-x) */ mpfr_add_ui (tmp2, tmp2, 1, MPFR_RNDU); /* 3Pi(2-x)+1 */ mpfr_div_2ui (tmp2, tmp2, mpfr_get_prec (tmp), MPFR_RNDU); /* if tmp2<|tmp|, we get a lower bound */ if (mpfr_cmp (tmp2, tmp) < 0) { mpfr_sub (tmp, tmp, tmp2, MPFR_RNDZ); /* low bnd on |sin(Pi*(2-x))| */ mpfr_ui_div (tmp, 12, tmp, MPFR_RNDU); /* upper bound */ mpfr_log2 (tmp, tmp, MPFR_RNDU); mpfr_add (xp, tmp, xp, MPFR_RNDU); /* The assert below checks that expo.saved_emin - 2 always fits in a long. FIXME if we want to allow mpfr_exp_t to be a long long, for instance. */ MPFR_ASSERTN (MPFR_EMIN_MIN - 2 >= LONG_MIN); underflow = mpfr_cmp_si (xp, expo.saved_emin - 2) <= 0; } mpfr_clear (xp); mpfr_clear (tmp); mpfr_clear (tmp2); if (underflow) /* the sign is the opposite of that of sin(Pi*(2-x)) */ { MPFR_SAVE_EXPO_FREE (expo); return mpfr_underflow (gamma, (rnd_mode == MPFR_RNDN) ? MPFR_RNDZ : rnd_mode, -sgn); } } realprec = MPFR_PREC (gamma); /* we want both 1-x and 2-x to be exact */ { mpfr_prec_t w; w = mpfr_gamma_1_minus_x_exact (x); if (realprec < w) realprec = w; w = mpfr_gamma_2_minus_x_exact (x); if (realprec < w) realprec = w; } realprec = realprec + MPFR_INT_CEIL_LOG2 (realprec) + 20; MPFR_ASSERTD(realprec >= 5); MPFR_GROUP_INIT_4 (group, realprec + MPFR_INT_CEIL_LOG2 (realprec) + 20, xp, tmp, tmp2, GammaTrial); mpz_init (fact); MPFR_ZIV_INIT (loop, realprec); for (;;) { mpfr_exp_t err_g; int ck; MPFR_GROUP_REPREC_4 (group, realprec, xp, tmp, tmp2, GammaTrial); /* reflection formula: gamma(x) = Pi*(x-1)/sin(Pi*(2-x))/gamma(2-x) */ ck = mpfr_ui_sub (xp, 2, x, MPFR_RNDN); /* 2-x, exact */ MPFR_ASSERTD(ck == 0); (void) ck; /* use ck to avoid a warning */ mpfr_gamma (tmp, xp, MPFR_RNDN); /* gamma(2-x), error (1+u) */ mpfr_const_pi (tmp2, MPFR_RNDN); /* Pi, error (1+u) */ mpfr_mul (GammaTrial, tmp2, xp, MPFR_RNDN); /* Pi*(2-x), error (1+u)^2 */ err_g = MPFR_GET_EXP(GammaTrial); mpfr_sin (GammaTrial, GammaTrial, MPFR_RNDN); /* sin(Pi*(2-x)) */ /* If tmp is +Inf, we compute exp(lngamma(x)). */ if (mpfr_inf_p (tmp)) { inex = mpfr_explgamma (gamma, x, &expo, tmp, tmp2, rnd_mode); if (inex) goto end; else goto ziv_next; } err_g = err_g + 1 - MPFR_GET_EXP(GammaTrial); /* let g0 the true value of Pi*(2-x), g the computed value. We have g = g0 + h with |h| <= |(1+u^2)-1|*g. Thus sin(g) = sin(g0) + h' with |h'| <= |(1+u^2)-1|*g. The relative error is thus bounded by |(1+u^2)-1|*g/sin(g) <= |(1+u^2)-1|*2^err_g. <= 2.25*u*2^err_g for |u|<=1/4. With the rounding error, this gives (0.5 + 2.25*2^err_g)*u. */ ck = mpfr_sub_ui (xp, x, 1, MPFR_RNDN); /* x-1, exact */ MPFR_ASSERTD(ck == 0); (void) ck; /* use ck to avoid a warning */ mpfr_mul (xp, tmp2, xp, MPFR_RNDN); /* Pi*(x-1), error (1+u)^2 */ mpfr_mul (GammaTrial, GammaTrial, tmp, MPFR_RNDN); /* [1 + (0.5 + 2.25*2^err_g)*u]*(1+u)^2 = 1 + (2.5 + 2.25*2^err_g)*u + (0.5 + 2.25*2^err_g)*u*(2u+u^2) + u^2. For err_g <= realprec-2, we have (0.5 + 2.25*2^err_g)*u <= 0.5*u + 2.25/4 <= 0.6875 and u^2 <= u/4, thus (0.5 + 2.25*2^err_g)*u*(2u+u^2) + u^2 <= 0.6875*(2u+u/4) + u/4 <= 1.8*u, thus the rel. error is bounded by (4.5 + 2.25*2^err_g)*u. */ mpfr_div (GammaTrial, xp, GammaTrial, MPFR_RNDN); /* the error is of the form (1+u)^3/[1 + (4.5 + 2.25*2^err_g)*u]. For realprec >= 5 and err_g <= realprec-2, [(4.5 + 2.25*2^err_g)*u]^2 <= 0.71, and for |y|<=0.71, 1/(1-y) can be written 1+a*y with a<=4. (1+u)^3 * (1+4*(4.5 + 2.25*2^err_g)*u) = 1 + (21 + 9*2^err_g)*u + (57+27*2^err_g)*u^2 + (55+27*2^err_g)*u^3 + (18+9*2^err_g)*u^4 <= 1 + (21 + 9*2^err_g)*u + (57+27*2^err_g)*u^2 + (56+28*2^err_g)*u^3 <= 1 + (21 + 9*2^err_g)*u + (59+28*2^err_g)*u^2 <= 1 + (23 + 10*2^err_g)*u. The final error is thus bounded by (23 + 10*2^err_g) ulps, which is <= 2^6 for err_g<=2, and <= 2^(err_g+4) for err_g >= 2. */ err_g = (err_g <= 2) ? 6 : err_g + 4; if (MPFR_LIKELY (MPFR_CAN_ROUND (GammaTrial, realprec - err_g, MPFR_PREC(gamma), rnd_mode))) break; ziv_next: MPFR_ZIV_NEXT (loop, realprec); } end: MPFR_ZIV_FREE (loop); if (inex == 0) inex = mpfr_set (gamma, GammaTrial, rnd_mode); MPFR_GROUP_CLEAR (group); mpz_clear (fact); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (gamma, inex, rnd_mode); }
/* Exact product. The number a is assumed to have enough allocated memory, where the trailing bits are regarded as being part of the input numbers (no reallocation is attempted and no check is performed as MPFR_TMP_INIT could have been used). The arguments b and c may actually be UBF numbers (mpfr_srcptr can be seen a bit like void *, but is stronger). This function does not change the flags, except in case of NaN. */ void mpfr_ubf_mul_exact (mpfr_ubf_ptr a, mpfr_srcptr b, mpfr_srcptr c) { MPFR_LOG_FUNC (("b[%Pu]=%.*Rg c[%Pu]=%.*Rg", mpfr_get_prec (b), mpfr_log_prec, b, mpfr_get_prec (c), mpfr_log_prec, c), ("a[%Pu]=%.*Rg", mpfr_get_prec (a), mpfr_log_prec, a)); MPFR_ASSERTD ((mpfr_ptr) a != b); MPFR_ASSERTD ((mpfr_ptr) a != c); MPFR_SIGN (a) = MPFR_MULT_SIGN (MPFR_SIGN (b), MPFR_SIGN (c)); if (MPFR_ARE_SINGULAR (b, c)) { if (MPFR_IS_NAN (b) || MPFR_IS_NAN (c)) MPFR_SET_NAN (a); else if (MPFR_IS_INF (b)) { if (MPFR_NOTZERO (c)) MPFR_SET_INF (a); else MPFR_SET_NAN (a); } else if (MPFR_IS_INF (c)) { if (!MPFR_IS_ZERO (b)) MPFR_SET_INF (a); else MPFR_SET_NAN (a); } else { MPFR_ASSERTD (MPFR_IS_ZERO(b) || MPFR_IS_ZERO(c)); MPFR_SET_ZERO (a); } } else { mpfr_exp_t e; mp_size_t bn, cn; mpfr_limb_ptr ap; mp_limb_t u, v; int m; /* Note about the code below: For the choice of the precision of * the result a, one could choose PREC(b) + PREC(c), instead of * taking whole limbs into account, but in most cases where one * would gain one limb, one would need to copy the significand * instead of a no-op (see the mul.c code). * But in the case MPFR_LIMB_MSB (u) == 0, if the result fits in * an-1 limbs, one could actually do * mpn_rshift (ap, ap, k, GMP_NUMB_BITS - 1) * instead of * mpn_lshift (ap, ap, k, 1) * to gain one limb (and reduce the precision), replacing a shift * by another one. Would this be interesting? */ bn = MPFR_LIMB_SIZE (b); cn = MPFR_LIMB_SIZE (c); ap = MPFR_MANT (a); u = (bn >= cn) ? mpn_mul (ap, MPFR_MANT (b), bn, MPFR_MANT (c), cn) : mpn_mul (ap, MPFR_MANT (c), cn, MPFR_MANT (b), bn); if (MPFR_UNLIKELY (MPFR_LIMB_MSB (u) == 0)) { m = 1; MPFR_DBGRES (v = mpn_lshift (ap, ap, bn + cn, 1)); MPFR_ASSERTD (v == 0); } else m = 0; if (! MPFR_IS_UBF (b) && ! MPFR_IS_UBF (c) && (e = MPFR_GET_EXP (b) + MPFR_GET_EXP (c) - m, MPFR_EXP_IN_RANGE (e))) { MPFR_SET_EXP (a, e); } else { mpz_t be, ce; mpz_init (MPFR_ZEXP (a)); /* This may involve copies of mpz_t, but exponents should not be very large integers anyway. */ mpfr_get_zexp (be, b); mpfr_get_zexp (ce, c); mpz_add (MPFR_ZEXP (a), be, ce); mpz_clear (be); mpz_clear (ce); mpz_sub_ui (MPFR_ZEXP (a), MPFR_ZEXP (a), m); MPFR_SET_UBF (a); } } }
/* Use the reflection formula Digamma(1-x) = Digamma(x) + Pi * cot(Pi*x), i.e., Digamma(x) = Digamma(1-x) - Pi * cot(Pi*x). Assume x < 1/2. */ static int mpfr_digamma_reflection (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode) { mpfr_prec_t p = MPFR_PREC(y) + 10, q; mpfr_t t, u, v; mpfr_exp_t e1, expv; int inex; MPFR_ZIV_DECL (loop); /* we want that 1-x is exact with precision q: if 0 < x < 1/2, then q = PREC(x)-EXP(x) is ok, otherwise if -1 <= x < 0, q = PREC(x)-EXP(x) is ok, otherwise for x < -1, PREC(x) is ok if EXP(x) <= PREC(x), otherwise we need EXP(x) */ if (MPFR_EXP(x) < 0) q = MPFR_PREC(x) + 1 - MPFR_EXP(x); else if (MPFR_EXP(x) <= MPFR_PREC(x)) q = MPFR_PREC(x) + 1; else q = MPFR_EXP(x); mpfr_init2 (u, q); MPFR_DBGRES(inex = mpfr_ui_sub (u, 1, x, MPFR_RNDN)); MPFR_ASSERTN(inex == 0); /* if x is half an integer, cot(Pi*x) = 0, thus Digamma(x) = Digamma(1-x) */ mpfr_mul_2exp (u, u, 1, MPFR_RNDN); inex = mpfr_integer_p (u); mpfr_div_2exp (u, u, 1, MPFR_RNDN); if (inex) { inex = mpfr_digamma (y, u, rnd_mode); goto end; } mpfr_init2 (t, p); mpfr_init2 (v, p); MPFR_ZIV_INIT (loop, p); for (;;) { mpfr_const_pi (v, MPFR_RNDN); /* v = Pi*(1+theta) for |theta|<=2^(-p) */ mpfr_mul (t, v, x, MPFR_RNDN); /* (1+theta)^2 */ e1 = MPFR_EXP(t) - (mpfr_exp_t) p + 1; /* bound for t: err(t) <= 2^e1 */ mpfr_cot (t, t, MPFR_RNDN); /* cot(t * (1+h)) = cot(t) - theta * (1 + cot(t)^2) with |theta|<=t*h */ if (MPFR_EXP(t) > 0) e1 = e1 + 2 * MPFR_EXP(t) + 1; else e1 = e1 + 1; /* now theta * (1 + cot(t)^2) <= 2^e1 */ e1 += (mpfr_exp_t) p - MPFR_EXP(t); /* error is now 2^e1 ulps */ mpfr_mul (t, t, v, MPFR_RNDN); e1 ++; mpfr_digamma (v, u, MPFR_RNDN); /* error <= 1/2 ulp */ expv = MPFR_EXP(v); mpfr_sub (v, v, t, MPFR_RNDN); if (MPFR_EXP(v) < MPFR_EXP(t)) e1 += MPFR_EXP(t) - MPFR_EXP(v); /* scale error for t wrt new v */ /* now take into account the 1/2 ulp error for v */ if (expv - MPFR_EXP(v) - 1 > e1) e1 = expv - MPFR_EXP(v) - 1; else e1 ++; e1 ++; /* rounding error for mpfr_sub */ if (MPFR_CAN_ROUND (v, p - e1, MPFR_PREC(y), rnd_mode)) break; MPFR_ZIV_NEXT (loop, p); mpfr_set_prec (t, p); mpfr_set_prec (v, p); } MPFR_ZIV_FREE (loop); inex = mpfr_set (y, v, rnd_mode); mpfr_clear (t); mpfr_clear (v); end: mpfr_clear (u); return inex; }