示例#1
0
文件: dh.c 项目: MekliCZ/positron
SECStatus 
DH_GenParam(int primeLen, DHParams **params)
{
    PLArenaPool *arena;
    DHParams *dhparams;
    unsigned char *pb = NULL;
    unsigned char *ab = NULL;
    unsigned long counter = 0;
    mp_int p, q, a, h, psub1, test;
    mp_err err = MP_OKAY;
    SECStatus rv = SECSuccess;
    if (!params || primeLen < 0) {
	PORT_SetError(SEC_ERROR_INVALID_ARGS);
	return SECFailure;
    }
    arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
    if (!arena) {
	PORT_SetError(SEC_ERROR_NO_MEMORY);
	return SECFailure;
    }
    dhparams = (DHParams *)PORT_ArenaZAlloc(arena, sizeof(DHParams));
    if (!dhparams) {
	PORT_SetError(SEC_ERROR_NO_MEMORY);
	PORT_FreeArena(arena, PR_TRUE);
	return SECFailure;
    }
    dhparams->arena = arena;
    MP_DIGITS(&p) = 0;
    MP_DIGITS(&q) = 0;
    MP_DIGITS(&a) = 0;
    MP_DIGITS(&h) = 0;
    MP_DIGITS(&psub1) = 0;
    MP_DIGITS(&test) = 0;
    CHECK_MPI_OK( mp_init(&p) );
    CHECK_MPI_OK( mp_init(&q) );
    CHECK_MPI_OK( mp_init(&a) );
    CHECK_MPI_OK( mp_init(&h) );
    CHECK_MPI_OK( mp_init(&psub1) );
    CHECK_MPI_OK( mp_init(&test) );
    /* generate prime with MPI, uses Miller-Rabin to generate strong prime. */
    pb = PORT_Alloc(primeLen);
    CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(pb, primeLen) );
    pb[0]          |= 0x80; /* set high-order bit */
    pb[primeLen-1] |= 0x01; /* set low-order bit  */
    CHECK_MPI_OK( mp_read_unsigned_octets(&p, pb, primeLen) );
    CHECK_MPI_OK( mpp_make_prime(&p, primeLen * 8, PR_TRUE, &counter) );
    /* construct Sophie-Germain prime q = (p-1)/2. */
    CHECK_MPI_OK( mp_sub_d(&p, 1, &psub1) );
    CHECK_MPI_OK( mp_div_2(&psub1, &q)    );
    /* construct a generator from the prime. */
    ab = PORT_Alloc(primeLen);
    /* generate a candidate number a in p's field */
    CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(ab, primeLen) );
    CHECK_MPI_OK( mp_read_unsigned_octets(&a, ab, primeLen) );
    /* force a < p (note that quot(a/p) <= 1) */
    if ( mp_cmp(&a, &p) > 0 )
	CHECK_MPI_OK( mp_sub(&a, &p, &a) );
    do {
	/* check that a is in the range [2..p-1] */
	if ( mp_cmp_d(&a, 2) < 0 || mp_cmp(&a, &psub1) >= 0) {
	    /* a is outside of the allowed range.  Set a=3 and keep going. */
            mp_set(&a, 3);
	}
	/* if a**q mod p != 1 then a is a generator */
	CHECK_MPI_OK( mp_exptmod(&a, &q, &p, &test) );
	if ( mp_cmp_d(&test, 1) != 0 )
	    break;
	/* increment the candidate and try again. */
	CHECK_MPI_OK( mp_add_d(&a, 1, &a) );
    } while (PR_TRUE);
    MPINT_TO_SECITEM(&p, &dhparams->prime, arena);
    MPINT_TO_SECITEM(&a, &dhparams->base, arena);
    *params = dhparams;
cleanup:
    mp_clear(&p);
    mp_clear(&q);
    mp_clear(&a);
    mp_clear(&h);
    mp_clear(&psub1);
    mp_clear(&test);
    if (pb) PORT_ZFree(pb, primeLen);
    if (ab) PORT_ZFree(ab, primeLen);
    if (err) {
	MP_TO_SEC_ERROR(err);
	rv = SECFailure;
    }
    if (rv)
	PORT_FreeArena(arena, PR_TRUE);
    return rv;
}
示例#2
0
文件: dh.c 项目: MekliCZ/positron
SECStatus 
DH_NewKey(DHParams *params, DHPrivateKey **privKey)
{
    PLArenaPool *arena;
    DHPrivateKey *key;
    mp_int g, xa, p, Ya;
    mp_err   err = MP_OKAY;
    SECStatus rv = SECSuccess;
    if (!params || !privKey) {
	PORT_SetError(SEC_ERROR_INVALID_ARGS);
	return SECFailure;
    }
    arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
    if (!arena) {
	PORT_SetError(SEC_ERROR_NO_MEMORY);
	return SECFailure;
    }
    key = (DHPrivateKey *)PORT_ArenaZAlloc(arena, sizeof(DHPrivateKey));
    if (!key) {
	PORT_SetError(SEC_ERROR_NO_MEMORY);
	PORT_FreeArena(arena, PR_TRUE);
	return SECFailure;
    }
    key->arena = arena;
    MP_DIGITS(&g)  = 0;
    MP_DIGITS(&xa) = 0;
    MP_DIGITS(&p)  = 0;
    MP_DIGITS(&Ya) = 0;
    CHECK_MPI_OK( mp_init(&g)  );
    CHECK_MPI_OK( mp_init(&xa) );
    CHECK_MPI_OK( mp_init(&p)  );
    CHECK_MPI_OK( mp_init(&Ya) );
    /* Set private key's p */
    CHECK_SEC_OK( SECITEM_CopyItem(arena, &key->prime, &params->prime) );
    SECITEM_TO_MPINT(key->prime, &p);
    /* Set private key's g */
    CHECK_SEC_OK( SECITEM_CopyItem(arena, &key->base, &params->base) );
    SECITEM_TO_MPINT(key->base, &g);
    /* Generate private key xa */
    SECITEM_AllocItem(arena, &key->privateValue,
                      dh_GetSecretKeyLen(params->prime.len));
    CHECK_SEC_OK(RNG_GenerateGlobalRandomBytes(key->privateValue.data, 
                                  key->privateValue.len));
    SECITEM_TO_MPINT( key->privateValue, &xa );
    /* xa < p */
    CHECK_MPI_OK( mp_mod(&xa, &p, &xa) );
    /* Compute public key Ya = g ** xa mod p */
    CHECK_MPI_OK( mp_exptmod(&g, &xa, &p, &Ya) );
    MPINT_TO_SECITEM(&Ya, &key->publicValue, key->arena);
    *privKey = key;
cleanup:
    mp_clear(&g);
    mp_clear(&xa);
    mp_clear(&p);
    mp_clear(&Ya);
    if (err) {
	MP_TO_SEC_ERROR(err);
	rv = SECFailure;
    }
    if (rv) {
	*privKey = NULL;
	PORT_FreeArena(arena, PR_TRUE);
    }
    return rv;
}
示例#3
0
static SECStatus
rsa_build_from_primes(mp_int *p, mp_int *q, 
		mp_int *e, PRBool needPublicExponent, 
		mp_int *d, PRBool needPrivateExponent,
		RSAPrivateKey *key, unsigned int keySizeInBits)
{
    mp_int n, phi;
    mp_int psub1, qsub1, tmp;
    mp_err   err = MP_OKAY;
    SECStatus rv = SECSuccess;
    MP_DIGITS(&n)     = 0;
    MP_DIGITS(&phi)   = 0;
    MP_DIGITS(&psub1) = 0;
    MP_DIGITS(&qsub1) = 0;
    MP_DIGITS(&tmp)   = 0;
    CHECK_MPI_OK( mp_init(&n)     );
    CHECK_MPI_OK( mp_init(&phi)   );
    CHECK_MPI_OK( mp_init(&psub1) );
    CHECK_MPI_OK( mp_init(&qsub1) );
    CHECK_MPI_OK( mp_init(&tmp)   );
    /* 1.  Compute n = p*q */
    CHECK_MPI_OK( mp_mul(p, q, &n) );
    /*     verify that the modulus has the desired number of bits */
    if ((unsigned)mpl_significant_bits(&n) != keySizeInBits) {
	PORT_SetError(SEC_ERROR_NEED_RANDOM);
	rv = SECFailure;
	goto cleanup;
    }

    /* at least one exponent must be given */
    PORT_Assert(!(needPublicExponent && needPrivateExponent));

    /* 2.  Compute phi = (p-1)*(q-1) */
    CHECK_MPI_OK( mp_sub_d(p, 1, &psub1) );
    CHECK_MPI_OK( mp_sub_d(q, 1, &qsub1) );
    if (needPublicExponent || needPrivateExponent) {
	CHECK_MPI_OK( mp_mul(&psub1, &qsub1, &phi) );
	/* 3.  Compute d = e**-1 mod(phi) */
	/*     or      e = d**-1 mod(phi) as necessary */
	if (needPublicExponent) {
	    err = mp_invmod(d, &phi, e);
	} else {
	    err = mp_invmod(e, &phi, d);
	}
    } else {
	err = MP_OKAY;
    }
    /*     Verify that phi(n) and e have no common divisors */
    if (err != MP_OKAY) {
	if (err == MP_UNDEF) {
	    PORT_SetError(SEC_ERROR_NEED_RANDOM);
	    err = MP_OKAY; /* to keep PORT_SetError from being called again */
	    rv = SECFailure;
	}
	goto cleanup;
    }

    /* 4.  Compute exponent1 = d mod (p-1) */
    CHECK_MPI_OK( mp_mod(d, &psub1, &tmp) );
    MPINT_TO_SECITEM(&tmp, &key->exponent1, key->arena);
    /* 5.  Compute exponent2 = d mod (q-1) */
    CHECK_MPI_OK( mp_mod(d, &qsub1, &tmp) );
    MPINT_TO_SECITEM(&tmp, &key->exponent2, key->arena);
    /* 6.  Compute coefficient = q**-1 mod p */
    CHECK_MPI_OK( mp_invmod(q, p, &tmp) );
    MPINT_TO_SECITEM(&tmp, &key->coefficient, key->arena);

    /* copy our calculated results, overwrite what is there */
    key->modulus.data = NULL;
    MPINT_TO_SECITEM(&n, &key->modulus, key->arena);
    key->privateExponent.data = NULL;
    MPINT_TO_SECITEM(d, &key->privateExponent, key->arena);
    key->publicExponent.data = NULL;
    MPINT_TO_SECITEM(e, &key->publicExponent, key->arena);
    key->prime1.data = NULL;
    MPINT_TO_SECITEM(p, &key->prime1, key->arena);
    key->prime2.data = NULL;
    MPINT_TO_SECITEM(q, &key->prime2, key->arena);
cleanup:
    mp_clear(&n);
    mp_clear(&phi);
    mp_clear(&psub1);
    mp_clear(&qsub1);
    mp_clear(&tmp);
    if (err) {
	MP_TO_SEC_ERROR(err);
	rv = SECFailure;
    }
    return rv;
}
static SECStatus 
dsa_NewKeyExtended(const PQGParams *params, const SECItem * seed,
                   DSAPrivateKey **privKey)
{
    mp_int p, g;
    mp_int x, y;
    mp_err err;
    PRArenaPool *arena;
    DSAPrivateKey *key;
    /* Check args. */
    if (!params || !privKey || !seed || !seed->data) {
	PORT_SetError(SEC_ERROR_INVALID_ARGS);
	return SECFailure;
    }
    /* Initialize an arena for the DSA key. */
    arena = PORT_NewArena(NSS_FREEBL_DSA_DEFAULT_CHUNKSIZE);
    if (!arena) {
	PORT_SetError(SEC_ERROR_NO_MEMORY);
	return SECFailure;
    }
    key = (DSAPrivateKey *)PORT_ArenaZAlloc(arena, sizeof(DSAPrivateKey));
    if (!key) {
	PORT_SetError(SEC_ERROR_NO_MEMORY);
	PORT_FreeArena(arena, PR_TRUE);
	return SECFailure;
    }
    key->params.arena = arena;
    /* Initialize MPI integers. */
    MP_DIGITS(&p) = 0;
    MP_DIGITS(&g) = 0;
    MP_DIGITS(&x) = 0;
    MP_DIGITS(&y) = 0;
    CHECK_MPI_OK( mp_init(&p) );
    CHECK_MPI_OK( mp_init(&g) );
    CHECK_MPI_OK( mp_init(&x) );
    CHECK_MPI_OK( mp_init(&y) );
    /* Copy over the PQG params */
    CHECK_MPI_OK( SECITEM_CopyItem(arena, &key->params.prime,
                                          &params->prime) );
    CHECK_MPI_OK( SECITEM_CopyItem(arena, &key->params.subPrime,
                                          &params->subPrime) );
    CHECK_MPI_OK( SECITEM_CopyItem(arena, &key->params.base, &params->base) );
    /* Convert stored p, g, and received x into MPI integers. */
    SECITEM_TO_MPINT(params->prime, &p);
    SECITEM_TO_MPINT(params->base,  &g);
    OCTETS_TO_MPINT(seed->data, &x, seed->len);
    /* Store x in private key */
    SECITEM_AllocItem(arena, &key->privateValue, seed->len);
    PORT_Memcpy(key->privateValue.data, seed->data, seed->len);
    /* Compute public key y = g**x mod p */
    CHECK_MPI_OK( mp_exptmod(&g, &x, &p, &y) );
    /* Store y in public key */
    MPINT_TO_SECITEM(&y, &key->publicValue, arena);
    *privKey = key;
    key = NULL;
cleanup:
    mp_clear(&p);
    mp_clear(&g);
    mp_clear(&x);
    mp_clear(&y);
    if (key)
	PORT_FreeArena(key->params.arena, PR_TRUE);
    if (err) {
	translate_mpi_error(err);
	return SECFailure;
    }
    return SECSuccess;
}
示例#5
0
/*
** Generate and return a new RSA public and private key.
**	Both keys are encoded in a single RSAPrivateKey structure.
**	"cx" is the random number generator context
**	"keySizeInBits" is the size of the key to be generated, in bits.
**	   512, 1024, etc.
**	"publicExponent" when not NULL is a pointer to some data that
**	   represents the public exponent to use. The data is a byte
**	   encoded integer, in "big endian" order.
*/
RSAPrivateKey *
RSA_NewKey(int keySizeInBits, SECItem *publicExponent)
{
    unsigned int primeLen;
    mp_int p, q, e;
    int kiter;
    mp_err   err = MP_OKAY;
    SECStatus rv = SECSuccess;
    int prerr = 0;
    RSAPrivateKey *key = NULL;
    PRArenaPool *arena = NULL;
    /* Require key size to be a multiple of 16 bits. */
    if (!publicExponent || keySizeInBits % 16 != 0 ||
	    BAD_RSA_KEY_SIZE(keySizeInBits/8, publicExponent->len)) {
	PORT_SetError(SEC_ERROR_INVALID_ARGS);
	return NULL;
    }
    /* 1. Allocate arena & key */
    arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
    if (!arena) {
	PORT_SetError(SEC_ERROR_NO_MEMORY);
	return NULL;
    }
    key = (RSAPrivateKey *)PORT_ArenaZAlloc(arena, sizeof(RSAPrivateKey));
    if (!key) {
	PORT_SetError(SEC_ERROR_NO_MEMORY);
	PORT_FreeArena(arena, PR_TRUE);
	return NULL;
    }
    key->arena = arena;
    /* length of primes p and q (in bytes) */
    primeLen = keySizeInBits / (2 * BITS_PER_BYTE);
    MP_DIGITS(&p) = 0;
    MP_DIGITS(&q) = 0;
    MP_DIGITS(&e) = 0;
    CHECK_MPI_OK( mp_init(&p) );
    CHECK_MPI_OK( mp_init(&q) );
    CHECK_MPI_OK( mp_init(&e) );
    /* 2.  Set the version number (PKCS1 v1.5 says it should be zero) */
    SECITEM_AllocItem(arena, &key->version, 1);
    key->version.data[0] = 0;
    /* 3.  Set the public exponent */
    SECITEM_CopyItem(arena, &key->publicExponent, publicExponent);
    SECITEM_TO_MPINT(*publicExponent, &e);
    kiter = 0;
    do {
	prerr = 0;
	PORT_SetError(0);
	CHECK_SEC_OK( generate_prime(&p, primeLen) );
	CHECK_SEC_OK( generate_prime(&q, primeLen) );
	/* Assure q < p */
	if (mp_cmp(&p, &q) < 0)
	    mp_exch(&p, &q);
	/* Attempt to use these primes to generate a key */
	rv = rsa_keygen_from_primes(&p, &q, &e, key, keySizeInBits);
	if (rv == SECSuccess)
	    break; /* generated two good primes */
	prerr = PORT_GetError();
	kiter++;
	/* loop until have primes */
    } while (prerr == SEC_ERROR_NEED_RANDOM && kiter < MAX_KEY_GEN_ATTEMPTS);
    if (prerr)
	goto cleanup;
    MPINT_TO_SECITEM(&p, &key->prime1, arena);
    MPINT_TO_SECITEM(&q, &key->prime2, arena);
cleanup:
    mp_clear(&p);
    mp_clear(&q);
    mp_clear(&e);
    if (err) {
	MP_TO_SEC_ERROR(err);
	rv = SECFailure;
    }
    if (rv && arena) {
	PORT_FreeArena(arena, PR_TRUE);
	key = NULL;
    }
    return key;
}
示例#6
0
static SECStatus
rsa_keygen_from_primes(mp_int *p, mp_int *q, mp_int *e, RSAPrivateKey *key,
                       unsigned int keySizeInBits)
{
    mp_int n, d, phi;
    mp_int psub1, qsub1, tmp;
    mp_err   err = MP_OKAY;
    SECStatus rv = SECSuccess;
    MP_DIGITS(&n)     = 0;
    MP_DIGITS(&d)     = 0;
    MP_DIGITS(&phi)   = 0;
    MP_DIGITS(&psub1) = 0;
    MP_DIGITS(&qsub1) = 0;
    MP_DIGITS(&tmp)   = 0;
    CHECK_MPI_OK( mp_init(&n)     );
    CHECK_MPI_OK( mp_init(&d)     );
    CHECK_MPI_OK( mp_init(&phi)   );
    CHECK_MPI_OK( mp_init(&psub1) );
    CHECK_MPI_OK( mp_init(&qsub1) );
    CHECK_MPI_OK( mp_init(&tmp)   );
    /* 1.  Compute n = p*q */
    CHECK_MPI_OK( mp_mul(p, q, &n) );
    /*     verify that the modulus has the desired number of bits */
    if ((unsigned)mpl_significant_bits(&n) != keySizeInBits) {
	PORT_SetError(SEC_ERROR_NEED_RANDOM);
	rv = SECFailure;
	goto cleanup;
    }
    /* 2.  Compute phi = (p-1)*(q-1) */
    CHECK_MPI_OK( mp_sub_d(p, 1, &psub1) );
    CHECK_MPI_OK( mp_sub_d(q, 1, &qsub1) );
    CHECK_MPI_OK( mp_mul(&psub1, &qsub1, &phi) );
    /* 3.  Compute d = e**-1 mod(phi) */
    err = mp_invmod(e, &phi, &d);
    /*     Verify that phi(n) and e have no common divisors */
    if (err != MP_OKAY) {
	if (err == MP_UNDEF) {
	    PORT_SetError(SEC_ERROR_NEED_RANDOM);
	    err = MP_OKAY; /* to keep PORT_SetError from being called again */
	    rv = SECFailure;
	}
	goto cleanup;
    }
    MPINT_TO_SECITEM(&n, &key->modulus, key->arena);
    MPINT_TO_SECITEM(&d, &key->privateExponent, key->arena);
    /* 4.  Compute exponent1 = d mod (p-1) */
    CHECK_MPI_OK( mp_mod(&d, &psub1, &tmp) );
    MPINT_TO_SECITEM(&tmp, &key->exponent1, key->arena);
    /* 5.  Compute exponent2 = d mod (q-1) */
    CHECK_MPI_OK( mp_mod(&d, &qsub1, &tmp) );
    MPINT_TO_SECITEM(&tmp, &key->exponent2, key->arena);
    /* 6.  Compute coefficient = q**-1 mod p */
    CHECK_MPI_OK( mp_invmod(q, p, &tmp) );
    MPINT_TO_SECITEM(&tmp, &key->coefficient, key->arena);
cleanup:
    mp_clear(&n);
    mp_clear(&d);
    mp_clear(&phi);
    mp_clear(&psub1);
    mp_clear(&qsub1);
    mp_clear(&tmp);
    if (err) {
	MP_TO_SEC_ERROR(err);
	rv = SECFailure;
    }
    return rv;
}