示例#1
0
/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G + 
 * k2 * P(x, y), where G is the generator (base point) of the group of
 * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
 * Uses mixed Jacobian-affine coordinates. Input and output values are
 * assumed to be NOT field-encoded. Uses algorithm 15 (simultaneous
 * multiple point multiplication) from Brown, Hankerson, Lopez, Menezes.
 * Software Implementation of the NIST Elliptic Curves over Prime Fields. */
mp_err
ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
				   const mp_int *py, mp_int *rx, mp_int *ry,
				   const ECGroup *group)
{
	mp_err res = MP_OKAY;
	mp_int precomp[4][4][2];
	mp_int rz;
	const mp_int *a, *b;
	unsigned int i, j;
	int ai, bi, d;

	for (i = 0; i < 4; i++) {
		for (j = 0; j < 4; j++) {
			MP_DIGITS(&precomp[i][j][0]) = 0;
			MP_DIGITS(&precomp[i][j][1]) = 0;
		}
	}
	MP_DIGITS(&rz) = 0;

	ARGCHK(group != NULL, MP_BADARG);
	ARGCHK(!((k1 == NULL)
			 && ((k2 == NULL) || (px == NULL)
				 || (py == NULL))), MP_BADARG);

	/* if some arguments are not defined used ECPoint_mul */
	if (k1 == NULL) {
		return ECPoint_mul(group, k2, px, py, rx, ry);
	} else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
		return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
	}

	/* initialize precomputation table */
	for (i = 0; i < 4; i++) {
		for (j = 0; j < 4; j++) {
			MP_CHECKOK(mp_init(&precomp[i][j][0]));
			MP_CHECKOK(mp_init(&precomp[i][j][1]));
		}
	}

	/* fill precomputation table */
	/* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
	if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
		a = k2;
		b = k1;
		if (group->meth->field_enc) {
			MP_CHECKOK(group->meth->
					   field_enc(px, &precomp[1][0][0], group->meth));
			MP_CHECKOK(group->meth->
					   field_enc(py, &precomp[1][0][1], group->meth));
		} else {
			MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
			MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
		}
		MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
		MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
	} else {
		a = k1;
		b = k2;
		MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
		MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
		if (group->meth->field_enc) {
			MP_CHECKOK(group->meth->
					   field_enc(px, &precomp[0][1][0], group->meth));
			MP_CHECKOK(group->meth->
					   field_enc(py, &precomp[0][1][1], group->meth));
		} else {
			MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
			MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
		}
	}
	/* precompute [*][0][*] */
	mp_zero(&precomp[0][0][0]);
	mp_zero(&precomp[0][0][1]);
	MP_CHECKOK(group->
			   point_dbl(&precomp[1][0][0], &precomp[1][0][1],
						 &precomp[2][0][0], &precomp[2][0][1], group));
	MP_CHECKOK(group->
			   point_add(&precomp[1][0][0], &precomp[1][0][1],
						 &precomp[2][0][0], &precomp[2][0][1],
						 &precomp[3][0][0], &precomp[3][0][1], group));
	/* precompute [*][1][*] */
	for (i = 1; i < 4; i++) {
		MP_CHECKOK(group->
				   point_add(&precomp[0][1][0], &precomp[0][1][1],
							 &precomp[i][0][0], &precomp[i][0][1],
							 &precomp[i][1][0], &precomp[i][1][1], group));
	}
	/* precompute [*][2][*] */
	MP_CHECKOK(group->
			   point_dbl(&precomp[0][1][0], &precomp[0][1][1],
						 &precomp[0][2][0], &precomp[0][2][1], group));
	for (i = 1; i < 4; i++) {
		MP_CHECKOK(group->
				   point_add(&precomp[0][2][0], &precomp[0][2][1],
							 &precomp[i][0][0], &precomp[i][0][1],
							 &precomp[i][2][0], &precomp[i][2][1], group));
	}
	/* precompute [*][3][*] */
	MP_CHECKOK(group->
			   point_add(&precomp[0][1][0], &precomp[0][1][1],
						 &precomp[0][2][0], &precomp[0][2][1],
						 &precomp[0][3][0], &precomp[0][3][1], group));
	for (i = 1; i < 4; i++) {
		MP_CHECKOK(group->
				   point_add(&precomp[0][3][0], &precomp[0][3][1],
							 &precomp[i][0][0], &precomp[i][0][1],
							 &precomp[i][3][0], &precomp[i][3][1], group));
	}

	d = (mpl_significant_bits(a) + 1) / 2;

	/* R = inf */
	MP_CHECKOK(mp_init(&rz));
	MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));

        for (i = d; i-- > 0;) {
		ai = MP_GET_BIT(a, 2 * i + 1);
		ai <<= 1;
		ai |= MP_GET_BIT(a, 2 * i);
		bi = MP_GET_BIT(b, 2 * i + 1);
		bi <<= 1;
		bi |= MP_GET_BIT(b, 2 * i);
		/* R = 2^2 * R */
		MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
		MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
		/* R = R + (ai * A + bi * B) */
		MP_CHECKOK(ec_GFp_pt_add_jac_aff
				   (rx, ry, &rz, &precomp[ai][bi][0], &precomp[ai][bi][1],
					rx, ry, &rz, group));
	}

	MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));

	if (group->meth->field_dec) {
		MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
		MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
	}

  CLEANUP:
	mp_clear(&rz);
	for (i = 0; i < 4; i++) {
		for (j = 0; j < 4; j++) {
			mp_clear(&precomp[i][j][0]);
			mp_clear(&precomp[i][j][1]);
		}
	}
	return res;
}
示例#2
0
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
 * a, b and p are the elliptic curve coefficients and the prime that
 * determines the field GFp.  Elliptic curve points P and R can be
 * identical.  Uses mixed Jacobian-affine coordinates. Assumes input is
 * already field-encoded using field_enc, and returns output that is still 
 * field-encoded. Uses 4-bit window method. */
mp_err
ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px, const mp_int *py,
				  mp_int *rx, mp_int *ry, const ECGroup *group)
{
	mp_err res = MP_OKAY;
	mp_int precomp[16][2], rz;
	int i, ni, d;

	MP_DIGITS(&rz) = 0;
	for (i = 0; i < 16; i++) {
		MP_DIGITS(&precomp[i][0]) = 0;
		MP_DIGITS(&precomp[i][1]) = 0;
	}

	ARGCHK(group != NULL, MP_BADARG);
	ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);

	/* initialize precomputation table */
	for (i = 0; i < 16; i++) {
		MP_CHECKOK(mp_init(&precomp[i][0]));
		MP_CHECKOK(mp_init(&precomp[i][1]));
	}

	/* fill precomputation table */
	mp_zero(&precomp[0][0]);
	mp_zero(&precomp[0][1]);
	MP_CHECKOK(mp_copy(px, &precomp[1][0]));
	MP_CHECKOK(mp_copy(py, &precomp[1][1]));
	for (i = 2; i < 16; i++) {
		MP_CHECKOK(group->
				   point_add(&precomp[1][0], &precomp[1][1],
							 &precomp[i - 1][0], &precomp[i - 1][1],
							 &precomp[i][0], &precomp[i][1], group));
	}

	d = (mpl_significant_bits(n) + 3) / 4;

	/* R = inf */
	MP_CHECKOK(mp_init(&rz));
	MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));

	for (i = d - 1; i >= 0; i--) {
		/* compute window ni */
		ni = MP_GET_BIT(n, 4 * i + 3);
		ni <<= 1;
		ni |= MP_GET_BIT(n, 4 * i + 2);
		ni <<= 1;
		ni |= MP_GET_BIT(n, 4 * i + 1);
		ni <<= 1;
		ni |= MP_GET_BIT(n, 4 * i);
		/* R = 2^4 * R */
		MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
		MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
		MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
		MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
		/* R = R + (ni * P) */
		MP_CHECKOK(ec_GFp_pt_add_jac_aff
				   (rx, ry, &rz, &precomp[ni][0], &precomp[ni][1], rx, ry,
					&rz, group));
	}

	/* convert result S to affine coordinates */
	MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));

  CLEANUP:
	mp_clear(&rz);
	for (i = 0; i < 16; i++) {
		mp_clear(&precomp[i][0]);
		mp_clear(&precomp[i][1]);
	}
	return res;
}
示例#3
0
/* Uses mixed Jacobian-affine coordinates to perform a point
 * multiplication: R = n * P, n scalar. Uses mixed Jacobian-affine
 * coordinates (Jacobian coordinates for doubles and affine coordinates
 * for additions; based on recommendation from Brown et al.). Not very
 * time efficient but quite space efficient, no precomputation needed.
 * group contains the elliptic curve coefficients and the prime that
 * determines the field GFp.  Elliptic curve points P and R can be
 * identical. Performs calculations in floating point number format, since 
 * this is faster than the integer operations on the ULTRASPARC III.
 * Uses left-to-right binary method (double & add) (algorithm 9) for
 * scalar-point multiplication from Brown, Hankerson, Lopez, Menezes.
 * Software Implementation of the NIST Elliptic Curves Over Prime Fields. */
mp_err
ec_GFp_pt_mul_jac_fp(const mp_int *n, const mp_int *px, const mp_int *py,
					 mp_int *rx, mp_int *ry, const ECGroup *ecgroup)
{
	mp_err res;
	mp_int sx, sy, sz;

	ecfp_aff_pt p;
	ecfp_jac_pt r;
	EC_group_fp *group = (EC_group_fp *) ecgroup->extra1;

	int i, l;

	MP_DIGITS(&sx) = 0;
	MP_DIGITS(&sy) = 0;
	MP_DIGITS(&sz) = 0;
	MP_CHECKOK(mp_init(&sx));
	MP_CHECKOK(mp_init(&sy));
	MP_CHECKOK(mp_init(&sz));

	/* if n = 0 then r = inf */
	if (mp_cmp_z(n) == 0) {
		mp_zero(rx);
		mp_zero(ry);
		res = MP_OKAY;
		goto CLEANUP;
		/* if n < 0 then out of range error */
	} else if (mp_cmp_z(n) < 0) {
		res = MP_RANGE;
		goto CLEANUP;
	}

	/* Convert from integer to floating point */
	ecfp_i2fp(p.x, px, ecgroup);
	ecfp_i2fp(p.y, py, ecgroup);
	ecfp_i2fp(group->curvea, &(ecgroup->curvea), ecgroup);

	/* Init r to point at infinity */
	for (i = 0; i < group->numDoubles; i++) {
		r.z[i] = 0;
	}

	/* double and add method */
	l = mpl_significant_bits(n) - 1;

	for (i = l; i >= 0; i--) {
		/* R = 2R */
		group->pt_dbl_jac(&r, &r, group);

		/* if n_i = 1, then R = R + Q */
		if (MP_GET_BIT(n, i) != 0) {
			group->pt_add_jac_aff(&r, &p, &r, group);
		}
	}

	/* Convert from floating point to integer */
	ecfp_fp2i(&sx, r.x, ecgroup);
	ecfp_fp2i(&sy, r.y, ecgroup);
	ecfp_fp2i(&sz, r.z, ecgroup);

	/* convert result R to affine coordinates */
	MP_CHECKOK(ec_GFp_pt_jac2aff(&sx, &sy, &sz, rx, ry, ecgroup));

  CLEANUP:
	mp_clear(&sx);
	mp_clear(&sy);
	mp_clear(&sz);
	return res;
}
示例#4
0
/* Computes R = nP based on IEEE P1363 A.10.3. Elliptic curve points P and
 * R can be identical. Uses affine coordinates. Assumes input is already
 * field-encoded using field_enc, and returns output that is still
 * field-encoded. */
mp_err
ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px, const mp_int *py,
                  mp_int *rx, mp_int *ry, const ECGroup *group)
{
    mp_err res = MP_OKAY;
    mp_int k, k3, qx, qy, sx, sy;
    int b1, b3, i, l;

    MP_DIGITS(&k) = 0;
    MP_DIGITS(&k3) = 0;
    MP_DIGITS(&qx) = 0;
    MP_DIGITS(&qy) = 0;
    MP_DIGITS(&sx) = 0;
    MP_DIGITS(&sy) = 0;
    MP_CHECKOK(mp_init(&k));
    MP_CHECKOK(mp_init(&k3));
    MP_CHECKOK(mp_init(&qx));
    MP_CHECKOK(mp_init(&qy));
    MP_CHECKOK(mp_init(&sx));
    MP_CHECKOK(mp_init(&sy));

    /* if n = 0 then r = inf */
    if (mp_cmp_z(n) == 0) {
        mp_zero(rx);
        mp_zero(ry);
        res = MP_OKAY;
        goto CLEANUP;
    }
    /* Q = P, k = n */
    MP_CHECKOK(mp_copy(px, &qx));
    MP_CHECKOK(mp_copy(py, &qy));
    MP_CHECKOK(mp_copy(n, &k));
    /* if n < 0 then Q = -Q, k = -k */
    if (mp_cmp_z(n) < 0) {
        MP_CHECKOK(group->meth->field_neg(&qy, &qy, group->meth));
        MP_CHECKOK(mp_neg(&k, &k));
    }
#ifdef ECL_DEBUG /* basic double and add method */
    l = mpl_significant_bits(&k) - 1;
    MP_CHECKOK(mp_copy(&qx, &sx));
    MP_CHECKOK(mp_copy(&qy, &sy));
    for (i = l - 1; i >= 0; i--) {
        /* S = 2S */
        MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
        /* if k_i = 1, then S = S + Q */
        if (mpl_get_bit(&k, i) != 0) {
            MP_CHECKOK(group->point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
        }
    }
#else /* double and add/subtract method from \
               * standard */
    /* k3 = 3 * k */
    MP_CHECKOK(mp_set_int(&k3, 3));
    MP_CHECKOK(mp_mul(&k, &k3, &k3));
    /* S = Q */
    MP_CHECKOK(mp_copy(&qx, &sx));
    MP_CHECKOK(mp_copy(&qy, &sy));
    /* l = index of high order bit in binary representation of 3*k */
    l = mpl_significant_bits(&k3) - 1;
    /* for i = l-1 downto 1 */
    for (i = l - 1; i >= 1; i--) {
        /* S = 2S */
        MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
        b3 = MP_GET_BIT(&k3, i);
        b1 = MP_GET_BIT(&k, i);
        /* if k3_i = 1 and k_i = 0, then S = S + Q */
        if ((b3 == 1) && (b1 == 0)) {
            MP_CHECKOK(group->point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
            /* if k3_i = 0 and k_i = 1, then S = S - Q */
        } else if ((b3 == 0) && (b1 == 1)) {
            MP_CHECKOK(group->point_sub(&sx, &sy, &qx, &qy, &sx, &sy, group));
        }
    }
#endif
    /* output S */
    MP_CHECKOK(mp_copy(&sx, rx));
    MP_CHECKOK(mp_copy(&sy, ry));

CLEANUP:
    mp_clear(&k);
    mp_clear(&k3);
    mp_clear(&qx);
    mp_clear(&qy);
    mp_clear(&sx);
    mp_clear(&sy);
    return res;
}
示例#5
0
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
 * a, b and p are the elliptic curve coefficients and the prime that
 * determines the field GFp.  Elliptic curve points P and R can be
 * identical.  Uses Jacobian coordinates. Uses 4-bit window method. */
mp_err
ec_GFp_point_mul_jac_4w_fp(const mp_int *n, const mp_int *px,
						   const mp_int *py, mp_int *rx, mp_int *ry,
						   const ECGroup *ecgroup)
{
	mp_err res = MP_OKAY;
	ecfp_jac_pt precomp[16], r;
	ecfp_aff_pt p;
	EC_group_fp *group;

	mp_int rz;
	int i, ni, d;

	ARGCHK(ecgroup != NULL, MP_BADARG);
	ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);

	group = (EC_group_fp *) ecgroup->extra1;
	MP_DIGITS(&rz) = 0;
	MP_CHECKOK(mp_init(&rz));

	/* init p, da */
	ecfp_i2fp(p.x, px, ecgroup);
	ecfp_i2fp(p.y, py, ecgroup);
	ecfp_i2fp(group->curvea, &ecgroup->curvea, ecgroup);

	/* Do precomputation */
	group->precompute_jac(precomp, &p, group);

	/* Do main body of calculations */
	d = (mpl_significant_bits(n) + 3) / 4;

	/* R = inf */
	for (i = 0; i < group->numDoubles; i++) {
		r.z[i] = 0;
	}

	for (i = d - 1; i >= 0; i--) {
		/* compute window ni */
		ni = MP_GET_BIT(n, 4 * i + 3);
		ni <<= 1;
		ni |= MP_GET_BIT(n, 4 * i + 2);
		ni <<= 1;
		ni |= MP_GET_BIT(n, 4 * i + 1);
		ni <<= 1;
		ni |= MP_GET_BIT(n, 4 * i);

		/* R = 2^4 * R */
		group->pt_dbl_jac(&r, &r, group);
		group->pt_dbl_jac(&r, &r, group);
		group->pt_dbl_jac(&r, &r, group);
		group->pt_dbl_jac(&r, &r, group);

		/* R = R + (ni * P) */
		group->pt_add_jac(&r, &precomp[ni], &r, group);
	}

	/* Convert back to integer */
	ecfp_fp2i(rx, r.x, ecgroup);
	ecfp_fp2i(ry, r.y, ecgroup);
	ecfp_fp2i(&rz, r.z, ecgroup);

	/* convert result S to affine coordinates */
	MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, ecgroup));

  CLEANUP:
	mp_clear(&rz);
	return res;
}