mp_int_t mp_obj_get_int_truncated(mp_const_obj_t arg) { if (MP_OBJ_IS_INT(arg)) { return mp_obj_int_get_truncated(arg); } else { return mp_obj_get_int(arg); } }
mp_obj_t ffifunc_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) { mp_obj_ffifunc_t *self = self_in; assert(n_kw == 0); assert(n_args == self->cif.nargs); ffi_arg values[n_args]; void *valueptrs[n_args]; int i; for (i = 0; i < n_args; i++) { mp_obj_t a = args[i]; if (a == mp_const_none) { values[i] = 0; } else if (MP_OBJ_IS_INT(a)) { values[i] = mp_obj_int_get(a); } else if (MP_OBJ_IS_STR(a) || MP_OBJ_IS_TYPE(a, &mp_type_bytes)) { const char *s = mp_obj_str_get_str(a); values[i] = (ffi_arg)s; } else if (MP_OBJ_IS_TYPE(a, &fficallback_type)) { mp_obj_fficallback_t *p = a; values[i] = (ffi_arg)p->func; } else { assert(0); } valueptrs[i] = &values[i]; } ffi_arg retval; ffi_call(&self->cif, self->func, &retval, valueptrs); return return_ffi_value(retval, self->rettype); }
// This dispatcher function is expected to be independent of the implementation of long int STATIC mp_obj_t mp_obj_int_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { (void)type_in; mp_arg_check_num(n_args, n_kw, 0, 2, false); switch (n_args) { case 0: return MP_OBJ_NEW_SMALL_INT(0); case 1: if (MP_OBJ_IS_INT(args[0])) { // already an int (small or long), just return it return args[0]; } else if (MP_OBJ_IS_STR_OR_BYTES(args[0])) { // a string, parse it size_t l; const char *s = mp_obj_str_get_data(args[0], &l); return mp_parse_num_integer(s, l, 0, NULL); #if MICROPY_PY_BUILTINS_FLOAT } else if (mp_obj_is_float(args[0])) { return mp_obj_new_int_from_float(mp_obj_float_get(args[0])); #endif } else { return mp_unary_op(MP_UNARY_OP_INT, args[0]); } case 2: default: { // should be a string, parse it size_t l; const char *s = mp_obj_str_get_data(args[0], &l); return mp_parse_num_integer(s, l, mp_obj_get_int(args[1]), NULL); } } }
// This dispatcher function is expected to be independent of the implementation of long int STATIC mp_obj_t mp_obj_int_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 0, 2, false); switch (n_args) { case 0: return MP_OBJ_NEW_SMALL_INT(0); case 1: if (MP_OBJ_IS_INT(args[0])) { // already an int (small or long), just return it return args[0]; } else if (MP_OBJ_IS_STR(args[0])) { // a string, parse it uint l; const char *s = mp_obj_str_get_data(args[0], &l); return mp_parse_num_integer(s, l, 0); #if MICROPY_PY_BUILTINS_FLOAT } else if (MP_OBJ_IS_TYPE(args[0], &mp_type_float)) { return MP_OBJ_NEW_SMALL_INT((machine_int_t)(MICROPY_FLOAT_C_FUN(trunc)(mp_obj_float_get(args[0])))); #endif } else { // try to convert to small int (eg from bool) return MP_OBJ_NEW_SMALL_INT(mp_obj_get_int(args[0])); } case 2: default: { // should be a string, parse it // TODO proper error checking of argument types uint l; const char *s = mp_obj_str_get_data(args[0], &l); return mp_parse_num_integer(s, l, mp_obj_get_int(args[1])); } } }
STATIC mp_obj_t esp_flash_read(mp_obj_t offset_in, mp_obj_t len_or_buf_in) { mp_int_t offset = mp_obj_get_int(offset_in); mp_int_t len; byte *buf; bool alloc_buf = MP_OBJ_IS_INT(len_or_buf_in); if (alloc_buf) { len = mp_obj_get_int(len_or_buf_in); buf = m_new(byte, len); } else { mp_buffer_info_t bufinfo; mp_get_buffer_raise(len_or_buf_in, &bufinfo, MP_BUFFER_WRITE); len = bufinfo.len; buf = bufinfo.buf; } // We know that allocation will be 4-byte aligned for sure SpiFlashOpResult res = spi_flash_read(offset, (uint32_t*)buf, len); if (res == SPI_FLASH_RESULT_OK) { if (alloc_buf) { return mp_obj_new_bytes(buf, len); } return mp_const_none; } if (alloc_buf) { m_del(byte, buf, len); } mp_raise_OSError(res == SPI_FLASH_RESULT_TIMEOUT ? MP_ETIMEDOUT : MP_EIO); }
/// \classmethod \constructor(port) /// Construct a new DAC object. /// /// `port` can be a pin object, or an integer (1 or 2). /// DAC(1) is on pin X5 and DAC(2) is on pin X6. STATIC mp_obj_t pyb_dac_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 1, 1, false); // get pin/channel to output on mp_int_t dac_id; if (MP_OBJ_IS_INT(args[0])) { dac_id = mp_obj_get_int(args[0]); } else { const pin_obj_t *pin = pin_find(args[0]); if (pin == &pin_A4) { dac_id = 1; } else if (pin == &pin_A5) { dac_id = 2; } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin %q does not have DAC capabilities", pin->name)); } } pyb_dac_obj_t *dac = m_new_obj(pyb_dac_obj_t); dac->base.type = &pyb_dac_type; uint32_t pin; if (dac_id == 1) { pin = GPIO_PIN_4; dac->dac_channel = DAC_CHANNEL_1; dac->dma_stream = DMA1_Stream5; } else if (dac_id == 2) { pin = GPIO_PIN_5; dac->dac_channel = DAC_CHANNEL_2; dac->dma_stream = DMA1_Stream6; } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "DAC %d does not exist", dac_id)); } // GPIO configuration GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.Pin = pin; GPIO_InitStructure.Mode = GPIO_MODE_ANALOG; GPIO_InitStructure.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStructure); // DAC peripheral clock __DAC_CLK_ENABLE(); // stop anything already going on HAL_DAC_Stop(&DAC_Handle, dac->dac_channel); if ((dac->dac_channel == DAC_CHANNEL_1 && DAC_Handle.DMA_Handle1 != NULL) || (dac->dac_channel == DAC_CHANNEL_2 && DAC_Handle.DMA_Handle2 != NULL)) { HAL_DAC_Stop_DMA(&DAC_Handle, dac->dac_channel); } dac->state = 0; // return object return dac; }
/// \function sleep(seconds) /// Sleep for the given number of seconds. Seconds can be a floating-point number to /// sleep for a fractional number of seconds. STATIC mp_obj_t time_sleep(mp_obj_t seconds_o) { #if MICROPY_PY_BUILTINS_FLOAT if (MP_OBJ_IS_INT(seconds_o)) { #endif HAL_Delay(1000 * mp_obj_get_int(seconds_o)); #if MICROPY_PY_BUILTINS_FLOAT } else { HAL_Delay((uint32_t)(1000 * mp_obj_get_float(seconds_o))); } #endif return mp_const_none; }
mp_obj_t ffifunc_call(mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { mp_obj_ffifunc_t *self = self_in; assert(n_kw == 0); assert(n_args == self->cif.nargs); ffi_arg values[n_args]; void *valueptrs[n_args]; int i; for (i = 0; i < n_args; i++) { mp_obj_t a = args[i]; if (a == mp_const_none) { values[i] = 0; } else if (MP_OBJ_IS_INT(a)) { values[i] = mp_obj_int_get(a); } else if (MP_OBJ_IS_STR(a)) { const char *s = mp_obj_str_get_str(a); values[i] = (ffi_arg)s; } else if (((mp_obj_base_t*)a)->type->buffer_p.get_buffer != NULL) { mp_obj_base_t *o = (mp_obj_base_t*)a; mp_buffer_info_t bufinfo; int ret = o->type->buffer_p.get_buffer(o, &bufinfo, MP_BUFFER_READ); // TODO: MP_BUFFER_READ? if (ret != 0 || bufinfo.buf == NULL) { goto error; } values[i] = (ffi_arg)bufinfo.buf; } else if (MP_OBJ_IS_TYPE(a, &fficallback_type)) { mp_obj_fficallback_t *p = a; values[i] = (ffi_arg)p->func; } else { goto error; } valueptrs[i] = &values[i]; } // If ffi_arg is not big enough to hold a double, then we must pass along a // pointer to a memory location of the correct size. // TODO check if this needs to be done for other types which don't fit into // ffi_arg. if (sizeof(ffi_arg) == 4 && self->rettype == 'd') { double retval; ffi_call(&self->cif, self->func, &retval, valueptrs); return mp_obj_new_float(retval); } else { ffi_arg retval; ffi_call(&self->cif, self->func, &retval, valueptrs); return return_ffi_value(retval, self->rettype); } error: nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "Don't know how to pass object to native function")); }
STATIC mp_obj_t mod_eoslib_hash64(mp_obj_t obj1) { uint64_t key = 0; if (MP_OBJ_IS_STR_OR_BYTES(obj1)) { size_t len; const char* str = mp_obj_str_get_data(obj1, &len); key = XXH64(str, len, 0); return mp_obj_new_int_from_ll(key); } else if (MP_OBJ_IS_INT(obj1)) { return obj1; } else { mp_raise_TypeError("can't hash unsupported type"); return mp_const_none;//mute return type check } }
bool mp_parse_node_get_int_maybe(mp_parse_node_t pn, mp_obj_t *o) { if (MP_PARSE_NODE_IS_SMALL_INT(pn)) { *o = MP_OBJ_NEW_SMALL_INT(MP_PARSE_NODE_LEAF_SMALL_INT(pn)); return true; } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_const_object)) { mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D // nodes are 32-bit pointers, but need to extract 64-bit object *o = (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32); #else *o = (mp_obj_t)pns->nodes[0]; #endif return MP_OBJ_IS_INT(*o); } else { return false; } }
void mp_binary_set_val(char typecode, void *p, int index, mp_obj_t val_in) { machine_int_t val = 0; if (MP_OBJ_IS_INT(val_in)) { val = mp_obj_int_get(val_in); } switch (typecode) { case 'b': ((int8_t*)p)[index] = val; break; case BYTEARRAY_TYPECODE: case 'B': val = ((uint8_t*)p)[index] = val; break; case 'h': val = ((int16_t*)p)[index] = val; break; case 'H': val = ((uint16_t*)p)[index] = val; break; case 'i': case 'l': ((int32_t*)p)[index] = val; break; case 'I': case 'L': ((uint32_t*)p)[index] = val; break; #if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE case 'q': case 'Q': assert(0); ((long long*)p)[index] = val; break; #endif #if MICROPY_ENABLE_FLOAT case 'f': ((float*)p)[index] = mp_obj_float_get(val_in); break; case 'd': ((double*)p)[index] = mp_obj_float_get(val_in); break; #endif } }
STATIC mp_obj_t bytearray_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { (void)type_in; mp_arg_check_num(n_args, n_kw, 0, 1, false); if (n_args == 0) { // no args: construct an empty bytearray return array_new(BYTEARRAY_TYPECODE, 0); } else if (MP_OBJ_IS_INT(args[0])) { // 1 arg, an integer: construct a blank bytearray of that length mp_uint_t len = mp_obj_get_int(args[0]); mp_obj_array_t *o = array_new(BYTEARRAY_TYPECODE, len); memset(o->items, 0, len); return o; } else { // 1 arg: construct the bytearray from that return array_construct(BYTEARRAY_TYPECODE, args[0]); } }
/// \classmethod \constructor(pin) /// Create an ADC object associated with the given pin. /// This allows you to then read analog values on that pin. STATIC mp_obj_t adc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { // check number of arguments mp_arg_check_num(n_args, n_kw, 1, 1, false); // 1st argument is the pin name mp_obj_t pin_obj = args[0]; uint32_t channel; if (MP_OBJ_IS_INT(pin_obj)) { channel = adc_get_internal_channel(mp_obj_get_int(pin_obj)); } else { const pin_obj_t *pin = pin_find(pin_obj); if ((pin->adc_num & PIN_ADC1) == 0) { // No ADC1 function on that pin nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin %q does not have ADC capabilities", pin->name)); } channel = pin->adc_channel; } if (!is_adcx_channel(channel)) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "not a valid ADC Channel: %d", channel)); } if (ADC_FIRST_GPIO_CHANNEL <= channel && channel <= ADC_LAST_GPIO_CHANNEL) { // these channels correspond to physical GPIO ports so make sure they exist if (pin_adc1[channel] == NULL) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "channel %d not available on this board", channel)); } } pyb_obj_adc_t *o = m_new_obj(pyb_obj_adc_t); memset(o, 0, sizeof(*o)); o->base.type = &pyb_adc_type; o->pin_name = pin_obj; o->channel = channel; adc_init_single(o); return o; }
STATIC mp_obj_t socket_setsockopt(uint n_args, const mp_obj_t *args) { mp_obj_socket_t *self = args[0]; int level = MP_OBJ_SMALL_INT_VALUE(args[1]); int option = mp_obj_get_int(args[2]); const void *optval; socklen_t optlen; if (MP_OBJ_IS_INT(args[3])) { int val = mp_obj_int_get(args[3]); optval = &val; optlen = sizeof(val); } else { mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[3], &bufinfo, MP_BUFFER_READ); optval = bufinfo.buf; optlen = bufinfo.len; } int r = setsockopt(self->fd, level, option, optval, optlen); RAISE_ERRNO(r, errno); return mp_const_none; }
mp_int_t mp_obj_hash(mp_obj_t o_in) { if (o_in == mp_const_false) { return 0; // needs to hash to same as the integer 0, since False==0 } else if (o_in == mp_const_true) { return 1; // needs to hash to same as the integer 1, since True==1 } else if (MP_OBJ_IS_SMALL_INT(o_in)) { return MP_OBJ_SMALL_INT_VALUE(o_in); } else if (MP_OBJ_IS_TYPE(o_in, &mp_type_int)) { return mp_obj_int_hash(o_in); } else if (MP_OBJ_IS_STR(o_in) || MP_OBJ_IS_TYPE(o_in, &mp_type_bytes)) { return mp_obj_str_get_hash(o_in); } else if (MP_OBJ_IS_TYPE(o_in, &mp_type_NoneType)) { return (mp_int_t)o_in; } else if (MP_OBJ_IS_FUN(o_in)) { return (mp_int_t)o_in; } else if (MP_OBJ_IS_TYPE(o_in, &mp_type_tuple)) { return mp_obj_tuple_hash(o_in); } else if (MP_OBJ_IS_TYPE(o_in, &mp_type_type)) { return (mp_int_t)o_in; } else if (MP_OBJ_IS_OBJ(o_in)) { // if a valid __hash__ method exists, use it mp_obj_t hash_method[2]; mp_load_method_maybe(o_in, MP_QSTR___hash__, hash_method); if (hash_method[0] != MP_OBJ_NULL) { mp_obj_t hash_val = mp_call_method_n_kw(0, 0, hash_method); if (MP_OBJ_IS_INT(hash_val)) { return mp_obj_int_get_truncated(hash_val); } } } // TODO hash class and instances - in CPython by default user created classes' __hash__ resolves to their id if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "unhashable type")); } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "unhashable type: '%s'", mp_obj_get_type_str(o_in))); } }
STATIC mp_obj_t stringio_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { (void)n_kw; // TODO check n_kw==0 mp_uint_t sz = 16; bool initdata = false; mp_buffer_info_t bufinfo; mp_obj_stringio_t *o = stringio_new(type_in); if (n_args > 0) { if (MP_OBJ_IS_INT(args[0])) { sz = mp_obj_get_int(args[0]); } else { mp_get_buffer_raise(args[0], &bufinfo, MP_BUFFER_READ); if (MP_OBJ_IS_STR_OR_BYTES(args[0])) { o->vstr = m_new_obj(vstr_t); vstr_init_fixed_buf(o->vstr, bufinfo.len, bufinfo.buf); o->vstr->len = bufinfo.len; o->ref_obj = args[0]; return MP_OBJ_FROM_PTR(o); } sz = bufinfo.len; initdata = true; } } o->vstr = vstr_new(sz); if (initdata) { stringio_write(MP_OBJ_FROM_PTR(o), bufinfo.buf, bufinfo.len, NULL); // Cur ptr is always at the beginning of buffer at the construction o->pos = 0; } return MP_OBJ_FROM_PTR(o); }
/// \method register(obj[, eventmask]) STATIC mp_obj_t poll_register(size_t n_args, const mp_obj_t *args) { mp_obj_poll_t *self = MP_OBJ_TO_PTR(args[0]); bool is_fd = MP_OBJ_IS_INT(args[1]); int fd = get_fd(args[1]); mp_uint_t flags; if (n_args == 3) { flags = mp_obj_get_int(args[2]); } else { flags = POLLIN | POLLOUT; } struct pollfd *free_slot = NULL; struct pollfd *entry = self->entries; for (int i = 0; i < self->len; i++, entry++) { int entry_fd = entry->fd; if (entry_fd == fd) { entry->events = flags; return mp_const_false; } if (entry_fd == -1) { free_slot = entry; } } if (free_slot == NULL) { if (self->len >= self->alloc) { self->entries = m_renew(struct pollfd, self->entries, self->alloc, self->alloc + 4); if (self->obj_map) { self->obj_map = m_renew(mp_obj_t, self->obj_map, self->alloc, self->alloc + 4); } self->alloc += 4; } free_slot = &self->entries[self->len++]; }
// This dispatcher function is expected to be independent of the implementation of long int STATIC mp_obj_t mp_obj_int_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { (void)type_in; mp_arg_check_num(n_args, n_kw, 0, 2, false); switch (n_args) { case 0: return MP_OBJ_NEW_SMALL_INT(0); case 1: if (MP_OBJ_IS_INT(args[0])) { // already an int (small or long), just return it return args[0]; } else if (MP_OBJ_IS_STR_OR_BYTES(args[0])) { // a string, parse it mp_uint_t l; const char *s = mp_obj_str_get_data(args[0], &l); return mp_parse_num_integer(s, l, 0, NULL); #if MICROPY_PY_BUILTINS_FLOAT } else if (mp_obj_is_float(args[0])) { return mp_obj_new_int_from_float(mp_obj_float_get(args[0])); #endif } else { // try to convert to small int (eg from bool) return MP_OBJ_NEW_SMALL_INT(mp_obj_get_int(args[0])); } case 2: default: { // should be a string, parse it // TODO proper error checking of argument types mp_uint_t l; const char *s = mp_obj_str_get_data(args[0], &l); return mp_parse_num_integer(s, l, mp_obj_get_int(args[1]), NULL); } } }
/// \classmethod \constructor(pin) /// Create an ADC object associated with the given pin. /// This allows you to then read analog values on that pin. STATIC mp_obj_t adc_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { // check number of arguments mp_arg_check_num(n_args, n_kw, 1, 1, false); // 1st argument is the pin name mp_obj_t pin_obj = args[0]; uint32_t channel; if (MP_OBJ_IS_INT(pin_obj)) { channel = mp_obj_get_int(pin_obj); } else { const pin_obj_t *pin = pin_find(pin_obj); if ((pin->adc_num & PIN_ADC1) == 0) { // No ADC1 function on that pin nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin %s does not have ADC capabilities", qstr_str(pin->name))); } channel = pin->adc_channel; } if (!IS_ADC_CHANNEL(channel)) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "not a valid ADC Channel: %d", channel)); } if (pin_adc1[channel] == NULL) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "channel %d not available on this board", channel)); } pyb_obj_adc_t *o = m_new_obj(pyb_obj_adc_t); memset(o, 0, sizeof(*o)); o->base.type = &pyb_adc_type; o->pin_name = pin_obj; o->channel = channel; adc_init_single(o); return o; }
STATIC mp_obj_t ffifunc_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_obj_ffifunc_t *self = MP_OBJ_TO_PTR(self_in); assert(n_kw == 0); assert(n_args == self->cif.nargs); ffi_arg values[n_args]; void *valueptrs[n_args]; const char *argtype = self->argtypes; for (uint i = 0; i < n_args; i++, argtype++) { mp_obj_t a = args[i]; if (*argtype == 'O') { values[i] = (ffi_arg)(intptr_t)a; #if MICROPY_PY_BUILTINS_FLOAT } else if (*argtype == 'f') { float *p = (float*)&values[i]; *p = mp_obj_get_float(a); } else if (*argtype == 'd') { double *p = (double*)&values[i]; *p = mp_obj_get_float(a); #endif } else if (a == mp_const_none) { values[i] = 0; } else if (MP_OBJ_IS_INT(a)) { values[i] = mp_obj_int_get_truncated(a); } else if (MP_OBJ_IS_STR(a)) { const char *s = mp_obj_str_get_str(a); values[i] = (ffi_arg)(intptr_t)s; } else if (((mp_obj_base_t*)MP_OBJ_TO_PTR(a))->type->buffer_p.get_buffer != NULL) { mp_obj_base_t *o = (mp_obj_base_t*)MP_OBJ_TO_PTR(a); mp_buffer_info_t bufinfo; int ret = o->type->buffer_p.get_buffer(MP_OBJ_FROM_PTR(o), &bufinfo, MP_BUFFER_READ); // TODO: MP_BUFFER_READ? if (ret != 0) { goto error; } values[i] = (ffi_arg)(intptr_t)bufinfo.buf; } else if (MP_OBJ_IS_TYPE(a, &fficallback_type)) { mp_obj_fficallback_t *p = MP_OBJ_TO_PTR(a); values[i] = (ffi_arg)(intptr_t)p->func; } else { goto error; } valueptrs[i] = &values[i]; } // If ffi_arg is not big enough to hold a double, then we must pass along a // pointer to a memory location of the correct size. // TODO check if this needs to be done for other types which don't fit into // ffi_arg. #if MICROPY_PY_BUILTINS_FLOAT if (sizeof(ffi_arg) == 4 && self->rettype == 'd') { double retval; ffi_call(&self->cif, self->func, &retval, valueptrs); return mp_obj_new_float(retval); } else #endif { ffi_arg retval; ffi_call(&self->cif, self->func, &retval, valueptrs); return return_ffi_value(retval, self->rettype); } error: nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "Don't know how to pass object to native function")); }
// NOTE: param is for C callers. Python can use closure to get an object bound // with the function. uint exti_register(mp_obj_t pin_obj, mp_obj_t mode_obj, mp_obj_t trigger_obj, mp_obj_t callback_obj, void *param) { const pin_obj_t *pin = NULL; uint v_line; if (MP_OBJ_IS_INT(pin_obj)) { // If an integer is passed in, then use it to identify lines 16 thru 22 // We expect lines 0 thru 15 to be passed in as a pin, so that we can // get both the port number and line number. v_line = mp_obj_get_int(pin_obj); if (v_line < 16) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "EXTI vector %d < 16, use a Pin object", v_line)); } if (v_line >= EXTI_NUM_VECTORS) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "EXTI vector %d >= max of %d", v_line, EXTI_NUM_VECTORS)); } } else { pin = pin_map_user_obj(pin_obj); v_line = pin->pin; } int mode = mp_obj_get_int(mode_obj); if (!IS_EXTI_MODE(mode)) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Invalid EXTI Mode: %d", mode)); } int trigger = mp_obj_get_int(trigger_obj); if (!IS_EXTI_TRIGGER(trigger)) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Invalid EXTI Trigger: %d", trigger)); } exti_vector_t *v = &exti_vector[v_line]; if (v->callback_obj != mp_const_none && callback_obj != mp_const_none) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "EXTI vector %d is already in use", v_line)); } // We need to update callback and param atomically, so we disable the line // before we update anything. exti_disable(v_line); if (pin && callback_obj) { // Enable SYSCFG clock RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE); // For EXTI lines 0 thru 15, we need to configure which port controls // the line. SYSCFG_EXTILineConfig(pin->port, v_line); } v->callback_obj = callback_obj; v->param = param; v->mode = mode; if (v->callback_obj != mp_const_none) { // The EXTI_Init function isn't atomic. It uses |= and &=. // We use bit band operations to make it atomic. EXTI_EDGE_BB(EXTI_Trigger_Rising, v_line) = trigger == EXTI_Trigger_Rising || trigger == EXTI_Trigger_Rising_Falling; EXTI_EDGE_BB(EXTI_Trigger_Falling, v_line) = trigger == EXTI_Trigger_Falling || trigger == EXTI_Trigger_Rising_Falling; exti_enable(v_line); /* Enable and set NVIC Interrupt to the lowest priority */ NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannel = nvic_irq_channel[v_line]; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x0F; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x0F; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } return v_line; }
int mp_print_mp_int(const mp_print_t *print, mp_obj_t x, int base, int base_char, int flags, char fill, int width, int prec) { if (!MP_OBJ_IS_INT(x)) { // This will convert booleans to int, or raise an error for // non-integer types. x = MP_OBJ_NEW_SMALL_INT(mp_obj_get_int(x)); } if ((flags & (PF_FLAG_LEFT_ADJUST | PF_FLAG_CENTER_ADJUST)) == 0 && fill == '0') { if (prec > width) { width = prec; } prec = 0; } char prefix_buf[4]; char *prefix = prefix_buf; if (mp_obj_int_sign(x) > 0) { if (flags & PF_FLAG_SHOW_SIGN) { *prefix++ = '+'; } else if (flags & PF_FLAG_SPACE_SIGN) { *prefix++ = ' '; } } if (flags & PF_FLAG_SHOW_PREFIX) { if (base == 2) { *prefix++ = '0'; *prefix++ = base_char + 'b' - 'a'; } else if (base == 8) { *prefix++ = '0'; if (flags & PF_FLAG_SHOW_OCTAL_LETTER) { *prefix++ = base_char + 'o' - 'a'; } } else if (base == 16) { *prefix++ = '0'; *prefix++ = base_char + 'x' - 'a'; } } *prefix = '\0'; int prefix_len = prefix - prefix_buf; prefix = prefix_buf; char comma = '\0'; if (flags & PF_FLAG_SHOW_COMMA) { comma = ','; } // The size of this buffer is rather arbitrary. If it's not large // enough, a dynamic one will be allocated. char stack_buf[sizeof(mp_int_t) * 4]; char *buf = stack_buf; mp_uint_t buf_size = sizeof(stack_buf); mp_uint_t fmt_size = 0; char *str; if (prec > 1) { flags |= PF_FLAG_PAD_AFTER_SIGN; } char sign = '\0'; if (flags & PF_FLAG_PAD_AFTER_SIGN) { // We add the pad in this function, so since the pad goes after // the sign & prefix, we format without a prefix str = mp_obj_int_formatted(&buf, &buf_size, &fmt_size, x, base, NULL, base_char, comma); if (*str == '-') { sign = *str++; fmt_size--; } } else { str = mp_obj_int_formatted(&buf, &buf_size, &fmt_size, x, base, prefix, base_char, comma); } int spaces_before = 0; int spaces_after = 0; if (prec > 1) { // If prec was specified, then prec specifies the width to zero-pad the // the number to. This zero-padded number then gets left or right // aligned in width characters. int prec_width = fmt_size; // The digits if (prec_width < prec) { prec_width = prec; } if (flags & PF_FLAG_PAD_AFTER_SIGN) { if (sign) { prec_width++; } prec_width += prefix_len; } if (prec_width < width) { if (flags & PF_FLAG_LEFT_ADJUST) { spaces_after = width - prec_width; } else { spaces_before = width - prec_width; } } fill = '0'; flags &= ~PF_FLAG_LEFT_ADJUST; } int len = 0; if (spaces_before) { len += mp_print_strn(print, "", 0, 0, ' ', spaces_before); } if (flags & PF_FLAG_PAD_AFTER_SIGN) { // pad after sign implies pad after prefix as well. if (sign) { len += mp_print_strn(print, &sign, 1, 0, 0, 1); width--; } if (prefix_len) { len += mp_print_strn(print, prefix, prefix_len, 0, 0, 1); width -= prefix_len; } } if (prec > 1) { width = prec; } len += mp_print_strn(print, str, fmt_size, flags, fill, width); if (spaces_after) { len += mp_print_strn(print, "", 0, 0, ' ', spaces_after); } if (buf != stack_buf) { m_del(char, buf, buf_size); } return len; }
int pfenv_print_mp_int(const pfenv_t *pfenv, mp_obj_t x, int sgn, int base, int base_char, int flags, char fill, int width) { if (!MP_OBJ_IS_INT(x)) { // This will convert booleans to int, or raise an error for // non-integer types. x = MP_OBJ_NEW_SMALL_INT(mp_obj_get_int(x)); } char prefix_buf[4]; char *prefix = prefix_buf; if (mp_obj_int_is_positive(x)) { if (flags & PF_FLAG_SHOW_SIGN) { *prefix++ = '+'; } else if (flags & PF_FLAG_SPACE_SIGN) { *prefix++ = ' '; } } if (flags & PF_FLAG_SHOW_PREFIX) { if (base == 2) { *prefix++ = '0'; *prefix++ = base_char + 'b' - 'a'; } else if (base == 8) { *prefix++ = '0'; if (flags & PF_FLAG_SHOW_OCTAL_LETTER) { *prefix++ = base_char + 'o' - 'a'; } } else if (base == 16) { *prefix++ = '0'; *prefix++ = base_char + 'x' - 'a'; } } *prefix = '\0'; int prefix_len = prefix - prefix_buf; prefix = prefix_buf; char comma = '\0'; if (flags & PF_FLAG_SHOW_COMMA) { comma = ','; } // The size of this buffer is rather arbitrary. If it's not large // enough, a dynamic one will be allocated. char stack_buf[sizeof(machine_int_t) * 4]; char *buf = stack_buf; int buf_size = sizeof(stack_buf); int fmt_size = 0; char *str; char sign = '\0'; if (flags & PF_FLAG_PAD_AFTER_SIGN) { // We add the pad in this function, so since the pad goes after // the sign & prefix, we format without a prefix str = mp_obj_int_formatted(&buf, &buf_size, &fmt_size, x, base, NULL, base_char, comma); if (*str == '-') { sign = *str++; fmt_size--; } } else { str = mp_obj_int_formatted(&buf, &buf_size, &fmt_size, x, base, prefix, base_char, comma); } int len = 0; if (flags & PF_FLAG_PAD_AFTER_SIGN) { // pad after sign implies pad after prefix as well. if (sign) { len += pfenv_print_strn(pfenv, &sign, 1, 0, 0, 1); width--; } if (prefix_len) { len += pfenv_print_strn(pfenv, prefix, prefix_len, 0, 0, 1); width -= prefix_len; } } len += pfenv_print_strn(pfenv, str, fmt_size, flags, fill, width); if (buf != stack_buf) { m_free(buf, buf_size); } return len; }
// Set override_callback_obj to true if you want to unconditionally set the // callback function. uint extint_register(mp_obj_t pin_obj, uint32_t mode, uint32_t pull, mp_obj_t callback_obj, bool override_callback_obj) { const pin_obj_t *pin = NULL; uint v_line; if (MP_OBJ_IS_INT(pin_obj)) { // If an integer is passed in, then use it to identify lines 16 thru 22 // We expect lines 0 thru 15 to be passed in as a pin, so that we can // get both the port number and line number. v_line = mp_obj_get_int(pin_obj); if (v_line < 16) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "ExtInt vector %d < 16, use a Pin object", v_line)); } if (v_line >= EXTI_NUM_VECTORS) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "ExtInt vector %d >= max of %d", v_line, EXTI_NUM_VECTORS)); } } else { pin = pin_find(pin_obj); v_line = pin->pin; } if (mode != GPIO_MODE_IT_RISING && mode != GPIO_MODE_IT_FALLING && mode != GPIO_MODE_IT_RISING_FALLING && mode != GPIO_MODE_EVT_RISING && mode != GPIO_MODE_EVT_FALLING && mode != GPIO_MODE_EVT_RISING_FALLING) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid ExtInt Mode: %d", mode)); } if (pull != GPIO_NOPULL && pull != GPIO_PULLUP && pull != GPIO_PULLDOWN) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid ExtInt Pull: %d", pull)); } mp_obj_t *cb = &MP_STATE_PORT(pyb_extint_callback)[v_line]; if (!override_callback_obj && *cb != mp_const_none && callback_obj != mp_const_none) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "ExtInt vector %d is already in use", v_line)); } // We need to update callback atomically, so we disable the line // before we update anything. extint_disable(v_line); *cb = callback_obj; pyb_extint_mode[v_line] = (mode & 0x00010000) ? // GPIO_MODE_IT == 0x00010000 EXTI_Mode_Interrupt : EXTI_Mode_Event; if (*cb != mp_const_none) { mp_hal_gpio_clock_enable(pin->gpio); GPIO_InitTypeDef exti; exti.Pin = pin->pin_mask; exti.Mode = mode; exti.Pull = pull; exti.Speed = GPIO_SPEED_FAST; HAL_GPIO_Init(pin->gpio, &exti); // Calling HAL_GPIO_Init does an implicit extint_enable /* Enable and set NVIC Interrupt to the lowest priority */ HAL_NVIC_SetPriority(nvic_irq_channel[v_line], IRQ_PRI_EXTINT, IRQ_SUBPRI_EXTINT); HAL_NVIC_EnableIRQ(nvic_irq_channel[v_line]); } return v_line; }
STATIC bool fold_constants(parser_t *parser, const rule_t *rule, size_t num_args) { // this code does folding of arbitrary integer expressions, eg 1 + 2 * 3 + 4 // it does not do partial folding, eg 1 + 2 + x -> 3 + x mp_obj_t arg0; if (rule->rule_id == RULE_expr || rule->rule_id == RULE_xor_expr || rule->rule_id == RULE_and_expr) { // folding for binary ops: | ^ & mp_parse_node_t pn = peek_result(parser, num_args - 1); if (!mp_parse_node_get_int_maybe(pn, &arg0)) { return false; } mp_binary_op_t op; if (rule->rule_id == RULE_expr) { op = MP_BINARY_OP_OR; } else if (rule->rule_id == RULE_xor_expr) { op = MP_BINARY_OP_XOR; } else { op = MP_BINARY_OP_AND; } for (ssize_t i = num_args - 2; i >= 0; --i) { pn = peek_result(parser, i); mp_obj_t arg1; if (!mp_parse_node_get_int_maybe(pn, &arg1)) { return false; } arg0 = mp_binary_op(op, arg0, arg1); } } else if (rule->rule_id == RULE_shift_expr || rule->rule_id == RULE_arith_expr || rule->rule_id == RULE_term) { // folding for binary ops: << >> + - * / % // mp_parse_node_t pn = peek_result(parser, num_args - 1); if (!mp_parse_node_get_int_maybe(pn, &arg0)) { return false; } for (ssize_t i = num_args - 2; i >= 1; i -= 2) { pn = peek_result(parser, i - 1); mp_obj_t arg1; if (!mp_parse_node_get_int_maybe(pn, &arg1)) { return false; } mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(peek_result(parser, i)); static const uint8_t token_to_op[] = { MP_BINARY_OP_ADD, MP_BINARY_OP_SUBTRACT, MP_BINARY_OP_MULTIPLY, 255,//MP_BINARY_OP_POWER, 255,//MP_BINARY_OP_TRUE_DIVIDE, MP_BINARY_OP_FLOOR_DIVIDE, MP_BINARY_OP_MODULO, 255,//MP_BINARY_OP_LESS MP_BINARY_OP_LSHIFT, 255,//MP_BINARY_OP_MORE MP_BINARY_OP_RSHIFT, }; mp_binary_op_t op = token_to_op[tok - MP_TOKEN_OP_PLUS]; if (op == (mp_binary_op_t)255) { return false; } int rhs_sign = mp_obj_int_sign(arg1); if (op <= MP_BINARY_OP_RSHIFT) { // << and >> can't have negative rhs if (rhs_sign < 0) { return false; } } else if (op >= MP_BINARY_OP_FLOOR_DIVIDE) { // % and // can't have zero rhs if (rhs_sign == 0) { return false; } } arg0 = mp_binary_op(op, arg0, arg1); } } else if (rule->rule_id == RULE_factor_2) { // folding for unary ops: + - ~ mp_parse_node_t pn = peek_result(parser, 0); if (!mp_parse_node_get_int_maybe(pn, &arg0)) { return false; } mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(peek_result(parser, 1)); mp_unary_op_t op; if (tok == MP_TOKEN_OP_PLUS) { op = MP_UNARY_OP_POSITIVE; } else if (tok == MP_TOKEN_OP_MINUS) { op = MP_UNARY_OP_NEGATIVE; } else { assert(tok == MP_TOKEN_OP_TILDE); // should be op = MP_UNARY_OP_INVERT; } arg0 = mp_unary_op(op, arg0); #if MICROPY_COMP_CONST } else if (rule->rule_id == RULE_expr_stmt) { mp_parse_node_t pn1 = peek_result(parser, 0); if (!MP_PARSE_NODE_IS_NULL(pn1) && !(MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_augassign) || MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_assign_list))) { // this node is of the form <x> = <y> mp_parse_node_t pn0 = peek_result(parser, 1); if (MP_PARSE_NODE_IS_ID(pn0) && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_atom_expr_normal) && MP_PARSE_NODE_IS_ID(((mp_parse_node_struct_t*)pn1)->nodes[0]) && MP_PARSE_NODE_LEAF_ARG(((mp_parse_node_struct_t*)pn1)->nodes[0]) == MP_QSTR_const && MP_PARSE_NODE_IS_STRUCT_KIND(((mp_parse_node_struct_t*)pn1)->nodes[1], RULE_trailer_paren) ) { // code to assign dynamic constants: id = const(value) // get the id qstr id = MP_PARSE_NODE_LEAF_ARG(pn0); // get the value mp_parse_node_t pn_value = ((mp_parse_node_struct_t*)((mp_parse_node_struct_t*)pn1)->nodes[1])->nodes[0]; mp_obj_t value; if (!mp_parse_node_get_int_maybe(pn_value, &value)) { mp_obj_t exc = mp_obj_new_exception_msg(&mp_type_SyntaxError, "constant must be an integer"); mp_obj_exception_add_traceback(exc, parser->lexer->source_name, ((mp_parse_node_struct_t*)pn1)->source_line, MP_QSTR_NULL); nlr_raise(exc); } // store the value in the table of dynamic constants mp_map_elem_t *elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND); assert(elem->value == MP_OBJ_NULL); elem->value = value; // If the constant starts with an underscore then treat it as a private // variable and don't emit any code to store the value to the id. if (qstr_str(id)[0] == '_') { pop_result(parser); // pop const(value) pop_result(parser); // pop id push_result_rule(parser, 0, rules[RULE_pass_stmt], 0); // replace with "pass" return true; } // replace const(value) with value pop_result(parser); push_result_node(parser, pn_value); // finished folding this assignment, but we still want it to be part of the tree return false; } } return false; #endif #if MICROPY_COMP_MODULE_CONST } else if (rule->rule_id == RULE_atom_expr_normal) { mp_parse_node_t pn0 = peek_result(parser, 1); mp_parse_node_t pn1 = peek_result(parser, 0); if (!(MP_PARSE_NODE_IS_ID(pn0) && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_trailer_period))) { return false; } // id1.id2 // look it up in constant table, see if it can be replaced with an integer mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pn1; assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0])); qstr q_base = MP_PARSE_NODE_LEAF_ARG(pn0); qstr q_attr = MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]); mp_map_elem_t *elem = mp_map_lookup((mp_map_t*)&mp_constants_map, MP_OBJ_NEW_QSTR(q_base), MP_MAP_LOOKUP); if (elem == NULL) { return false; } mp_obj_t dest[2]; mp_load_method_maybe(elem->value, q_attr, dest); if (!(dest[0] != MP_OBJ_NULL && MP_OBJ_IS_INT(dest[0]) && dest[1] == MP_OBJ_NULL)) { return false; } arg0 = dest[0]; #endif } else { return false; } // success folding this rule for (size_t i = num_args; i > 0; i--) { pop_result(parser); } if (MP_OBJ_IS_SMALL_INT(arg0)) { push_result_node(parser, mp_parse_node_new_small_int(MP_OBJ_SMALL_INT_VALUE(arg0))); } else { // TODO reuse memory for parse node struct? push_result_node(parser, make_node_const_object(parser, 0, arg0)); } return true; }