示例#1
0
文件: mrsas_fp.c 项目: tomtor/freebsd
/*
 * mrsas_update_load_balance_params:	Update load balance parmas
 * Inputs:
 * sc - driver softc instance
 * drv_map - driver RAID map
 * lbInfo - Load balance info
 *
 * This function updates the load balance parameters for the LD config of a two
 * drive optimal RAID-1.
 */
void
mrsas_update_load_balance_params(struct mrsas_softc *sc,
    MR_DRV_RAID_MAP_ALL * drv_map, PLD_LOAD_BALANCE_INFO lbInfo)
{
	int ldCount;
	u_int16_t ld;
	MR_LD_RAID *raid;

	if (sc->lb_pending_cmds > 128 || sc->lb_pending_cmds < 1)
		sc->lb_pending_cmds = LB_PENDING_CMDS_DEFAULT;

	for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES_EXT; ldCount++) {
		ld = MR_TargetIdToLdGet(ldCount, drv_map);
		if (ld >= MAX_LOGICAL_DRIVES_EXT) {
			lbInfo[ldCount].loadBalanceFlag = 0;
			continue;
		}
		raid = MR_LdRaidGet(ld, drv_map);
		if ((raid->level != 1) ||
		    (raid->ldState != MR_LD_STATE_OPTIMAL)) {
			lbInfo[ldCount].loadBalanceFlag = 0;
			continue;
		}
		lbInfo[ldCount].loadBalanceFlag = 1;
	}
}
示例#2
0
U16
MR_CheckDIF(U32 ldTgtId, MR_FW_RAID_MAP_ALL *map)
{
	MR_LD_RAID	*raid;
	U32		ld;

	ld = MR_TargetIdToLdGet(ldTgtId, map);

	if (ld >= MAX_LOGICAL_DRIVES) {
		return (FALSE);
	}

	raid = MR_LdRaidGet(ld, map);

	return (raid->capability.ldPiMode == 0x8);
}
示例#3
0
void
mr_update_load_balance_params(MR_FW_RAID_MAP_ALL *map,
    PLD_LOAD_BALANCE_INFO lbInfo)
{
	int ldCount;
	U16 ld;
	MR_LD_RAID *raid;

	for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) {
		ld = MR_TargetIdToLdGet(ldCount, map);

		if (ld >= MAX_LOGICAL_DRIVES) {
			con_log(CL_ANN1,
			    (CE_NOTE, "mrsas: ld=%d Invalid ld \n", ld));
			continue;
		}

		raid = MR_LdRaidGet(ld, map);

		/* Two drive Optimal RAID 1 */
		if ((raid->level == 1) && (raid->rowSize == 2) &&
		    (raid->spanDepth == 1) &&
		    raid->ldState == MR_LD_STATE_OPTIMAL) {
			U32 pd, arRef;

			lbInfo[ldCount].loadBalanceFlag = 1;

			/* Get the array on which this span is present. */
			arRef = MR_LdSpanArrayGet(ld, 0, map);

			pd = MR_ArPdGet(arRef, 0, map);	    /* Get the Pd. */
			/* Get dev handle from Pd. */
			lbInfo[ldCount].raid1DevHandle[0] =
			    MR_PdDevHandleGet(pd, map);

			pd = MR_ArPdGet(arRef, 1, map);	    /* Get the Pd. */
			/* Get dev handle from Pd. */
			lbInfo[ldCount].raid1DevHandle[1] =
			    MR_PdDevHandleGet(pd, map);
			con_log(CL_ANN1, (CE_NOTE,
			    "mrsas: ld=%d load balancing enabled \n", ldCount));
		} else {
			lbInfo[ldCount].loadBalanceFlag = 0;
		}
	}
}
void
mr_update_load_balance_params(struct MR_FW_RAID_MAP_ALL *map,
			      struct LD_LOAD_BALANCE_INFO *lbInfo)
{
	int ldCount;
	u16 ld;
	struct MR_LD_RAID *raid;

	for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) {
		ld = MR_TargetIdToLdGet(ldCount, map);
		if (ld >= MAX_LOGICAL_DRIVES) {
			lbInfo[ldCount].loadBalanceFlag = 0;
			continue;
		}

		raid = MR_LdRaidGet(ld, map);

		/* Two drive Optimal RAID 1 */
		if ((raid->level == 1)  &&  (raid->rowSize == 2) &&
		    (raid->spanDepth == 1) && raid->ldState ==
		    MR_LD_STATE_OPTIMAL) {
			u32 pd, arRef;

			lbInfo[ldCount].loadBalanceFlag = 1;

			/* Get the array on which this span is present */
			arRef = MR_LdSpanArrayGet(ld, 0, map);

			/* Get the Pd */
			pd = MR_ArPdGet(arRef, 0, map);
			/* Get dev handle from Pd */
			lbInfo[ldCount].raid1DevHandle[0] =
				MR_PdDevHandleGet(pd, map);
			/* Get the Pd */
			pd = MR_ArPdGet(arRef, 1, map);

			/* Get the dev handle from Pd */
			lbInfo[ldCount].raid1DevHandle[1] =
				MR_PdDevHandleGet(pd, map);
		} else
			lbInfo[ldCount].loadBalanceFlag = 0;
	}
}
/*
 * This function will validate Map info data provided by FW
 */
u8 MR_ValidateMapInfo(struct megasas_instance *instance)
{
	struct fusion_context *fusion = instance->ctrl_context;
	struct MR_FW_RAID_MAP_ALL *map = fusion->ld_map[(instance->map_id & 1)];
	struct LD_LOAD_BALANCE_INFO *lbInfo = fusion->load_balance_info;
	PLD_SPAN_INFO ldSpanInfo = fusion->log_to_span;
	struct MR_FW_RAID_MAP *pFwRaidMap = &map->raidMap;
	struct MR_LD_RAID         *raid;
	int ldCount, num_lds;
	u16 ld;


	if (le32_to_cpu(pFwRaidMap->totalSize) !=
	    (sizeof(struct MR_FW_RAID_MAP) -sizeof(struct MR_LD_SPAN_MAP) +
	     (sizeof(struct MR_LD_SPAN_MAP) * le32_to_cpu(pFwRaidMap->ldCount)))) {
		printk(KERN_ERR "megasas: map info structure size 0x%x is not matching with ld count\n",
		       (unsigned int)((sizeof(struct MR_FW_RAID_MAP) -
				       sizeof(struct MR_LD_SPAN_MAP)) +
				      (sizeof(struct MR_LD_SPAN_MAP) *
					le32_to_cpu(pFwRaidMap->ldCount))));
		printk(KERN_ERR "megasas: span map %x, pFwRaidMap->totalSize "
		       ": %x\n", (unsigned int)sizeof(struct MR_LD_SPAN_MAP),
			le32_to_cpu(pFwRaidMap->totalSize));
		return 0;
	}

	if (instance->UnevenSpanSupport)
		mr_update_span_set(map, ldSpanInfo);

	mr_update_load_balance_params(map, lbInfo);

	num_lds = le32_to_cpu(map->raidMap.ldCount);

	/*Convert Raid capability values to CPU arch */
	for (ldCount = 0; ldCount < num_lds; ldCount++) {
		ld = MR_TargetIdToLdGet(ldCount, map);
		raid = MR_LdRaidGet(ld, map);
		le32_to_cpus((u32 *)&raid->capability);
	}

	return 1;
}
示例#6
0
u_int32_t
MR_LdBlockSizeGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map)
{
	MR_LD_RAID *raid;
	u_int32_t ld, ldBlockSize = MRSAS_SCSIBLOCKSIZE;

	ld = MR_TargetIdToLdGet(ldTgtId, map);

	/*
	 * Check if logical drive was removed.
	 */
	if (ld >= MAX_LOGICAL_DRIVES)
		return ldBlockSize;

	raid = MR_LdRaidGet(ld, map);
	ldBlockSize = raid->logicalBlockLength;
	if (!ldBlockSize)
		ldBlockSize = MRSAS_SCSIBLOCKSIZE;

	return ldBlockSize;
}
/*
******************************************************************************
*
* MR_BuildRaidContext function
*
* This function will initiate command processing.  The start/end row and strip
* information is calculated then the lock is acquired.
* This function will return 0 if region lock was acquired OR return num strips
*/
u8
MR_BuildRaidContext(struct megasas_instance *instance,
		    struct IO_REQUEST_INFO *io_info,
		    struct RAID_CONTEXT *pRAID_Context,
		    struct MR_FW_RAID_MAP_ALL *map, u8 **raidLUN)
{
	struct MR_LD_RAID  *raid;
	u32         ld, stripSize, stripe_mask;
	u64         endLba, endStrip, endRow, start_row, start_strip;
	u64         regStart;
	u32         regSize;
	u8          num_strips, numRows;
	u16         ref_in_start_stripe, ref_in_end_stripe;
	u64         ldStartBlock;
	u32         numBlocks, ldTgtId;
	u8          isRead;
	u8	    retval = 0;
	u8	    startlba_span = SPAN_INVALID;
	u64 *pdBlock = &io_info->pdBlock;

	ldStartBlock = io_info->ldStartBlock;
	numBlocks = io_info->numBlocks;
	ldTgtId = io_info->ldTgtId;
	isRead = io_info->isRead;
	io_info->IoforUnevenSpan = 0;
	io_info->start_span	= SPAN_INVALID;

	ld = MR_TargetIdToLdGet(ldTgtId, map);
	raid = MR_LdRaidGet(ld, map);

	/*
	 * if rowDataSize @RAID map and spanRowDataSize @SPAN INFO are zero
	 * return FALSE
	 */
	if (raid->rowDataSize == 0) {
		if (MR_LdSpanPtrGet(ld, 0, map)->spanRowDataSize == 0)
			return FALSE;
		else if (instance->UnevenSpanSupport) {
			io_info->IoforUnevenSpan = 1;
		} else {
			dev_info(&instance->pdev->dev,
				"raid->rowDataSize is 0, but has SPAN[0]"
				"rowDataSize = 0x%0x,"
				"but there is _NO_ UnevenSpanSupport\n",
				MR_LdSpanPtrGet(ld, 0, map)->spanRowDataSize);
			return FALSE;
		}
	}

	stripSize = 1 << raid->stripeShift;
	stripe_mask = stripSize-1;


	/*
	 * calculate starting row and stripe, and number of strips and rows
	 */
	start_strip         = ldStartBlock >> raid->stripeShift;
	ref_in_start_stripe = (u16)(ldStartBlock & stripe_mask);
	endLba              = ldStartBlock + numBlocks - 1;
	ref_in_end_stripe   = (u16)(endLba & stripe_mask);
	endStrip            = endLba >> raid->stripeShift;
	num_strips          = (u8)(endStrip - start_strip + 1); /* End strip */

	if (io_info->IoforUnevenSpan) {
		start_row = get_row_from_strip(instance, ld, start_strip, map);
		endRow	  = get_row_from_strip(instance, ld, endStrip, map);
		if (start_row == -1ULL || endRow == -1ULL) {
			dev_info(&instance->pdev->dev, "return from %s %d."
				"Send IO w/o region lock.\n",
				__func__, __LINE__);
			return FALSE;
		}

		if (raid->spanDepth == 1) {
			startlba_span = 0;
			*pdBlock = start_row << raid->stripeShift;
		} else
			startlba_span = (u8)mr_spanset_get_span_block(instance,
						ld, start_row, pdBlock, map);
		if (startlba_span == SPAN_INVALID) {
			dev_info(&instance->pdev->dev, "return from %s %d"
				"for row 0x%llx,start strip %llx"
				"endSrip %llx\n", __func__, __LINE__,
				(unsigned long long)start_row,
				(unsigned long long)start_strip,
				(unsigned long long)endStrip);
			return FALSE;
		}
		io_info->start_span	= startlba_span;
		io_info->start_row	= start_row;
#if SPAN_DEBUG
		dev_dbg(&instance->pdev->dev, "Check Span number from %s %d"
			"for row 0x%llx, start strip 0x%llx end strip 0x%llx"
			" span 0x%x\n", __func__, __LINE__,
			(unsigned long long)start_row,
			(unsigned long long)start_strip,
			(unsigned long long)endStrip, startlba_span);
		dev_dbg(&instance->pdev->dev, "start_row 0x%llx endRow 0x%llx"
			"Start span 0x%x\n", (unsigned long long)start_row,
			(unsigned long long)endRow, startlba_span);
#endif
	} else {
		start_row = mega_div64_32(start_strip, raid->rowDataSize);
		endRow    = mega_div64_32(endStrip, raid->rowDataSize);
	}
	numRows = (u8)(endRow - start_row + 1);

	/*
	 * calculate region info.
	 */

	/* assume region is at the start of the first row */
	regStart            = start_row << raid->stripeShift;
	/* assume this IO needs the full row - we'll adjust if not true */
	regSize             = stripSize;

	/* Check if we can send this I/O via FastPath */
	if (raid->capability.fpCapable) {
		if (isRead)
			io_info->fpOkForIo = (raid->capability.fpReadCapable &&
					      ((num_strips == 1) ||
					       raid->capability.
					       fpReadAcrossStripe));
		else
			io_info->fpOkForIo = (raid->capability.fpWriteCapable &&
					      ((num_strips == 1) ||
					       raid->capability.
					       fpWriteAcrossStripe));
	} else
		io_info->fpOkForIo = FALSE;

	if (numRows == 1) {
		/* single-strip IOs can always lock only the data needed */
		if (num_strips == 1) {
			regStart += ref_in_start_stripe;
			regSize = numBlocks;
		}
		/* multi-strip IOs always need to full stripe locked */
	} else if (io_info->IoforUnevenSpan == 0) {
		/*
		 * For Even span region lock optimization.
		 * If the start strip is the last in the start row
		 */
		if (start_strip == (start_row + 1) * raid->rowDataSize - 1) {
			regStart += ref_in_start_stripe;
			/* initialize count to sectors from startref to end
			   of strip */
			regSize = stripSize - ref_in_start_stripe;
		}

		/* add complete rows in the middle of the transfer */
		if (numRows > 2)
			regSize += (numRows-2) << raid->stripeShift;

		/* if IO ends within first strip of last row*/
		if (endStrip == endRow*raid->rowDataSize)
			regSize += ref_in_end_stripe+1;
		else
			regSize += stripSize;
	} else {
		/*
		 * For Uneven span region lock optimization.
		 * If the start strip is the last in the start row
		 */
		if (start_strip == (get_strip_from_row(instance, ld, start_row, map) +
				SPAN_ROW_DATA_SIZE(map, ld, startlba_span) - 1)) {
			regStart += ref_in_start_stripe;
			/* initialize count to sectors from
			 * startRef to end of strip
			 */
			regSize = stripSize - ref_in_start_stripe;
		}
		/* Add complete rows in the middle of the transfer*/

		if (numRows > 2)
			/* Add complete rows in the middle of the transfer*/
			regSize += (numRows-2) << raid->stripeShift;

		/* if IO ends within first strip of last row */
		if (endStrip == get_strip_from_row(instance, ld, endRow, map))
			regSize += ref_in_end_stripe + 1;
		else
			regSize += stripSize;
	}

	pRAID_Context->timeoutValue     = cpu_to_le16(map->raidMap.fpPdIoTimeoutSec);
	if ((instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) ||
		(instance->pdev->device == PCI_DEVICE_ID_LSI_FURY))
		pRAID_Context->regLockFlags = (isRead) ?
			raid->regTypeReqOnRead : raid->regTypeReqOnWrite;
	else
		pRAID_Context->regLockFlags = (isRead) ?
			REGION_TYPE_SHARED_READ : raid->regTypeReqOnWrite;
	pRAID_Context->VirtualDiskTgtId = raid->targetId;
	pRAID_Context->regLockRowLBA    = cpu_to_le64(regStart);
	pRAID_Context->regLockLength    = cpu_to_le32(regSize);
	pRAID_Context->configSeqNum	= raid->seqNum;
	/* save pointer to raid->LUN array */
	*raidLUN = raid->LUN;


	/*Get Phy Params only if FP capable, or else leave it to MR firmware
	  to do the calculation.*/
	if (io_info->fpOkForIo) {
		retval = io_info->IoforUnevenSpan ?
				mr_spanset_get_phy_params(instance, ld,
					start_strip, ref_in_start_stripe,
					io_info, pRAID_Context, map) :
				MR_GetPhyParams(instance, ld, start_strip,
					ref_in_start_stripe, io_info,
					pRAID_Context, map);
		/* If IO on an invalid Pd, then FP is not possible.*/
		if (io_info->devHandle == MR_PD_INVALID)
			io_info->fpOkForIo = FALSE;
		return retval;
	} else if (isRead) {
		uint stripIdx;
		for (stripIdx = 0; stripIdx < num_strips; stripIdx++) {
			retval = io_info->IoforUnevenSpan ?
				mr_spanset_get_phy_params(instance, ld,
				    start_strip + stripIdx,
				    ref_in_start_stripe, io_info,
				    pRAID_Context, map) :
				MR_GetPhyParams(instance, ld,
				    start_strip + stripIdx, ref_in_start_stripe,
				    io_info, pRAID_Context, map);
			if (!retval)
				return TRUE;
		}
	}

#if SPAN_DEBUG
	/* Just for testing what arm we get for strip.*/
	if (io_info->IoforUnevenSpan)
		get_arm_from_strip(instance, ld, start_strip, map);
#endif
	return TRUE;
}
static int getSpanInfo(struct MR_FW_RAID_MAP_ALL *map, PLD_SPAN_INFO ldSpanInfo)
{

	u8   span;
	u32    element;
	struct MR_LD_RAID *raid;
	LD_SPAN_SET *span_set;
	struct MR_QUAD_ELEMENT    *quad;
	int ldCount;
	u16 ld;

	for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) {
		ld = MR_TargetIdToLdGet(ldCount, map);
			if (ld >= MAX_LOGICAL_DRIVES)
				continue;
		raid = MR_LdRaidGet(ld, map);
		dev_dbg(&instance->pdev->dev, "LD %x: span_depth=%x\n",
			ld, raid->spanDepth);
		for (span = 0; span < raid->spanDepth; span++)
			dev_dbg(&instance->pdev->dev, "Span=%x,"
			" number of quads=%x\n", span,
			le32_to_cpu(map->raidMap.ldSpanMap[ld].spanBlock[span].
			block_span_info.noElements));
		for (element = 0; element < MAX_QUAD_DEPTH; element++) {
			span_set = &(ldSpanInfo[ld].span_set[element]);
			if (span_set->span_row_data_width == 0)
				break;

			dev_dbg(&instance->pdev->dev, "Span Set %x:"
				"width=%x, diff=%x\n", element,
				(unsigned int)span_set->span_row_data_width,
				(unsigned int)span_set->diff);
			dev_dbg(&instance->pdev->dev, "logical LBA"
				"start=0x%08lx, end=0x%08lx\n",
				(long unsigned int)span_set->log_start_lba,
				(long unsigned int)span_set->log_end_lba);
			dev_dbg(&instance->pdev->dev, "span row start=0x%08lx,"
				" end=0x%08lx\n",
				(long unsigned int)span_set->span_row_start,
				(long unsigned int)span_set->span_row_end);
			dev_dbg(&instance->pdev->dev, "data row start=0x%08lx,"
				" end=0x%08lx\n",
				(long unsigned int)span_set->data_row_start,
				(long unsigned int)span_set->data_row_end);
			dev_dbg(&instance->pdev->dev, "data strip start=0x%08lx,"
				" end=0x%08lx\n",
				(long unsigned int)span_set->data_strip_start,
				(long unsigned int)span_set->data_strip_end);

			for (span = 0; span < raid->spanDepth; span++) {
				if (le32_to_cpu(map->raidMap.ldSpanMap[ld].spanBlock[span].
					block_span_info.noElements) >=
					element + 1) {
					quad = &map->raidMap.ldSpanMap[ld].
						spanBlock[span].block_span_info.
						quad[element];
				dev_dbg(&instance->pdev->dev, "Span=%x,"
					"Quad=%x, diff=%x\n", span,
					element, le32_to_cpu(quad->diff));
				dev_dbg(&instance->pdev->dev,
					"offset_in_span=0x%08lx\n",
					(long unsigned int)le64_to_cpu(quad->offsetInSpan));
				dev_dbg(&instance->pdev->dev,
					"logical start=0x%08lx, end=0x%08lx\n",
					(long unsigned int)le64_to_cpu(quad->logStart),
					(long unsigned int)le64_to_cpu(quad->logEnd));
				}
			}
		}
	}
	return 0;
}
/*
******************************************************************************
*
* This routine pepare spanset info from Valid Raid map and store it into
* local copy of ldSpanInfo per instance data structure.
*
* Inputs :
* map    - LD map
* ldSpanInfo - ldSpanInfo per HBA instance
*
*/
void mr_update_span_set(struct MR_FW_RAID_MAP_ALL *map,
			PLD_SPAN_INFO ldSpanInfo)
{
	u8   span, count;
	u32  element, span_row_width;
	u64  span_row;
	struct MR_LD_RAID *raid;
	LD_SPAN_SET *span_set, *span_set_prev;
	struct MR_QUAD_ELEMENT    *quad;
	int ldCount;
	u16 ld;


	for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) {
		ld = MR_TargetIdToLdGet(ldCount, map);
		if (ld >= MAX_LOGICAL_DRIVES)
			continue;
		raid = MR_LdRaidGet(ld, map);
		for (element = 0; element < MAX_QUAD_DEPTH; element++) {
			for (span = 0; span < raid->spanDepth; span++) {
				if (le32_to_cpu(map->raidMap.ldSpanMap[ld].spanBlock[span].
					block_span_info.noElements) <
					element + 1)
					continue;
				span_set = &(ldSpanInfo[ld].span_set[element]);
				quad = &map->raidMap.ldSpanMap[ld].
					spanBlock[span].block_span_info.
					quad[element];

				span_set->diff = le32_to_cpu(quad->diff);

				for (count = 0, span_row_width = 0;
					count < raid->spanDepth; count++) {
					if (le32_to_cpu(map->raidMap.ldSpanMap[ld].
						spanBlock[count].
						block_span_info.
						noElements) >= element + 1) {
						span_set->strip_offset[count] =
							span_row_width;
						span_row_width +=
							MR_LdSpanPtrGet
							(ld, count, map)->spanRowDataSize;
						printk(KERN_INFO "megasas:"
							"span %x rowDataSize %x\n",
							count, MR_LdSpanPtrGet
							(ld, count, map)->spanRowDataSize);
					}
				}

				span_set->span_row_data_width = span_row_width;
				span_row = mega_div64_32(((le64_to_cpu(quad->logEnd) -
					le64_to_cpu(quad->logStart)) + le32_to_cpu(quad->diff)),
					le32_to_cpu(quad->diff));

				if (element == 0) {
					span_set->log_start_lba = 0;
					span_set->log_end_lba =
						((span_row << raid->stripeShift)
						* span_row_width) - 1;

					span_set->span_row_start = 0;
					span_set->span_row_end = span_row - 1;

					span_set->data_strip_start = 0;
					span_set->data_strip_end =
						(span_row * span_row_width) - 1;

					span_set->data_row_start = 0;
					span_set->data_row_end =
						(span_row * le32_to_cpu(quad->diff)) - 1;
				} else {
					span_set_prev = &(ldSpanInfo[ld].
							span_set[element - 1]);
					span_set->log_start_lba =
						span_set_prev->log_end_lba + 1;
					span_set->log_end_lba =
						span_set->log_start_lba +
						((span_row << raid->stripeShift)
						* span_row_width) - 1;

					span_set->span_row_start =
						span_set_prev->span_row_end + 1;
					span_set->span_row_end =
					span_set->span_row_start + span_row - 1;

					span_set->data_strip_start =
					span_set_prev->data_strip_end + 1;
					span_set->data_strip_end =
						span_set->data_strip_start +
						(span_row * span_row_width) - 1;

					span_set->data_row_start =
						span_set_prev->data_row_end + 1;
					span_set->data_row_end =
						span_set->data_row_start +
						(span_row * le32_to_cpu(quad->diff)) - 1;
				}
				break;
		}
		if (span == raid->spanDepth)
			break;
	    }
	}
#if SPAN_DEBUG
	getSpanInfo(map, ldSpanInfo);
#endif

}
/**
 * mrsas_setup_io:             Set up data including Fast Path I/O  
 * input:                      Adapter instance soft state
 *                             Pointer to command packet
 *                             Pointer to CCB 
 *
 * This function builds the DCDB inquiry command.  It returns 0 if the 
 * command is built successfully, otherwise it returns a 1. 
 */
int mrsas_setup_io(struct mrsas_softc *sc, struct mrsas_mpt_cmd *cmd,
                    union ccb *ccb, u_int32_t device_id,
                    MRSAS_RAID_SCSI_IO_REQUEST *io_request)
{
    struct ccb_hdr *ccb_h = &(ccb->ccb_h);
    struct ccb_scsiio *csio = &(ccb->csio);
    struct IO_REQUEST_INFO io_info;
    MR_FW_RAID_MAP_ALL *map_ptr;
    u_int8_t fp_possible;
    u_int32_t start_lba_hi, start_lba_lo, ld_block_size;
    u_int32_t datalength = 0;
     
    start_lba_lo = 0;
    start_lba_hi = 0;
    fp_possible = 0;
     
    /*
     * READ_6 (0x08) or WRITE_6 (0x0A) cdb
     */
    if (csio->cdb_len == 6) {
        datalength = (u_int32_t)csio->cdb_io.cdb_bytes[4];
        start_lba_lo = ((u_int32_t) csio->cdb_io.cdb_bytes[1] << 16) |
                       ((u_int32_t) csio->cdb_io.cdb_bytes[2] << 8) |
                        (u_int32_t) csio->cdb_io.cdb_bytes[3];
        start_lba_lo &= 0x1FFFFF;
    }
    /*
     * READ_10 (0x28) or WRITE_6 (0x2A) cdb
     */
    else if (csio->cdb_len == 10) {
        datalength = (u_int32_t)csio->cdb_io.cdb_bytes[8] |
                       ((u_int32_t)csio->cdb_io.cdb_bytes[7] << 8);
        start_lba_lo = ((u_int32_t) csio->cdb_io.cdb_bytes[2] << 24) |
                       ((u_int32_t) csio->cdb_io.cdb_bytes[3] << 16) |
                        (u_int32_t) csio->cdb_io.cdb_bytes[4] << 8 |
                        ((u_int32_t) csio->cdb_io.cdb_bytes[5]);
    }
    /*
     * READ_12 (0xA8) or WRITE_12 (0xAA) cdb
     */
    else if (csio->cdb_len == 12) {
        datalength = (u_int32_t)csio->cdb_io.cdb_bytes[6] << 24 |
                       ((u_int32_t)csio->cdb_io.cdb_bytes[7] << 16) |
                       ((u_int32_t)csio->cdb_io.cdb_bytes[8] << 8) |
                       ((u_int32_t)csio->cdb_io.cdb_bytes[9]);
        start_lba_lo = ((u_int32_t) csio->cdb_io.cdb_bytes[2] << 24) |
                       ((u_int32_t) csio->cdb_io.cdb_bytes[3] << 16) |
                        (u_int32_t) csio->cdb_io.cdb_bytes[4] << 8 |
                        ((u_int32_t) csio->cdb_io.cdb_bytes[5]);
    }
    /*
     * READ_16 (0x88) or WRITE_16 (0xx8A) cdb
     */
    else if (csio->cdb_len == 16) {
        datalength = (u_int32_t)csio->cdb_io.cdb_bytes[10] << 24 |
                       ((u_int32_t)csio->cdb_io.cdb_bytes[11] << 16) |
                       ((u_int32_t)csio->cdb_io.cdb_bytes[12] << 8) |
                       ((u_int32_t)csio->cdb_io.cdb_bytes[13]);
        start_lba_lo = ((u_int32_t) csio->cdb_io.cdb_bytes[6] << 24) |
                       ((u_int32_t) csio->cdb_io.cdb_bytes[7] << 16) |
                        (u_int32_t) csio->cdb_io.cdb_bytes[8] << 8 |
                        ((u_int32_t) csio->cdb_io.cdb_bytes[9]);
        start_lba_hi = ((u_int32_t) csio->cdb_io.cdb_bytes[2] << 24) |
                       ((u_int32_t) csio->cdb_io.cdb_bytes[3] << 16) |
                        (u_int32_t) csio->cdb_io.cdb_bytes[4] << 8 |
                        ((u_int32_t) csio->cdb_io.cdb_bytes[5]);
    }

    memset(&io_info, 0, sizeof(struct IO_REQUEST_INFO));
    io_info.ldStartBlock = ((u_int64_t)start_lba_hi << 32) | start_lba_lo;
    io_info.numBlocks = datalength;
    io_info.ldTgtId = device_id;

    switch (ccb_h->flags & CAM_DIR_MASK) {
	case CAM_DIR_IN:
		io_info.isRead = 1;
		break;
	case CAM_DIR_OUT:
		io_info.isRead = 0;
		break;
	case CAM_DIR_NONE:
	default:
    	mrsas_dprint(sc, MRSAS_TRACE, "From %s : DMA Flag is %d \n", __func__, ccb_h->flags & CAM_DIR_MASK);
		break;
    }

    map_ptr = sc->raidmap_mem[(sc->map_id & 1)];
    ld_block_size = MR_LdBlockSizeGet(device_id, map_ptr, sc);

    if ((MR_TargetIdToLdGet(device_id, map_ptr) >= MAX_LOGICAL_DRIVES) || 
            (!sc->fast_path_io)) {
        io_request->RaidContext.regLockFlags = 0;
        fp_possible = 0;
    } 
    else 
    {
        if (MR_BuildRaidContext(sc, &io_info, &io_request->RaidContext, map_ptr))
            fp_possible = io_info.fpOkForIo;
    }

    if (fp_possible) {
        mrsas_set_pd_lba(io_request, csio->cdb_len, &io_info, ccb, map_ptr, 
            start_lba_lo, ld_block_size);
        io_request->Function = MPI2_FUNCTION_SCSI_IO_REQUEST;
        cmd->request_desc->SCSIIO.RequestFlags =
                        (MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY
                         << MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
	    if ((sc->device_id == MRSAS_INVADER) || (sc->device_id == MRSAS_FURY)) {
		    if (io_request->RaidContext.regLockFlags == REGION_TYPE_UNUSED)
                cmd->request_desc->SCSIIO.RequestFlags = (MRSAS_REQ_DESCRIPT_FLAGS_NO_LOCK << MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
            io_request->RaidContext.Type = MPI2_TYPE_CUDA;
            io_request->RaidContext.nseg = 0x1;
            io_request->IoFlags |= MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH;
            io_request->RaidContext.regLockFlags |= (MR_RL_FLAGS_GRANT_DESTINATION_CUDA | MR_RL_FLAGS_SEQ_NUM_ENABLE);
        }
        if ((sc->load_balance_info[device_id].loadBalanceFlag) && (io_info.isRead)) {
            io_info.devHandle = mrsas_get_updated_dev_handle(&sc->load_balance_info[device_id], 
                &io_info);
            cmd->load_balance = MRSAS_LOAD_BALANCE_FLAG;
        } 
        else
            cmd->load_balance = 0;
        cmd->request_desc->SCSIIO.DevHandle = io_info.devHandle;
        io_request->DevHandle = io_info.devHandle;
    } 
    else {
        /* Not FP IO */
        io_request->RaidContext.timeoutValue = map_ptr->raidMap.fpPdIoTimeoutSec;
        cmd->request_desc->SCSIIO.RequestFlags =
            (MRSAS_REQ_DESCRIPT_FLAGS_LD_IO << MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
	    if ((sc->device_id == MRSAS_INVADER) || (sc->device_id == MRSAS_FURY)) {
            if (io_request->RaidContext.regLockFlags == REGION_TYPE_UNUSED)
                cmd->request_desc->SCSIIO.RequestFlags = (MRSAS_REQ_DESCRIPT_FLAGS_NO_LOCK << MRSAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
            io_request->RaidContext.Type = MPI2_TYPE_CUDA;
            io_request->RaidContext.regLockFlags |= (MR_RL_FLAGS_GRANT_DESTINATION_CPU0 | MR_RL_FLAGS_SEQ_NUM_ENABLE);
            io_request->RaidContext.nseg = 0x1;
        }
        io_request->Function = MRSAS_MPI2_FUNCTION_LD_IO_REQUEST;
        io_request->DevHandle = device_id;
    }
    return(0);
}
示例#11
0
U8
MR_BuildRaidContext(struct mrsas_instance *instance,
    struct IO_REQUEST_INFO *io_info, MPI2_SCSI_IO_VENDOR_UNIQUE *pRAID_Context,
    MR_FW_RAID_MAP_ALL *map)
{
	MR_LD_RAID	*raid;
	U32		ld, stripSize, stripe_mask;
	U64		endLba, endStrip, endRow;
	U64		start_row, start_strip;
	REGION_KEY	regStart;
	REGION_LEN	regSize;
	U8		num_strips, numRows;
	U16		ref_in_start_stripe;
	U16		ref_in_end_stripe;

	U64		ldStartBlock;
	U32		numBlocks, ldTgtId;
	U8		isRead;
	U8		retval = 0;

	ldStartBlock = io_info->ldStartBlock;
	numBlocks = io_info->numBlocks;
	ldTgtId = io_info->ldTgtId;
	isRead = io_info->isRead;

	if (map == NULL) {
		io_info->fpOkForIo = FALSE;
		return (FALSE);
	}

	ld = MR_TargetIdToLdGet(ldTgtId, map);

	if (ld >= MAX_LOGICAL_DRIVES) {
		io_info->fpOkForIo = FALSE;
		return (FALSE);
	}

	raid = MR_LdRaidGet(ld, map);

	stripSize = 1 << raid->stripeShift;
	stripe_mask = stripSize-1;
	/*
	 * calculate starting row and stripe, and number of strips and rows
	 */
	start_strip		= ldStartBlock >> raid->stripeShift;
	ref_in_start_stripe	= (U16)(ldStartBlock & stripe_mask);
	endLba			= ldStartBlock + numBlocks - 1;
	ref_in_end_stripe	= (U16)(endLba & stripe_mask);
	endStrip		= endLba >> raid->stripeShift;
	num_strips		= (U8)(endStrip - start_strip + 1);
	/* Check to make sure is not dividing by zero */
	if (raid->rowDataSize == 0)
		return (FALSE);
	start_row		=  (start_strip / raid->rowDataSize);
	endRow			=  (endStrip  / raid->rowDataSize);
	/* get the row count */
	numRows			= (U8)(endRow - start_row + 1);

	/*
	 * calculate region info.
	 */
	regStart	= start_row << raid->stripeShift;
	regSize		= stripSize;

	/* Check if we can send this I/O via FastPath */
	if (raid->capability.fpCapable) {
		if (isRead) {
			io_info->fpOkForIo = (raid->capability.fpReadCapable &&
			    ((num_strips == 1) ||
			    raid->capability.fpReadAcrossStripe));
		} else {
			io_info->fpOkForIo =
			    (raid->capability.fpWriteCapable &&
			    ((num_strips == 1) ||
			    raid->capability.fpWriteAcrossStripe));
		}
	} else
		io_info->fpOkForIo = FALSE;


	/*
	 * Check for DIF support
	 */
	if (!raid->capability.ldPiMode) {
		io_info->ldPI = FALSE;
	} else {
		io_info->ldPI = TRUE;
	}

	if (numRows == 1) {
		if (num_strips == 1) {
			regStart += ref_in_start_stripe;
			regSize = numBlocks;
		}
	} else {
		if (start_strip == (start_row + 1) * raid->rowDataSize - 1) {
			regStart += ref_in_start_stripe;
		regSize = stripSize - ref_in_start_stripe;
		}

		if (numRows > 2) {
			regSize += (numRows - 2) << raid->stripeShift;
		}

		if (endStrip == endRow * raid->rowDataSize) {
			regSize += ref_in_end_stripe + 1;
		} else {
			regSize += stripSize;
		}
	}

	pRAID_Context->timeoutValue = map->raidMap.fpPdIoTimeoutSec;

	if ((instance->device_id == PCI_DEVICE_ID_LSI_INVADER) ||
	    (instance->device_id == PCI_DEVICE_ID_LSI_FURY)) {
		pRAID_Context->regLockFlags = (isRead) ?
		    raid->regTypeReqOnRead : raid->regTypeReqOnWrite;
	} else {
		pRAID_Context->regLockFlags = (isRead) ?
		    REGION_TYPE_SHARED_READ : raid->regTypeReqOnWrite;
	}

	pRAID_Context->ldTargetId = raid->targetId;
	pRAID_Context->regLockRowLBA = regStart;
	pRAID_Context->regLockLength = regSize;
	pRAID_Context->configSeqNum = raid->seqNum;

	/*
	 * Get Phy Params only if FP capable,
	 * or else leave it to MR firmware to do the calculation.
	 */
	if (io_info->fpOkForIo) {
		/* if fast path possible then get the physical parameters */
		retval = MR_GetPhyParams(instance, ld, start_strip,
		    ref_in_start_stripe, &io_info->pdBlock,
		    &io_info->devHandle, pRAID_Context, map);

		/* If IO on an invalid Pd, then FP is not possible. */
		if (io_info->devHandle == MR_PD_INVALID)
			io_info->fpOkForIo = FALSE;

		return (retval);

	} else if (isRead) {
		uint_t stripIdx;

		for (stripIdx = 0; stripIdx < num_strips; stripIdx++) {
			if (!MR_GetPhyParams(instance, ld,
			    start_strip + stripIdx, ref_in_start_stripe,
			    &io_info->pdBlock, &io_info->devHandle,
			    pRAID_Context, map)) {
				return (TRUE);
			}
		}
	}
	return (TRUE);
}
示例#12
0
/*
 * MR_BuildRaidContext:	Set up Fast path RAID context
 *
 * This function will initiate command processing.  The start/end row and strip
 * information is calculated then the lock is acquired. This function will
 * return 0 if region lock was acquired OR return num strips.
 */
u_int8_t
MR_BuildRaidContext(struct mrsas_softc *sc, struct IO_REQUEST_INFO *io_info,
    RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map)
{
	MR_LD_RAID *raid;
	u_int32_t ld, stripSize, stripe_mask;
	u_int64_t endLba, endStrip, endRow, start_row, start_strip;
	REGION_KEY regStart;
	REGION_LEN regSize;
	u_int8_t num_strips, numRows;
	u_int16_t ref_in_start_stripe, ref_in_end_stripe;
	u_int64_t ldStartBlock;
	u_int32_t numBlocks, ldTgtId;
	u_int8_t isRead, stripIdx;
	u_int8_t retval = 0;
	u_int8_t startlba_span = SPAN_INVALID;
	u_int64_t *pdBlock = &io_info->pdBlock;
	int error_code = 0;

	ldStartBlock = io_info->ldStartBlock;
	numBlocks = io_info->numBlocks;
	ldTgtId = io_info->ldTgtId;
	isRead = io_info->isRead;

	io_info->IoforUnevenSpan = 0;
	io_info->start_span = SPAN_INVALID;

	ld = MR_TargetIdToLdGet(ldTgtId, map);
	raid = MR_LdRaidGet(ld, map);

	if (raid->rowDataSize == 0) {
		if (MR_LdSpanPtrGet(ld, 0, map)->spanRowDataSize == 0)
			return FALSE;
		else if (sc->UnevenSpanSupport) {
			io_info->IoforUnevenSpan = 1;
		} else {
			mrsas_dprint(sc, MRSAS_PRL11, "LSI Debug: raid->rowDataSize is 0, but has SPAN[0] rowDataSize = 0x%0x,"
			    " but there is _NO_ UnevenSpanSupport\n",
			    MR_LdSpanPtrGet(ld, 0, map)->spanRowDataSize);
			return FALSE;
		}
	}
	stripSize = 1 << raid->stripeShift;
	stripe_mask = stripSize - 1;
	/*
	 * calculate starting row and stripe, and number of strips and rows
	 */
	start_strip = ldStartBlock >> raid->stripeShift;
	ref_in_start_stripe = (u_int16_t)(ldStartBlock & stripe_mask);
	endLba = ldStartBlock + numBlocks - 1;
	ref_in_end_stripe = (u_int16_t)(endLba & stripe_mask);
	endStrip = endLba >> raid->stripeShift;
	num_strips = (u_int8_t)(endStrip - start_strip + 1);	/* End strip */
	if (io_info->IoforUnevenSpan) {
		start_row = get_row_from_strip(sc, ld, start_strip, map);
		endRow = get_row_from_strip(sc, ld, endStrip, map);
		if (raid->spanDepth == 1) {
			startlba_span = 0;
			*pdBlock = start_row << raid->stripeShift;
		} else {
			startlba_span = (u_int8_t)mr_spanset_get_span_block(sc, ld, start_row,
			    pdBlock, map, &error_code);
			if (error_code == 1) {
				mrsas_dprint(sc, MRSAS_PRL11, "LSI Debug: return from %s %d. Send IO w/o region lock.\n",
				    __func__, __LINE__);
				return FALSE;
			}
		}
		if (startlba_span == SPAN_INVALID) {
			mrsas_dprint(sc, MRSAS_PRL11, "LSI Debug: return from %s %d for row 0x%llx,"
			    "start strip %llx endSrip %llx\n", __func__,
			    __LINE__, (unsigned long long)start_row,
			    (unsigned long long)start_strip,
			    (unsigned long long)endStrip);
			return FALSE;
		}
		io_info->start_span = startlba_span;
		io_info->start_row = start_row;
		mrsas_dprint(sc, MRSAS_PRL11, "LSI Debug: Check Span number from %s %d for row 0x%llx, "
		    " start strip 0x%llx endSrip 0x%llx span 0x%x\n",
		    __func__, __LINE__, (unsigned long long)start_row,
		    (unsigned long long)start_strip,
		    (unsigned long long)endStrip, startlba_span);
		mrsas_dprint(sc, MRSAS_PRL11, "LSI Debug : 1. start_row 0x%llx endRow 0x%llx Start span 0x%x\n",
		    (unsigned long long)start_row, (unsigned long long)endRow, startlba_span);
	} else {
		start_row = mega_div64_32(start_strip, raid->rowDataSize);
		endRow = mega_div64_32(endStrip, raid->rowDataSize);
	}

	numRows = (u_int8_t)(endRow - start_row + 1);	/* get the row count */

	/*
	 * Calculate region info.  (Assume region at start of first row, and
	 * assume this IO needs the full row - will adjust if not true.)
	 */
	regStart = start_row << raid->stripeShift;
	regSize = stripSize;

	/* Check if we can send this I/O via FastPath */
	if (raid->capability.fpCapable) {
		if (isRead)
			io_info->fpOkForIo = (raid->capability.fpReadCapable &&
			    ((num_strips == 1) ||
			    raid->capability.fpReadAcrossStripe));
		else
			io_info->fpOkForIo = (raid->capability.fpWriteCapable &&
			    ((num_strips == 1) ||
			    raid->capability.fpWriteAcrossStripe));
	} else
		io_info->fpOkForIo = FALSE;

	if (numRows == 1) {
		if (num_strips == 1) {
			regStart += ref_in_start_stripe;
			regSize = numBlocks;
		}
	} else if (io_info->IoforUnevenSpan == 0) {
		/*
		 * For Even span region lock optimization. If the start strip
		 * is the last in the start row
		 */
		if (start_strip == (start_row + 1) * raid->rowDataSize - 1) {
			regStart += ref_in_start_stripe;
			/*
			 * initialize count to sectors from startRef to end
			 * of strip
			 */
			regSize = stripSize - ref_in_start_stripe;
		}
		/* add complete rows in the middle of the transfer */
		if (numRows > 2)
			regSize += (numRows - 2) << raid->stripeShift;

		/* if IO ends within first strip of last row */
		if (endStrip == endRow * raid->rowDataSize)
			regSize += ref_in_end_stripe + 1;
		else
			regSize += stripSize;
	} else {
		if (start_strip == (get_strip_from_row(sc, ld, start_row, map) +
		    SPAN_ROW_DATA_SIZE(map, ld, startlba_span) - 1)) {
			regStart += ref_in_start_stripe;
			/*
			 * initialize count to sectors from startRef to end
			 * of strip
			 */
			regSize = stripSize - ref_in_start_stripe;
		}
		/* add complete rows in the middle of the transfer */
		if (numRows > 2)
			regSize += (numRows - 2) << raid->stripeShift;

		/* if IO ends within first strip of last row */
		if (endStrip == get_strip_from_row(sc, ld, endRow, map))
			regSize += ref_in_end_stripe + 1;
		else
			regSize += stripSize;
	}
	pRAID_Context->timeoutValue = map->raidMap.fpPdIoTimeoutSec;
	if ((sc->device_id == MRSAS_INVADER) || (sc->device_id == MRSAS_FURY))
		pRAID_Context->regLockFlags = (isRead) ? raid->regTypeReqOnRead : raid->regTypeReqOnWrite;
	else
		pRAID_Context->regLockFlags = (isRead) ? REGION_TYPE_SHARED_READ : raid->regTypeReqOnWrite;
	pRAID_Context->VirtualDiskTgtId = raid->targetId;
	pRAID_Context->regLockRowLBA = regStart;
	pRAID_Context->regLockLength = regSize;
	pRAID_Context->configSeqNum = raid->seqNum;

	/*
	 * Get Phy Params only if FP capable, or else leave it to MR firmware
	 * to do the calculation.
	 */
	if (io_info->fpOkForIo) {
		retval = io_info->IoforUnevenSpan ?
		    mr_spanset_get_phy_params(sc, ld, start_strip,
		    ref_in_start_stripe, io_info, pRAID_Context, map) :
		    MR_GetPhyParams(sc, ld, start_strip,
		    ref_in_start_stripe, io_info, pRAID_Context, map);
		/* If IO on an invalid Pd, then FP is not possible */
		if (io_info->devHandle == MR_PD_INVALID)
			io_info->fpOkForIo = FALSE;
		return retval;
	} else if (isRead) {
		for (stripIdx = 0; stripIdx < num_strips; stripIdx++) {
			retval = io_info->IoforUnevenSpan ?
			    mr_spanset_get_phy_params(sc, ld, start_strip + stripIdx,
			    ref_in_start_stripe, io_info, pRAID_Context, map) :
			    MR_GetPhyParams(sc, ld, start_strip + stripIdx,
			    ref_in_start_stripe, io_info, pRAID_Context, map);
			if (!retval)
				return TRUE;
		}
	}
#if SPAN_DEBUG
	/* Just for testing what arm we get for strip. */
	get_arm_from_strip(sc, ld, start_strip, map);
#endif
	return TRUE;
}
示例#13
0
static int
getSpanInfo(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo)
{

	u_int8_t span;
	u_int32_t element;
	MR_LD_RAID *raid;
	LD_SPAN_SET *span_set;
	MR_QUAD_ELEMENT *quad;
	int ldCount;
	u_int16_t ld;

	for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) {
		ld = MR_TargetIdToLdGet(ldCount, map);
		if (ld >= MAX_LOGICAL_DRIVES) {
			continue;
		}
		raid = MR_LdRaidGet(ld, map);
		printf("LD %x: span_depth=%x\n", ld, raid->spanDepth);
		for (span = 0; span < raid->spanDepth; span++)
			printf("Span=%x, number of quads=%x\n", span,
			    map->raidMap.ldSpanMap[ld].spanBlock[span].
			    block_span_info.noElements);
		for (element = 0; element < MAX_QUAD_DEPTH; element++) {
			span_set = &(ldSpanInfo[ld].span_set[element]);
			if (span_set->span_row_data_width == 0)
				break;

			printf("Span Set %x: width=%x, diff=%x\n", element,
			    (unsigned int)span_set->span_row_data_width,
			    (unsigned int)span_set->diff);
			printf("logical LBA start=0x%08lx, end=0x%08lx\n",
			    (long unsigned int)span_set->log_start_lba,
			    (long unsigned int)span_set->log_end_lba);
			printf("span row start=0x%08lx, end=0x%08lx\n",
			    (long unsigned int)span_set->span_row_start,
			    (long unsigned int)span_set->span_row_end);
			printf("data row start=0x%08lx, end=0x%08lx\n",
			    (long unsigned int)span_set->data_row_start,
			    (long unsigned int)span_set->data_row_end);
			printf("data strip start=0x%08lx, end=0x%08lx\n",
			    (long unsigned int)span_set->data_strip_start,
			    (long unsigned int)span_set->data_strip_end);

			for (span = 0; span < raid->spanDepth; span++) {
				if (map->raidMap.ldSpanMap[ld].spanBlock[span].
				    block_span_info.noElements >= element + 1) {
					quad = &map->raidMap.ldSpanMap[ld].
					    spanBlock[span].block_span_info.
					    quad[element];
					printf("Span=%x, Quad=%x, diff=%x\n", span,
					    element, quad->diff);
					printf("offset_in_span=0x%08lx\n",
					    (long unsigned int)quad->offsetInSpan);
					printf("logical start=0x%08lx, end=0x%08lx\n",
					    (long unsigned int)quad->logStart,
					    (long unsigned int)quad->logEnd);
				}
			}
		}
	}
	return 0;
}
示例#14
0
/*
 * mrsas_set_pd_lba:	Sets PD LBA
 * input:				io_request pointer
 * 						CDB length
 * 						io_info pointer
 * 						Pointer to CCB
 * 						Local RAID map pointer
 * 						Start block of IO Block Size
 *
 * Used to set the PD logical block address in CDB for FP IOs.
 */
void 
mrsas_set_pd_lba(MRSAS_RAID_SCSI_IO_REQUEST * io_request, u_int8_t cdb_len,
    struct IO_REQUEST_INFO *io_info, union ccb *ccb,
    MR_DRV_RAID_MAP_ALL * local_map_ptr, u_int32_t ref_tag,
    u_int32_t ld_block_size)
{
	MR_LD_RAID *raid;
	u_int32_t ld;
	u_int64_t start_blk = io_info->pdBlock;
	u_int8_t *cdb = io_request->CDB.CDB32;
	u_int32_t num_blocks = io_info->numBlocks;
	u_int8_t opcode = 0, flagvals = 0, groupnum = 0, control = 0;
	struct ccb_hdr *ccb_h = &(ccb->ccb_h);

	/* Check if T10 PI (DIF) is enabled for this LD */
	ld = MR_TargetIdToLdGet(io_info->ldTgtId, local_map_ptr);
	raid = MR_LdRaidGet(ld, local_map_ptr);
	if (raid->capability.ldPiMode == MR_PROT_INFO_TYPE_CONTROLLER) {
		memset(cdb, 0, sizeof(io_request->CDB.CDB32));
		cdb[0] = MRSAS_SCSI_VARIABLE_LENGTH_CMD;
		cdb[7] = MRSAS_SCSI_ADDL_CDB_LEN;

		if (ccb_h->flags == CAM_DIR_OUT)
			cdb[9] = MRSAS_SCSI_SERVICE_ACTION_READ32;
		else
			cdb[9] = MRSAS_SCSI_SERVICE_ACTION_WRITE32;
		cdb[10] = MRSAS_RD_WR_PROTECT_CHECK_ALL;

		/* LBA */
		cdb[12] = (u_int8_t)((start_blk >> 56) & 0xff);
		cdb[13] = (u_int8_t)((start_blk >> 48) & 0xff);
		cdb[14] = (u_int8_t)((start_blk >> 40) & 0xff);
		cdb[15] = (u_int8_t)((start_blk >> 32) & 0xff);
		cdb[16] = (u_int8_t)((start_blk >> 24) & 0xff);
		cdb[17] = (u_int8_t)((start_blk >> 16) & 0xff);
		cdb[18] = (u_int8_t)((start_blk >> 8) & 0xff);
		cdb[19] = (u_int8_t)(start_blk & 0xff);

		/* Logical block reference tag */
		io_request->CDB.EEDP32.PrimaryReferenceTag = swap32(ref_tag);
		io_request->CDB.EEDP32.PrimaryApplicationTagMask = 0xffff;
		io_request->IoFlags = 32;	/* Specify 32-byte cdb */

		/* Transfer length */
		cdb[28] = (u_int8_t)((num_blocks >> 24) & 0xff);
		cdb[29] = (u_int8_t)((num_blocks >> 16) & 0xff);
		cdb[30] = (u_int8_t)((num_blocks >> 8) & 0xff);
		cdb[31] = (u_int8_t)(num_blocks & 0xff);

		/* set SCSI IO EEDP Flags */
		if (ccb_h->flags == CAM_DIR_OUT) {
			io_request->EEDPFlags =
			    MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG |
			    MPI2_SCSIIO_EEDPFLAGS_CHECK_REFTAG |
			    MPI2_SCSIIO_EEDPFLAGS_CHECK_REMOVE_OP |
			    MPI2_SCSIIO_EEDPFLAGS_CHECK_APPTAG |
			    MPI2_SCSIIO_EEDPFLAGS_CHECK_GUARD;
		} else {
			io_request->EEDPFlags =
			    MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG |
			    MPI2_SCSIIO_EEDPFLAGS_INSERT_OP;
		}
		io_request->Control |= (0x4 << 26);
		io_request->EEDPBlockSize = ld_block_size;
	} else {
示例#15
0
/*
 *
 * This routine pepare spanset info from Valid Raid map and store it into local
 * copy of ldSpanInfo per instance data structure.
 *
 * Inputs :	LD map
 * 			ldSpanInfo per HBA instance
 *
 */
void
mr_update_span_set(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo)
{
	u_int8_t span, count;
	u_int32_t element, span_row_width;
	u_int64_t span_row;
	MR_LD_RAID *raid;
	LD_SPAN_SET *span_set, *span_set_prev;
	MR_QUAD_ELEMENT *quad;
	int ldCount;
	u_int16_t ld;

	for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) {
		ld = MR_TargetIdToLdGet(ldCount, map);
		if (ld >= MAX_LOGICAL_DRIVES)
			continue;
		raid = MR_LdRaidGet(ld, map);
		for (element = 0; element < MAX_QUAD_DEPTH; element++) {
			for (span = 0; span < raid->spanDepth; span++) {
				if (map->raidMap.ldSpanMap[ld].spanBlock[span].
				    block_span_info.noElements < element + 1)
					continue;
				/* TO-DO */
				span_set = &(ldSpanInfo[ld].span_set[element]);
				quad = &map->raidMap.ldSpanMap[ld].
				    spanBlock[span].block_span_info.quad[element];

				span_set->diff = quad->diff;

				for (count = 0, span_row_width = 0;
				    count < raid->spanDepth; count++) {
					if (map->raidMap.ldSpanMap[ld].spanBlock[count].
					    block_span_info.noElements >= element + 1) {
						span_set->strip_offset[count] = span_row_width;
						span_row_width +=
						    MR_LdSpanPtrGet(ld, count, map)->spanRowDataSize;
#if SPAN_DEBUG
						printf("LSI Debug span %x rowDataSize %x\n", count,
						    MR_LdSpanPtrGet(ld, count, map)->spanRowDataSize);
#endif
					}
				}

				span_set->span_row_data_width = span_row_width;
				span_row = mega_div64_32(((quad->logEnd -
				    quad->logStart) + quad->diff), quad->diff);

				if (element == 0) {
					span_set->log_start_lba = 0;
					span_set->log_end_lba =
					    ((span_row << raid->stripeShift) * span_row_width) - 1;

					span_set->span_row_start = 0;
					span_set->span_row_end = span_row - 1;

					span_set->data_strip_start = 0;
					span_set->data_strip_end = (span_row * span_row_width) - 1;

					span_set->data_row_start = 0;
					span_set->data_row_end = (span_row * quad->diff) - 1;
				} else {
					span_set_prev = &(ldSpanInfo[ld].span_set[element - 1]);
					span_set->log_start_lba = span_set_prev->log_end_lba + 1;
					span_set->log_end_lba = span_set->log_start_lba +
					    ((span_row << raid->stripeShift) * span_row_width) - 1;

					span_set->span_row_start = span_set_prev->span_row_end + 1;
					span_set->span_row_end =
					    span_set->span_row_start + span_row - 1;

					span_set->data_strip_start =
					    span_set_prev->data_strip_end + 1;
					span_set->data_strip_end = span_set->data_strip_start +
					    (span_row * span_row_width) - 1;

					span_set->data_row_start = span_set_prev->data_row_end + 1;
					span_set->data_row_end = span_set->data_row_start +
					    (span_row * quad->diff) - 1;
				}
				break;
			}
			if (span == raid->spanDepth)
				break;	/* no quads remain */
		}
	}
#if SPAN_DEBUG
	getSpanInfo(map, ldSpanInfo);	/* to get span set info */
#endif
}