示例#1
0
//
// Interpolates a scale-space extremum's location and scale to subpixel
// accuracy to form an image feature. Rejects features with low contrast.
// Based on Section 4 of Lowe's paper.
static bool adjustLocalExtrema( const vector<Mat>& dog_pyr, KeyPoint& kpt, int octv,
                                int& layer, int& r, int& c, int nOctaveLayers,
                                float contrastThreshold, float edgeThreshold, float sigma )
{
    const float img_scale = 1.f/(255*SIFT_FIXPT_SCALE);
    const float deriv_scale = img_scale*0.5f;
    const float second_deriv_scale = img_scale;
    const float cross_deriv_scale = img_scale*0.25f;

    float xi=0, xr=0, xc=0, contr=0;
    int i = 0;

    for( ; i < SIFT_MAX_INTERP_STEPS; i++ )
    {
        int idx = octv*(nOctaveLayers+2) + layer;
        const Mat& img = dog_pyr[idx];
        const Mat& prev = dog_pyr[idx-1];
        const Mat& next = dog_pyr[idx+1];

        Vec3f dD((img.at<sift_wt>(r, c+1) - img.at<sift_wt>(r, c-1))*deriv_scale,
                 (img.at<sift_wt>(r+1, c) - img.at<sift_wt>(r-1, c))*deriv_scale,
                 (next.at<sift_wt>(r, c) - prev.at<sift_wt>(r, c))*deriv_scale);

        float v2 = (float)img.at<sift_wt>(r, c)*2;
        float dxx = (img.at<sift_wt>(r, c+1) + img.at<sift_wt>(r, c-1) - v2)*second_deriv_scale;
        float dyy = (img.at<sift_wt>(r+1, c) + img.at<sift_wt>(r-1, c) - v2)*second_deriv_scale;
        float dss = (next.at<sift_wt>(r, c) + prev.at<sift_wt>(r, c) - v2)*second_deriv_scale;
        float dxy = (img.at<sift_wt>(r+1, c+1) - img.at<sift_wt>(r+1, c-1) -
                     img.at<sift_wt>(r-1, c+1) + img.at<sift_wt>(r-1, c-1))*cross_deriv_scale;
        float dxs = (next.at<sift_wt>(r, c+1) - next.at<sift_wt>(r, c-1) -
                     prev.at<sift_wt>(r, c+1) + prev.at<sift_wt>(r, c-1))*cross_deriv_scale;
        float dys = (next.at<sift_wt>(r+1, c) - next.at<sift_wt>(r-1, c) -
                     prev.at<sift_wt>(r+1, c) + prev.at<sift_wt>(r-1, c))*cross_deriv_scale;

        Matx33f H(dxx, dxy, dxs,
                  dxy, dyy, dys,
                  dxs, dys, dss);

        Vec3f X = H.solve(dD, DECOMP_LU);

        xi = -X[2];
        xr = -X[1];
        xc = -X[0];

        if( std::abs(xi) < 0.5f && std::abs(xr) < 0.5f && std::abs(xc) < 0.5f )
            break;

        if( std::abs(xi) > (float)(INT_MAX/3) ||
            std::abs(xr) > (float)(INT_MAX/3) ||
            std::abs(xc) > (float)(INT_MAX/3) )
            return false;

        c += cvRound(xc);
        r += cvRound(xr);
        layer += cvRound(xi);

        if( layer < 1 || layer > nOctaveLayers ||
            c < SIFT_IMG_BORDER || c >= img.cols - SIFT_IMG_BORDER  ||
            r < SIFT_IMG_BORDER || r >= img.rows - SIFT_IMG_BORDER )
            return false;
    }

    // ensure convergence of interpolation
    if( i >= SIFT_MAX_INTERP_STEPS )
        return false;

    {
        int idx = octv*(nOctaveLayers+2) + layer;
        const Mat& img = dog_pyr[idx];
        const Mat& prev = dog_pyr[idx-1];
        const Mat& next = dog_pyr[idx+1];
        Matx31f dD((img.at<sift_wt>(r, c+1) - img.at<sift_wt>(r, c-1))*deriv_scale,
                   (img.at<sift_wt>(r+1, c) - img.at<sift_wt>(r-1, c))*deriv_scale,
                   (next.at<sift_wt>(r, c) - prev.at<sift_wt>(r, c))*deriv_scale);
        float t = dD.dot(Matx31f(xc, xr, xi));

        contr = img.at<sift_wt>(r, c)*img_scale + t * 0.5f;
        if( std::abs( contr ) * nOctaveLayers < contrastThreshold )
            return false;

        // principal curvatures are computed using the trace and det of Hessian
        float v2 = img.at<sift_wt>(r, c)*2.f;
        float dxx = (img.at<sift_wt>(r, c+1) + img.at<sift_wt>(r, c-1) - v2)*second_deriv_scale;
        float dyy = (img.at<sift_wt>(r+1, c) + img.at<sift_wt>(r-1, c) - v2)*second_deriv_scale;
        float dxy = (img.at<sift_wt>(r+1, c+1) - img.at<sift_wt>(r+1, c-1) -
                     img.at<sift_wt>(r-1, c+1) + img.at<sift_wt>(r-1, c-1)) * cross_deriv_scale;
        float tr = dxx + dyy;
        float det = dxx * dyy - dxy * dxy;

        if( det <= 0 || tr*tr*edgeThreshold >= (edgeThreshold + 1)*(edgeThreshold + 1)*det )
            return false;
    }

    kpt.pt.x = (c + xc) * (1 << octv);
    kpt.pt.y = (r + xr) * (1 << octv);
    kpt.octave = octv + (layer << 8) + (cvRound((xi + 0.5)*255) << 16);
    kpt.size = sigma*powf(2.f, (layer + xi) / nOctaveLayers)*(1 << octv)*2;
    kpt.response = std::abs(contr);

    return true;
}
示例#2
0
Point3f Warp::transform(Point3f p)
{
	Matx31f P = R * Matx31f(p.x, p.y, p.z);
	return Point3f(P(0), P(1), P(2)) + t;
}