示例#1
0
文件: main.c 项目: tatt61880/kuin
EXPORT S64 _modPow(S64 value, S64 exponent, S64 modulus)
{
	THROWDBG(value < 0, 0xe9170006);
	THROWDBG(exponent < 0, 0xe9170006);
	THROWDBG(modulus < 0, 0xe9170006);
	return (S64)ModPow((U64)value, (U64)exponent, (U64)modulus);
}
示例#2
0
文件: FFF.cpp 项目: JS00000/acmCode
//@ Main Function
int main() {
    for (int i = 1; i < maxK; i++) invi[i] = ModPow(i, mod - 2);
    int _case;
    LL n, m, k;
    scanf("%d", &_case);
    for (int __case = 1; _case; _case--, __case++) {
        scanf("%lld%lld%lld", &n, &m, &k);
        LL cmk = 1;
        for (int i = 1; i <= k; i++)
            cmk = cmk * (m - i + 1) % mod * invi[i] % mod;

        ck[0] = 1;
        for (int i = 1; i <= k; i++)
            ck[i] = ck[i - 1] * (k - i + 1) % mod * invi[i] % mod;

        LL ans = 0;
        for (int i = k, sgn = 1; i >= 1; i--, sgn = -sgn)
            ans = (ans + sgn * (i * ModPow(i - 1, n - 1) % mod * ck[i] % mod)) % mod;
        ans = (ans + mod) % mod * cmk % mod;

        printf("Case #%d: %lld\n", __case, ans);
    }
    return 0;
}
示例#3
0
Shamir::Shares Shamir::split(uint256 secret) const {
    Shares shares;
    std::vector<CBigNum> coef;
    coef.push_back(CBigNum(secret));
    for (unsigned char i = 1; i < _quorum; ++i)
        coef.push_back(rnd());
    
    for (unsigned char x = 1; x <= _shares; ++x) {
        CBigNum accum = coef[0];
        for (unsigned char i = 1; i < _quorum; ++i)
            accum = (accum + (coef[i] * ModPow(CBigNum(x), i, _order))) % _order;
        shares[x] = accum.getuint256();
    }
    
    return shares;
}
示例#4
0
文件: ModPow.cpp 项目: iduru/Library
/* 繰り返し2乗法 
 * (x ** n) % MODを返す.
 * 計算量 log(n) */
Long ModPow(Long x, Long n, Long Mod) {
    if (n == 0) return 1;
    if (n % 2 == 1) return x * ModPow(x, n - 1, Mod) % Mod;
    Long r = ModPow(x, n / 2, Mod);
    return r * r % Mod;
}
示例#5
0
文件: main.c 项目: tatt61880/kuin
EXPORT Bool _prime(S64 n)
{
	if (n <= 1)
		return False;
	if ((n & 1) == 0)
		return n == 2;
	if (n <= 1920000)
	{
		if (n == 3)
			return True;
		if (n % 6 != 1 && n % 6 != 5)
			return False;
		S64 m = n / 6 * 2 + (n % 6 == 1 ? 0 : 1);
		size_t size;
		const U8* primes_bin = GetPrimesBin(&size);
		return (primes_bin[m / 8] & (1 << (m % 8))) != 0;
	}

	// Miller-Rabin primality test.
	U64 enough;
	if (n < 2047)
		enough = 1;
	else if (n < 1373653)
		enough = 2;
	else if (n < 25326001)
		enough = 3;
	else if (n < 3215031751)
		enough = 4;
	else if (n < 2152302898747)
		enough = 5;
	else if (n < 3474749660383)
		enough = 6;
	else if (n < 341550071728321)
		enough = 7;
	else if (n < 3825123056546413051)
		enough = 9;
	else
	{
		// n < 2^64 < 318665857834031151167461
		enough = 12;
	}
	{
		U64 d = (U64)n - 1;
		U64 s = 0;
		while ((d & 1) == 0)
		{
			s++;
			d >>= 1;
		}
		for (U64 i = 0; i < enough; i++)
		{
			U64 x = ModPow(Primes[i], d, (U64)n);
			U64 j;
			if (x == 1 || x == (U64)n - 1)
				continue;
			Bool probablyPrime = False;
			for (j = 0; j < s; j++)
			{
				x = ModPow(x, 2, (U64)n);
				if (x == (U64)n - 1)
				{
					probablyPrime = True;
					break;
				}
			}
			if (!probablyPrime)
				return False;
		}
		return True;
	}
}