/* this function marks every node in <g> with its top-level cluster under <g> */ void mark_clusters(graph_t * g) { int c; node_t *n, *nn, *vn; edge_t *orig, *e; graph_t *clust; /* remove sub-clusters below this level */ for (n = agfstnode(g); n; n = agnxtnode(g, n)) { if (ND_ranktype(n) == CLUSTER) UF_singleton(n); ND_clust(n) = NULL; } for (c = 1; c <= GD_n_cluster(g); c++) { clust = GD_clust(g)[c]; for (n = agfstnode(clust); n; n = nn) { nn = agnxtnode(clust,n); if (ND_ranktype(n) != NORMAL) { agerr(AGWARN, "%s was already in a rankset, deleted from cluster %s\n", agnameof(n), agnameof(g)); agdelete(clust,n); continue; } UF_setname(n, GD_leader(clust)); ND_clust(n) = clust; ND_ranktype(n) = CLUSTER; /* here we mark the vnodes of edges in the cluster */ for (orig = agfstout(clust, n); orig; orig = agnxtout(clust, orig)) { if ((e = ED_to_virt(orig))) { #ifndef WITH_CGRAPH while (e && (vn = e->head)->u.node_type == VIRTUAL) { #else /* WITH_CGRAPH */ while (e && ND_node_type(vn =aghead(e)) == VIRTUAL) { #endif /* WITH_CGRAPH */ ND_clust(vn) = clust; e = ND_out(aghead(e)).list[0]; /* trouble if concentrators and clusters are mixed */ } } } } } } void build_skeleton(graph_t * g, graph_t * subg) { int r; node_t *v, *prev, *rl; edge_t *e; prev = NULL; GD_rankleader(subg) = N_NEW(GD_maxrank(subg) + 2, node_t *); for (r = GD_minrank(subg); r <= GD_maxrank(subg); r++) { v = GD_rankleader(subg)[r] = virtual_node(g); ND_rank(v) = r; ND_ranktype(v) = CLUSTER; ND_clust(v) = subg; if (prev) { e = virtual_edge(prev, v, NULL); ED_xpenalty(e) *= CL_CROSS; } prev = v; } /* set the counts on virtual edges of the cluster skeleton */ for (v = agfstnode(subg); v; v = agnxtnode(subg, v)) { rl = GD_rankleader(subg)[ND_rank(v)]; ND_UF_size(rl)++; for (e = agfstout(subg, v); e; e = agnxtout(subg, e)) { for (r = ND_rank(agtail(e)); r < ND_rank(aghead(e)); r++) { ED_count(ND_out(rl).list[0])++; } } } for (r = GD_minrank(subg); r <= GD_maxrank(subg); r++) { rl = GD_rankleader(subg)[r]; if (ND_UF_size(rl) > 1) ND_UF_size(rl)--; } }
static bool upcandidate(node_t * v) { return ((ND_node_type(v) == VIRTUAL) && (ND_out(v).size == 1) && (ND_in(v).size == 1) && (ND_label(v) == NULL)); }
static void map_path(node_t * from, node_t * to, edge_t * orig, edge_t * ve, int type) { int r; node_t *u, *v; edge_t *e; assert(ND_rank(from) < ND_rank(to)); if ((agtail(ve) == from) && (aghead(ve) == to)) return; if (ED_count(ve) > 1) { ED_to_virt(orig) = NULL; if (ND_rank(to) - ND_rank(from) == 1) { if ((e = find_fast_edge(from, to)) && (ports_eq(orig, e))) { merge_oneway(orig, e); if ((ND_node_type(from) == NORMAL) && (ND_node_type(to) == NORMAL)) other_edge(orig); return; } } u = from; for (r = ND_rank(from); r < ND_rank(to); r++) { if (r < ND_rank(to) - 1) v = clone_vn(agraphof(from), aghead(ve)); else v = to; e = virtual_edge(u, v, orig); ED_edge_type(e) = type; u = v; ED_count(ve)--; ve = ND_out(aghead(ve)).list[0]; } } else { if (ND_rank(to) - ND_rank(from) == 1) { if ((ve = find_fast_edge(from, to)) && (ports_eq(orig, ve))) { /*ED_to_orig(ve) = orig; */ ED_to_virt(orig) = ve; ED_edge_type(ve) = type; ED_count(ve)++; if ((ND_node_type(from) == NORMAL) && (ND_node_type(to) == NORMAL)) other_edge(orig); } else { ED_to_virt(orig) = NULL; ve = virtual_edge(from, to, orig); ED_edge_type(ve) = type; } } if (ND_rank(to) - ND_rank(from) > 1) { e = ve; if (agtail(ve) != from) { ED_to_virt(orig) = NULL; e = ED_to_virt(orig) = virtual_edge(from, aghead(ve), orig); delete_fast_edge(ve); } else e = ve; while (ND_rank(aghead(e)) != ND_rank(to)) e = ND_out(aghead(e)).list[0]; if (aghead(e) != to) { ve = e; e = virtual_edge(agtail(e), to, orig); ED_edge_type(e) = type; delete_fast_edge(ve); } } } }
edge_t *find_fast_edge(node_t * u, node_t * v) { return ffe(u, ND_out(u), v, ND_in(v)); }
/* disconnects e from graph */ void delete_fast_edge(edge_t * e) { assert(e != NULL); zapinlist(&(ND_out(e->tail)), e); zapinlist(&(ND_in(e->head)), e); }
/* makeGraphs: * Generate dags modeling the row and column constraints. * If the table has cc columns, we create the graph * 0 -> 1 -> 2 -> ... -> cc * and if a cell starts in column c with span cspan, with * width w, we add the edge c -> c+cspan [minlen = w]. * * We might simplify the graph by removing multiedges, * using the max minlen, but will affect the balancing? */ void makeGraphs(htmltbl_t * tbl, graph_t * rowg, graph_t * colg) { htmlcell_t *cp; htmlcell_t **cells; node_t *t; node_t *lastn; node_t *h; edge_t *e; int i; int* minc; int* minr; lastn = NULL; for (i = 0; i <= tbl->cc; i++) { t = agnode(colg, nToName(i)); alloc_elist(tbl->rc, ND_in(t)); alloc_elist(tbl->rc, ND_out(t)); if (lastn) { ND_next(lastn) = t; lastn = t; } else { lastn = GD_nlist(colg) = t; } } lastn = NULL; for (i = 0; i <= tbl->rc; i++) { t = agnode(rowg, nToName(i)); alloc_elist(tbl->cc, ND_in(t)); alloc_elist(tbl->cc, ND_out(t)); if (lastn) { ND_next(lastn) = t; lastn = t; } else { lastn = GD_nlist(rowg) = t; } } minr = N_NEW(tbl->rc, int); minc = N_NEW(tbl->cc, int); for (cells = tbl->u.n.cells; *cells; cells++) { int x, y, c, r; cp = *cells; x = (cp->data.box.UR.x + (cp->cspan-1))/cp->cspan; for (c = 0; c < cp->cspan; c++) minc[cp->col + c] = MAX(minc[cp->col + c],x); y = (cp->data.box.UR.y + (cp->rspan-1))/cp->rspan; for (r = 0; r < cp->rspan; r++) minr[cp->row + r] = MAX(minr[cp->row + r],y); } for (cells = tbl->u.n.cells; *cells; cells++) { int x, y, c, r; cp = *cells; t = agfindnode(colg, nToName(cp->col)); h = agfindnode(colg, nToName(cp->col + cp->cspan)); e = agedge(colg, t, h); x = 0; for (c = 0; c < cp->cspan; c++) x += minc[cp->col + c]; ED_minlen(e) = x; /* ED_minlen(e) = cp->data.box.UR.x; */ #ifdef DEBUG fprintf(stderr, "col edge %s -> %s %d\n", t->name, h->name, ED_minlen(e)); #endif elist_append(e, ND_out(t)); elist_append(e, ND_in(h)); t = agfindnode(rowg, nToName(cp->row)); h = agfindnode(rowg, nToName(cp->row + cp->rspan)); e = agedge(rowg, t, h); y = 0; for (r = 0; r < cp->rspan; r++) y += minr[cp->row + r]; ED_minlen(e) = y; /* ED_minlen(e) = cp->data.box.UR.y; */ #ifdef DEBUG fprintf(stderr, "row edge %s -> %s %d\n", t->name, h->name, ED_minlen(e)); #endif elist_append(e, ND_out(t)); elist_append(e, ND_in(h)); } /* Make sure that 0 <= 1 <= 2 ...k. This implies graph connected. */ checkChain(colg); checkChain(rowg); free (minc); free (minr); }
/* mkConstraintG: */ static graph_t *mkConstraintG(graph_t * g, Dt_t * list, intersectfn intersect, distfn dist) { nitem *p; nitem *nxt = NULL; nitem *nxp; graph_t *vg; node_t *prev = NULL; node_t *root = NULL; node_t *n = NULL; edge_t *e; int lcnt, cnt; int oldval = -INT_MAX; #ifdef OLD double root_val; #endif node_t *lastn = NULL; #ifndef WITH_CGRAPH graph_t *cg = agopen("cg", AGDIGRAPHSTRICT); #else graph_t *cg = agopen("cg", Agstrictdirected, NIL(Agdisc_t *)); agbindrec(cg, "Agraphinfo_t", sizeof(Agraphinfo_t), TRUE); // graph custom data #endif /* count distinct nodes */ cnt = 0; for (p = (nitem *) dtflatten(list); p; p = (nitem *) dtlink(list, (Dtlink_t *) p)) { if (oldval != p->val) { oldval = p->val; cnt++; } } /* construct basic chain to enforce left to right order */ oldval = -INT_MAX; lcnt = 0; for (p = (nitem *) dtflatten(list); p; p = (nitem *) dtlink(list, (Dtlink_t *) p)) { if (oldval != p->val) { oldval = p->val; /* n = newNode (cg); */ #ifndef WITH_CGRAPH n = agnode(cg, agnameof(p->np)); /* FIX */ #else n = agnode(cg, agnameof(p->np), 1); /* FIX */ agbindrec(n, "Agnodeinfo_t", sizeof(Agnodeinfo_t), TRUE); //node custom data #endif ND_alg(n) = p; if (root) { ND_next(lastn) = n; lastn = n; } else { root = n; #ifdef OLD root_val = p->val; #endif lastn = GD_nlist(cg) = n; } alloc_elist(lcnt, ND_in(n)); if (prev) { if (prev == root) alloc_elist(2 * (cnt - 1), ND_out(prev)); else alloc_elist(cnt - lcnt - 1, ND_out(prev)); #ifndef WITH_CGRAPH e = agedge(cg, prev, n); #else e = agedge(cg, prev, n, NULL, 1); agbindrec(e, "Agedgeinfo_t", sizeof(Agedgeinfo_t), TRUE); // edge custom data #endif ED_minlen(e) = SCALE; ED_weight(e) = 1; elist_append(e, ND_out(prev)); elist_append(e, ND_in(n)); } lcnt++; prev = n; } p->cnode = n; } alloc_elist(0, ND_out(prev)); /* add immediate right neighbor constraints * Construct visibility graph, then perform transitive reduction. * Remaining outedges are immediate right neighbors. * FIX: Incremental algorithm to construct trans. reduction? */ #ifndef WITH_CGRAPH vg = agopen("vg", AGDIGRAPHSTRICT); #else vg = agopen("vg", Agstrictdirected, NIL(Agdisc_t *)); #endif for (p = (nitem *) dtflatten(list); p; p = (nitem *) dtlink(list, (Dtlink_t *) p)) { #ifndef WITH_CGRAPH n = agnode(vg, agnameof(p->np)); /* FIX */ #else n = agnode(vg, agnameof(p->np), 1); /* FIX */ agbindrec(n, "Agnodeinfo_t", sizeof(Agnodeinfo_t), TRUE); //node custom data #endif p->vnode = n; ND_alg(n) = p; } oldval = -INT_MAX; for (p = (nitem *) dtflatten(list); p; p = (nitem *) dtlink(list, (Dtlink_t *) p)) { if (oldval != p->val) { /* new pos: reset nxt */ oldval = p->val; for (nxt = (nitem *) dtlink(link, (Dtlink_t *) p); nxt; nxt = (nitem *) dtlink(list, (Dtlink_t *) nxt)) { if (nxt->val != oldval) break; } if (!nxt) break; } for (nxp = nxt; nxp; nxp = (nitem *) dtlink(list, (Dtlink_t *) nxp)) { if (intersect(p, nxp)) #ifndef WITH_CGRAPH agedge(vg, p->vnode, nxp->vnode); #else agedge(vg, p->vnode, nxp->vnode, NULL, 1); #endif } } /* Remove redundant constraints here. However, the cost of doing this * may be a good deal more than the time saved in network simplex. Also, * if the graph is changed, the ND_in and ND_out data has to be updated. */ mapGraphs(vg, cg, dist); agclose(vg); /* add dummy constraints for absolute values and initial positions */ #ifdef OLD for (n = agfstnode(cg); n; n = agnxtnode(cg, n)) { node_t *vn; /* slack node for absolute value */ node_t *an; /* node representing original position */ p = (nitem *) ND_alg(n); if ((n == root) || (!p)) continue; vn = newNode(cg); ND_next(lastn) = vn; lastn = vn; alloc_elist(0, ND_out(vn)); alloc_elist(2, ND_in(vn)); an = newNode(cg); ND_next(lastn) = an; lastn = an; alloc_elist(1, ND_in(an)); alloc_elist(1, ND_out(an)); #ifndef WITH_CGRAPH e = agedge(cg, root, an); #else e = agedge(cg, root, an, 1); #endif ED_minlen(e) = p->val - root_val; elist_append(e, ND_out(root)); elist_append(e, ND_in(an)); #ifndef WITH_CGRAPH e = agedge(cg, an, vn); #else e = agedge(cg, an, vn, 1); #endif elist_append(e, ND_out(an)); elist_append(e, ND_in(vn)); #ifndef WITH_CGRAPH e = agedge(cg, n, vn); #else e = agedge(cg, n, vn, 1); #endif elist_append(e, ND_out(n)); elist_append(e, ND_in(vn)); } #endif /* OLD */ return cg; }
/* mkNConstraintG: * Similar to mkConstraintG, except it doesn't enforce orthogonal * ordering. If there is overlap, as defined by intersect, the * nodes will kept/pushed apart in the current order. If not, no * constraint is enforced. If a constraint edge is added, and it * corresponds to a real edge, we increase the weight in an attempt * to keep the resulting shift short. */ static graph_t *mkNConstraintG(graph_t * g, Dt_t * list, intersectfn intersect, distfn dist) { nitem *p; nitem *nxp; node_t *n; edge_t *e; node_t *lastn = NULL; #ifndef WITH_CGRAPH graph_t *cg = agopen("cg", AGDIGRAPHSTRICT); #else graph_t *cg = agopen("cg", Agstrictdirected, NIL(Agdisc_t *)); agbindrec(cg, "Agraphinfo_t", sizeof(Agraphinfo_t), TRUE); // graph custom data #endif for (p = (nitem *) dtflatten(list); p; p = (nitem *) dtlink(list, (Dtlink_t *) p)) { #ifndef WITH_CGRAPH n = agnode(cg, agnameof(p->np)); /* FIX */ #else n = agnode(cg, agnameof(p->np), 1); /* FIX */ agbindrec(n, "Agnodeinfo_t", sizeof(Agnodeinfo_t), TRUE); //node custom data #endif ND_alg(n) = p; p->cnode = n; alloc_elist(0, ND_in(n)); alloc_elist(0, ND_out(n)); if (lastn) { ND_next(lastn) = n; lastn = n; } else { lastn = GD_nlist(cg) = n; } } for (p = (nitem *) dtflatten(list); p; p = (nitem *) dtlink(list, (Dtlink_t *) p)) { for (nxp = (nitem *) dtlink(link, (Dtlink_t *) p); nxp; nxp = (nitem *) dtlink(list, (Dtlink_t *) nxp)) { e = NULL; if (intersect(p, nxp)) { double delta = dist(&p->bb, &nxp->bb); #ifndef WITH_CGRAPH e = agedge(cg, p->cnode, nxp->cnode); #else e = agedge(cg, p->cnode, nxp->cnode, NULL, 1); agbindrec(e, "Agedgeinfo_t", sizeof(Agedgeinfo_t), TRUE); // edge custom data #endif assert (delta <= 0xFFFF); ED_minlen(e) = delta; ED_weight(e) = 1; } if (e && agfindedge(g,p->np, nxp->np)) { ED_weight(e) = 100; } #if 0 if (agfindedge(g,p->np, nxp->np)) { if (e == NULL) e = agedge(cg, p->cnode, nxp->cnode); ED_weight(e) = 100; /* If minlen < SCALE, the nodes can't conflict or there's * an overlap but it will be removed in the orthogonal pass. * So we just keep the node's basically where they are. */ if (SCALE > ED_minlen(e)) ED_minlen(e) = SCALE; } #endif } } for (p = (nitem *) dtflatten(list); p; p = (nitem *) dtlink(list, (Dtlink_t *) p)) { n = p->cnode; for (e = agfstout(cg,n); e; e = agnxtout(cg,e)) { elist_append(e, ND_out(n)); elist_append(e, ND_in(aghead(e))); } } /* We could remove redundant constraints here. However, the cost of doing * this may be a good deal more than the time saved in network simplex. * Also, if the graph is changed, the ND_in and ND_out data has to be * updated. */ return cg; }