示例#1
0
void Lowering::TreeNodeInfoInitGCWriteBarrier(GenTree* tree)
{
    GenTreePtr dst  = tree;
    GenTreePtr addr = tree->gtOp.gtOp1;
    GenTreePtr src  = tree->gtOp.gtOp2;

    if (addr->OperGet() == GT_LEA)
    {
        // In the case where we are doing a helper assignment, if the dst
        // is an indir through an lea, we need to actually instantiate the
        // lea in a register
        GenTreeAddrMode* lea = addr->AsAddrMode();

        short leaSrcCount = 0;
        if (lea->Base() != nullptr)
        {
            leaSrcCount++;
        }
        if (lea->Index() != nullptr)
        {
            leaSrcCount++;
        }
        lea->gtLsraInfo.srcCount = leaSrcCount;
        lea->gtLsraInfo.dstCount = 1;
    }

#if NOGC_WRITE_BARRIERS
    NYI_ARM("NOGC_WRITE_BARRIERS");

    // For the NOGC JIT Helper calls
    //
    // the 'addr' goes into x14 (REG_WRITE_BARRIER_DST_BYREF)
    // the 'src'  goes into x15 (REG_WRITE_BARRIER)
    //
    addr->gtLsraInfo.setSrcCandidates(m_lsra, RBM_WRITE_BARRIER_DST_BYREF);
    src->gtLsraInfo.setSrcCandidates(m_lsra, RBM_WRITE_BARRIER);
#else
    // For the standard JIT Helper calls
    // op1 goes into REG_ARG_0 and
    // op2 goes into REG_ARG_1
    //
    addr->gtLsraInfo.setSrcCandidates(m_lsra, RBM_ARG_0);
    src->gtLsraInfo.setSrcCandidates(m_lsra, RBM_ARG_1);
#endif // NOGC_WRITE_BARRIERS

    // Both src and dst must reside in a register, which they should since we haven't set
    // either of them as contained.
    assert(addr->gtLsraInfo.dstCount == 1);
    assert(src->gtLsraInfo.dstCount == 1);
}
示例#2
0
//------------------------------------------------------------------------
// LowerCast: Lower GT_CAST(srcType, DstType) nodes.
//
// Arguments:
//    tree - GT_CAST node to be lowered
//
// Return Value:
//    None.
//
// Notes:
//    Casts from float/double to a smaller int type are transformed as follows:
//    GT_CAST(float/double, byte)     =   GT_CAST(GT_CAST(float/double, int32), byte)
//    GT_CAST(float/double, sbyte)    =   GT_CAST(GT_CAST(float/double, int32), sbyte)
//    GT_CAST(float/double, int16)    =   GT_CAST(GT_CAST(double/double, int32), int16)
//    GT_CAST(float/double, uint16)   =   GT_CAST(GT_CAST(double/double, int32), uint16)
//
//    Note that for the overflow conversions we still depend on helper calls and
//    don't expect to see them here.
//    i) GT_CAST(float/double, int type with overflow detection)
//
void Lowering::LowerCast(GenTree* tree)
{
    assert(tree->OperGet() == GT_CAST);

    JITDUMP("LowerCast for: ");
    DISPNODE(tree);
    JITDUMP("\n");

    GenTreePtr op1     = tree->gtOp.gtOp1;
    var_types  dstType = tree->CastToType();
    var_types  srcType = genActualType(op1->TypeGet());
    var_types  tmpType = TYP_UNDEF;

    if (varTypeIsFloating(srcType))
    {
        noway_assert(!tree->gtOverflow());
    }

    assert(!varTypeIsSmall(srcType));

    // case of src is a floating point type and dst is a small type.
    if (varTypeIsFloating(srcType) && varTypeIsSmall(dstType))
    {
        NYI_ARM("Lowering for cast from float to small type"); // Not tested yet.
        tmpType = TYP_INT;
    }

    if (tmpType != TYP_UNDEF)
    {
        GenTreePtr tmp = comp->gtNewCastNode(tmpType, op1, tmpType);
        tmp->gtFlags |= (tree->gtFlags & (GTF_UNSIGNED | GTF_OVERFLOW | GTF_EXCEPT));

        tree->gtFlags &= ~GTF_UNSIGNED;
        tree->gtOp.gtOp1 = tmp;
        BlockRange().InsertAfter(op1, tmp);
    }

    // Now determine if we have operands that should be contained.
    ContainCheckCast(tree->AsCast());
}
示例#3
0
// return true if the immediate can be folded into an instruction, for example small enough and non-relocatable
bool Lowering::IsContainableImmed(GenTree* parentNode, GenTree* childNode)
{
    NYI_ARM("ARM IsContainableImmed");
    return false;
}
示例#4
0
void Lowering::LowerRotate(GenTreePtr tree)
{
    NYI_ARM("ARM Lowering for ROL and ROR");
}
示例#5
0
/* Lowering of GT_CAST nodes */
void Lowering::LowerCast(GenTree* tree)
{
    NYI_ARM("ARM Lowering for cast");
}
示例#6
0
//------------------------------------------------------------------------
// TreeNodeInfoInitBlockStore: Set the NodeInfo for a block store.
//
// Arguments:
//    blkNode       - The block store node of interest
//
// Return Value:
//    None.
//
void Lowering::TreeNodeInfoInitBlockStore(GenTreeBlk* blkNode)
{
    GenTree*    dstAddr  = blkNode->Addr();
    unsigned    size     = blkNode->gtBlkSize;
    GenTree*    source   = blkNode->Data();
    LinearScan* l        = m_lsra;
    Compiler*   compiler = comp;

    // Sources are dest address and initVal or source.
    // We may require an additional source or temp register for the size.
    blkNode->gtLsraInfo.srcCount = 2;
    blkNode->gtLsraInfo.dstCount = 0;
    GenTreePtr srcAddrOrFill     = nullptr;
    bool       isInitBlk         = blkNode->OperIsInitBlkOp();

    if (!isInitBlk)
    {
        // CopyObj or CopyBlk
        if (source->gtOper == GT_IND)
        {
            srcAddrOrFill = blkNode->Data()->gtGetOp1();
            // We're effectively setting source as contained, but can't call MakeSrcContained, because the
            // "inheritance" of the srcCount is to a child not a parent - it would "just work" but could be misleading.
            // If srcAddr is already non-contained, we don't need to change it.
            if (srcAddrOrFill->gtLsraInfo.getDstCount() == 0)
            {
                srcAddrOrFill->gtLsraInfo.setDstCount(1);
                srcAddrOrFill->gtLsraInfo.setSrcCount(source->gtLsraInfo.srcCount);
            }
            m_lsra->clearOperandCounts(source);
            source->SetContained();
            source->AsIndir()->Addr()->ClearContained();
        }
        else if (!source->IsMultiRegCall() && !source->OperIsSIMD())
        {
            assert(source->IsLocal());
            MakeSrcContained(blkNode, source);
            blkNode->gtLsraInfo.srcCount--;
        }
    }

    if (isInitBlk)
    {
        GenTreePtr initVal = source;
        if (initVal->OperIsInitVal())
        {
            initVal->SetContained();
            initVal = initVal->gtGetOp1();
        }
        srcAddrOrFill = initVal;

        if (blkNode->gtBlkOpKind == GenTreeBlk::BlkOpKindUnroll)
        {
            // TODO-ARM-CQ: Currently we generate a helper call for every
            // initblk we encounter.  Later on we should implement loop unrolling
            // code sequences to improve CQ.
            // For reference see the code in lsraxarch.cpp.
            NYI_ARM("initblk loop unrolling is currently not implemented.");

#ifdef _TARGET_ARM64_
            // No additional temporaries required
            ssize_t fill = initVal->gtIntCon.gtIconVal & 0xFF;
            if (fill == 0)
            {
                MakeSrcContained(blkNode, source);
                blkNode->gtLsraInfo.srcCount--;
            }
#endif // _TARGET_ARM64_
        }
        else
        {
            assert(blkNode->gtBlkOpKind == GenTreeBlk::BlkOpKindHelper);
            // The helper follows the regular ABI.
            dstAddr->gtLsraInfo.setSrcCandidates(l, RBM_ARG_0);
            initVal->gtLsraInfo.setSrcCandidates(l, RBM_ARG_1);
            if (size != 0)
            {
                // Reserve a temp register for the block size argument.
                blkNode->gtLsraInfo.setInternalCandidates(l, RBM_ARG_2);
                blkNode->gtLsraInfo.internalIntCount = 1;
            }
            else
            {
                // The block size argument is a third argument to GT_STORE_DYN_BLK
                noway_assert(blkNode->gtOper == GT_STORE_DYN_BLK);
                blkNode->gtLsraInfo.setSrcCount(3);
                GenTree* sizeNode = blkNode->AsDynBlk()->gtDynamicSize;
                sizeNode->gtLsraInfo.setSrcCandidates(l, RBM_ARG_2);
            }
        }
    }
    else
    {
        // CopyObj or CopyBlk
        // Sources are src and dest and size if not constant.
        if (blkNode->OperGet() == GT_STORE_OBJ)
        {
            // CopyObj
            // We don't need to materialize the struct size but we still need
            // a temporary register to perform the sequence of loads and stores.
            blkNode->gtLsraInfo.internalIntCount = 1;

            if (size >= 2 * REGSIZE_BYTES)
            {
                // We will use ldp/stp to reduce code size and improve performance
                // so we need to reserve an extra internal register
                blkNode->gtLsraInfo.internalIntCount++;
            }

            // We can't use the special Write Barrier registers, so exclude them from the mask
            regMaskTP internalIntCandidates = RBM_ALLINT & ~(RBM_WRITE_BARRIER_DST_BYREF | RBM_WRITE_BARRIER_SRC_BYREF);
            blkNode->gtLsraInfo.setInternalCandidates(l, internalIntCandidates);

            // If we have a dest address we want it in RBM_WRITE_BARRIER_DST_BYREF.
            dstAddr->gtLsraInfo.setSrcCandidates(l, RBM_WRITE_BARRIER_DST_BYREF);

            // If we have a source address we want it in REG_WRITE_BARRIER_SRC_BYREF.
            // Otherwise, if it is a local, codegen will put its address in REG_WRITE_BARRIER_SRC_BYREF,
            // which is killed by a StoreObj (and thus needn't be reserved).
            if (srcAddrOrFill != nullptr)
            {
                srcAddrOrFill->gtLsraInfo.setSrcCandidates(l, RBM_WRITE_BARRIER_SRC_BYREF);
            }
        }
        else
        {
            // CopyBlk
            short     internalIntCount      = 0;
            regMaskTP internalIntCandidates = RBM_NONE;

            if (blkNode->gtBlkOpKind == GenTreeBlk::BlkOpKindUnroll)
            {
                // TODO-ARM-CQ: cpblk loop unrolling is currently not implemented.
                // In case of a CpBlk with a constant size and less than CPBLK_UNROLL_LIMIT size
                // we should unroll the loop to improve CQ.
                // For reference see the code in lsraxarch.cpp.
                NYI_ARM("cpblk loop unrolling is currently not implemented.");

#ifdef _TARGET_ARM64_

                internalIntCount      = 1;
                internalIntCandidates = RBM_ALLINT;

                if (size >= 2 * REGSIZE_BYTES)
                {
                    // We will use ldp/stp to reduce code size and improve performance
                    // so we need to reserve an extra internal register
                    internalIntCount++;
                }

#endif // _TARGET_ARM64_
            }
            else
            {
                assert(blkNode->gtBlkOpKind == GenTreeBlk::BlkOpKindHelper);
                dstAddr->gtLsraInfo.setSrcCandidates(l, RBM_ARG_0);
                // The srcAddr goes in arg1.
                if (srcAddrOrFill != nullptr)
                {
                    srcAddrOrFill->gtLsraInfo.setSrcCandidates(l, RBM_ARG_1);
                }
                if (size != 0)
                {
                    // Reserve a temp register for the block size argument.
                    internalIntCandidates |= RBM_ARG_2;
                    internalIntCount++;
                }
                else
                {
                    // The block size argument is a third argument to GT_STORE_DYN_BLK
                    noway_assert(blkNode->gtOper == GT_STORE_DYN_BLK);
                    blkNode->gtLsraInfo.setSrcCount(3);
                    GenTree* blockSize = blkNode->AsDynBlk()->gtDynamicSize;
                    blockSize->gtLsraInfo.setSrcCandidates(l, RBM_ARG_2);
                }
            }
            if (internalIntCount != 0)
            {
                blkNode->gtLsraInfo.internalIntCount = internalIntCount;
                blkNode->gtLsraInfo.setInternalCandidates(l, internalIntCandidates);
            }
        }
    }
}
示例#7
0
//------------------------------------------------------------------------
// TreeNodeInfoInitCall: Set the NodeInfo for a call.
//
// Arguments:
//    call - The call node of interest
//
// Return Value:
//    None.
//
void Lowering::TreeNodeInfoInitCall(GenTreeCall* call)
{
    TreeNodeInfo*   info              = &(call->gtLsraInfo);
    LinearScan*     l                 = m_lsra;
    Compiler*       compiler          = comp;
    bool            hasMultiRegRetVal = false;
    ReturnTypeDesc* retTypeDesc       = nullptr;

    info->srcCount = 0;
    if (call->TypeGet() != TYP_VOID)
    {
        hasMultiRegRetVal = call->HasMultiRegRetVal();
        if (hasMultiRegRetVal)
        {
            // dst count = number of registers in which the value is returned by call
            retTypeDesc    = call->GetReturnTypeDesc();
            info->dstCount = retTypeDesc->GetReturnRegCount();
        }
        else
        {
            info->dstCount = 1;
        }
    }
    else
    {
        info->dstCount = 0;
    }

    GenTree* ctrlExpr = call->gtControlExpr;
    if (call->gtCallType == CT_INDIRECT)
    {
        // either gtControlExpr != null or gtCallAddr != null.
        // Both cannot be non-null at the same time.
        assert(ctrlExpr == nullptr);
        assert(call->gtCallAddr != nullptr);
        ctrlExpr = call->gtCallAddr;
    }

    // set reg requirements on call target represented as control sequence.
    if (ctrlExpr != nullptr)
    {
        // we should never see a gtControlExpr whose type is void.
        assert(ctrlExpr->TypeGet() != TYP_VOID);

        info->srcCount++;

        // In case of fast tail implemented as jmp, make sure that gtControlExpr is
        // computed into a register.
        if (call->IsFastTailCall())
        {
            NYI_ARM("tail call");

#ifdef _TARGET_ARM64_
            // Fast tail call - make sure that call target is always computed in IP0
            // so that epilog sequence can generate "br xip0" to achieve fast tail call.
            ctrlExpr->gtLsraInfo.setSrcCandidates(l, genRegMask(REG_IP0));
#endif // _TARGET_ARM64_
        }
    }
#ifdef _TARGET_ARM_
    else
    {
        info->internalIntCount = 1;
    }
#endif // _TARGET_ARM_

    RegisterType registerType = call->TypeGet();

// Set destination candidates for return value of the call.

#ifdef _TARGET_ARM_
    if (call->IsHelperCall(compiler, CORINFO_HELP_INIT_PINVOKE_FRAME))
    {
        // The ARM CORINFO_HELP_INIT_PINVOKE_FRAME helper uses a custom calling convention that returns with
        // TCB in REG_PINVOKE_TCB. fgMorphCall() sets the correct argument registers.
        info->setDstCandidates(l, RBM_PINVOKE_TCB);
    }
    else
#endif // _TARGET_ARM_
        if (hasMultiRegRetVal)
    {
        assert(retTypeDesc != nullptr);
        info->setDstCandidates(l, retTypeDesc->GetABIReturnRegs());
    }
    else if (varTypeIsFloating(registerType))
    {
        info->setDstCandidates(l, RBM_FLOATRET);
    }
    else if (registerType == TYP_LONG)
    {
        info->setDstCandidates(l, RBM_LNGRET);
    }
    else
    {
        info->setDstCandidates(l, RBM_INTRET);
    }

    // If there is an explicit this pointer, we don't want that node to produce anything
    // as it is redundant
    if (call->gtCallObjp != nullptr)
    {
        GenTreePtr thisPtrNode = call->gtCallObjp;

        if (thisPtrNode->gtOper == GT_PUTARG_REG)
        {
            l->clearOperandCounts(thisPtrNode);
            thisPtrNode->SetContained();
            l->clearDstCount(thisPtrNode->gtOp.gtOp1);
        }
        else
        {
            l->clearDstCount(thisPtrNode);
        }
    }

    // First, count reg args
    bool callHasFloatRegArgs = false;

    for (GenTreePtr list = call->gtCallLateArgs; list; list = list->MoveNext())
    {
        assert(list->OperIsList());

        GenTreePtr argNode = list->Current();

        fgArgTabEntryPtr curArgTabEntry = compiler->gtArgEntryByNode(call, argNode);
        assert(curArgTabEntry);

        if (curArgTabEntry->regNum == REG_STK)
        {
            // late arg that is not passed in a register
            assert(argNode->gtOper == GT_PUTARG_STK);

            TreeNodeInfoInitPutArgStk(argNode->AsPutArgStk(), curArgTabEntry);
            continue;
        }

        // A GT_FIELD_LIST has a TYP_VOID, but is used to represent a multireg struct
        if (argNode->OperGet() == GT_FIELD_LIST)
        {
            argNode->SetContained();

            // There could be up to 2-4 PUTARG_REGs in the list (3 or 4 can only occur for HFAs)
            regNumber argReg = curArgTabEntry->regNum;
            for (GenTreeFieldList* entry = argNode->AsFieldList(); entry != nullptr; entry = entry->Rest())
            {
                TreeNodeInfoInitPutArgReg(entry->Current()->AsUnOp(), argReg, *info, false, &callHasFloatRegArgs);

                // Update argReg for the next putarg_reg (if any)
                argReg = genRegArgNext(argReg);

#if defined(_TARGET_ARM_)
                // A double register is modelled as an even-numbered single one
                if (entry->Current()->TypeGet() == TYP_DOUBLE)
                {
                    argReg = genRegArgNext(argReg);
                }
#endif // _TARGET_ARM_
            }
        }
#ifdef _TARGET_ARM_
        else if (argNode->OperGet() == GT_PUTARG_SPLIT)
        {
            fgArgTabEntryPtr curArgTabEntry = compiler->gtArgEntryByNode(call, argNode);
            TreeNodeInfoInitPutArgSplit(argNode->AsPutArgSplit(), *info, curArgTabEntry);
        }
#endif
        else
        {
            TreeNodeInfoInitPutArgReg(argNode->AsUnOp(), curArgTabEntry->regNum, *info, false, &callHasFloatRegArgs);
        }
    }

    // Now, count stack args
    // Note that these need to be computed into a register, but then
    // they're just stored to the stack - so the reg doesn't
    // need to remain live until the call.  In fact, it must not
    // because the code generator doesn't actually consider it live,
    // so it can't be spilled.

    GenTreePtr args = call->gtCallArgs;
    while (args)
    {
        GenTreePtr arg = args->gtOp.gtOp1;

        // Skip arguments that have been moved to the Late Arg list
        if (!(args->gtFlags & GTF_LATE_ARG))
        {
            if (arg->gtOper == GT_PUTARG_STK)
            {
                fgArgTabEntryPtr curArgTabEntry = compiler->gtArgEntryByNode(call, arg);
                assert(curArgTabEntry);

                assert(curArgTabEntry->regNum == REG_STK);

                TreeNodeInfoInitPutArgStk(arg->AsPutArgStk(), curArgTabEntry);
            }
#ifdef _TARGET_ARM_
            else if (arg->OperGet() == GT_PUTARG_SPLIT)
            {
                fgArgTabEntryPtr curArgTabEntry = compiler->gtArgEntryByNode(call, arg);
                TreeNodeInfoInitPutArgSplit(arg->AsPutArgSplit(), *info, curArgTabEntry);
            }
#endif
            else
            {
                TreeNodeInfo* argInfo = &(arg->gtLsraInfo);
                if (argInfo->dstCount != 0)
                {
                    argInfo->isLocalDefUse = true;
                }

                argInfo->dstCount = 0;
            }
        }
        args = args->gtOp.gtOp2;
    }

    // If it is a fast tail call, it is already preferenced to use IP0.
    // Therefore, no need set src candidates on call tgt again.
    if (call->IsVarargs() && callHasFloatRegArgs && !call->IsFastTailCall() && (ctrlExpr != nullptr))
    {
        NYI_ARM("float reg varargs");

        // Don't assign the call target to any of the argument registers because
        // we will use them to also pass floating point arguments as required
        // by Arm64 ABI.
        ctrlExpr->gtLsraInfo.setSrcCandidates(l, l->allRegs(TYP_INT) & ~(RBM_ARG_REGS));
    }

#ifdef _TARGET_ARM_

    if (call->NeedsNullCheck())
    {
        info->internalIntCount++;
    }

#endif // _TARGET_ARM_
}
示例#8
0
//------------------------------------------------------------------------
// LowerBlockStore: Set block store type
//
// Arguments:
//    blkNode       - The block store node of interest
//
// Return Value:
//    None.
//
void Lowering::LowerBlockStore(GenTreeBlk* blkNode)
{
    GenTree*  dstAddr  = blkNode->Addr();
    unsigned  size     = blkNode->gtBlkSize;
    GenTree*  source   = blkNode->Data();
    Compiler* compiler = comp;

    // Sources are dest address and initVal or source.
    GenTree* srcAddrOrFill = nullptr;
    bool     isInitBlk     = blkNode->OperIsInitBlkOp();

    if (!isInitBlk)
    {
        // CopyObj or CopyBlk
        if ((blkNode->OperGet() == GT_STORE_OBJ) && ((blkNode->AsObj()->gtGcPtrCount == 0) || blkNode->gtBlkOpGcUnsafe))
        {
            blkNode->SetOper(GT_STORE_BLK);
        }
        if (source->gtOper == GT_IND)
        {
            srcAddrOrFill = blkNode->Data()->gtGetOp1();
        }
    }

    if (isInitBlk)
    {
        GenTree* initVal = source;
        if (initVal->OperIsInitVal())
        {
            initVal->SetContained();
            initVal = initVal->gtGetOp1();
        }
        srcAddrOrFill = initVal;

#ifdef _TARGET_ARM64_
        if ((size != 0) && (size <= INITBLK_UNROLL_LIMIT) && initVal->IsCnsIntOrI())
        {
            // TODO-ARM-CQ: Currently we generate a helper call for every
            // initblk we encounter.  Later on we should implement loop unrolling
            // code sequences to improve CQ.
            // For reference see the code in LowerXArch.cpp.
            NYI_ARM("initblk loop unrolling is currently not implemented.");

            // The fill value of an initblk is interpreted to hold a
            // value of (unsigned int8) however a constant of any size
            // may practically reside on the evaluation stack. So extract
            // the lower byte out of the initVal constant and replicate
            // it to a larger constant whose size is sufficient to support
            // the largest width store of the desired inline expansion.

            ssize_t fill = initVal->gtIntCon.gtIconVal & 0xFF;
            if (fill == 0)
            {
                MakeSrcContained(blkNode, source);
            }
            else if (size < REGSIZE_BYTES)
            {
                initVal->gtIntCon.gtIconVal = 0x01010101 * fill;
            }
            else
            {
                initVal->gtIntCon.gtIconVal = 0x0101010101010101LL * fill;
                initVal->gtType             = TYP_LONG;
            }
            blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindUnroll;
        }
        else
#endif // _TARGET_ARM64_
        {
            blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindHelper;
        }
    }
    else
    {
        // CopyObj or CopyBlk
        // Sources are src and dest and size if not constant.

        if (blkNode->OperGet() == GT_STORE_OBJ)
        {
            // CopyObj
            GenTreeObj* objNode = blkNode->AsObj();

            unsigned slots = objNode->gtSlots;

#ifdef DEBUG
            // CpObj must always have at least one GC-Pointer as a member.
            assert(objNode->gtGcPtrCount > 0);

            assert(dstAddr->gtType == TYP_BYREF || dstAddr->gtType == TYP_I_IMPL);

            CORINFO_CLASS_HANDLE clsHnd    = objNode->gtClass;
            size_t               classSize = compiler->info.compCompHnd->getClassSize(clsHnd);
            size_t               blkSize   = roundUp(classSize, TARGET_POINTER_SIZE);

            // Currently, the EE always round up a class data structure so
            // we are not handling the case where we have a non multiple of pointer sized
            // struct. This behavior may change in the future so in order to keeps things correct
            // let's assert it just to be safe. Going forward we should simply
            // handle this case.
            assert(classSize == blkSize);
            assert((blkSize / TARGET_POINTER_SIZE) == slots);
            assert(objNode->HasGCPtr());
#endif

            blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindUnroll;
        }
        else // CopyBlk
        {
            // In case of a CpBlk with a constant size and less than CPBLK_UNROLL_LIMIT size
            // we should unroll the loop to improve CQ.
            // For reference see the code in lowerxarch.cpp.

            if ((size != 0) && (size <= CPBLK_UNROLL_LIMIT))
            {
                blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindUnroll;
            }
            else
            {
                // In case we have a constant integer this means we went beyond
                // CPBLK_UNROLL_LIMIT bytes of size, still we should never have the case of
                // any GC-Pointers in the src struct.
                blkNode->gtBlkOpKind = GenTreeBlk::BlkOpKindHelper;
            }
        }
        // CopyObj or CopyBlk
        if (source->gtOper == GT_IND)
        {
            MakeSrcContained(blkNode, source);
            GenTree* addr = source->AsIndir()->Addr();
            if (!addr->OperIsLocalAddr())
            {
                addr->ClearContained();
            }
        }
        else if (!source->IsMultiRegCall() && !source->OperIsSIMD())
        {
            assert(source->IsLocal());
            MakeSrcContained(blkNode, source);
        }
    }
}
示例#9
0
//------------------------------------------------------------------------
// IsContainableImmed: Is an immediate encodable in-place?
//
// Return Value:
//    True if the immediate can be folded into an instruction,
//    for example small enough and non-relocatable.
bool Lowering::IsContainableImmed(GenTree* parentNode, GenTree* childNode)
{
    if (varTypeIsFloating(parentNode->TypeGet()))
    {
        // We can contain a floating point 0.0 constant in a compare instruction
        switch (parentNode->OperGet())
        {
            default:
                return false;

            case GT_EQ:
            case GT_NE:
            case GT_LT:
            case GT_LE:
            case GT_GE:
            case GT_GT:
                if (childNode->IsIntegralConst(0))
                {
                    // TODO-ARM-Cleanup: not tested yet.
                    NYI_ARM("ARM IsContainableImmed for floating point type");

                    return true;
                }
                break;
        }
    }
    else
    {
        // Make sure we have an actual immediate
        if (!childNode->IsCnsIntOrI())
            return false;
        if (childNode->IsIconHandle() && comp->opts.compReloc)
            return false;

        ssize_t  immVal = childNode->gtIntCon.gtIconVal;
        emitAttr attr   = emitActualTypeSize(childNode->TypeGet());
        emitAttr size   = EA_SIZE(attr);
#ifdef _TARGET_ARM_
        insFlags flags = parentNode->gtSetFlags() ? INS_FLAGS_SET : INS_FLAGS_DONT_CARE;
#endif

        switch (parentNode->OperGet())
        {
            default:
                return false;

            case GT_ADD:
            case GT_SUB:
#ifdef _TARGET_ARM64_
            case GT_CMPXCHG:
            case GT_LOCKADD:
            case GT_XADD:
                return emitter::emitIns_valid_imm_for_add(immVal, size);
#elif defined(_TARGET_ARM_)
                return emitter::emitIns_valid_imm_for_add(immVal, flags);
#endif
                break;

#ifdef _TARGET_ARM64_
            case GT_EQ:
            case GT_NE:
            case GT_LT:
            case GT_LE:
            case GT_GE:
            case GT_GT:
                return emitter::emitIns_valid_imm_for_cmp(immVal, size);
                break;
            case GT_AND:
            case GT_OR:
            case GT_XOR:
            case GT_TEST_EQ:
            case GT_TEST_NE:
                return emitter::emitIns_valid_imm_for_alu(immVal, size);
                break;
            case GT_JCMP:
                assert(((parentNode->gtFlags & GTF_JCMP_TST) == 0) ? (immVal == 0) : isPow2(immVal));
                return true;
                break;
#elif defined(_TARGET_ARM_)
            case GT_EQ:
            case GT_NE:
            case GT_LT:
            case GT_LE:
            case GT_GE:
            case GT_GT:
            case GT_CMP:
            case GT_AND:
            case GT_OR:
            case GT_XOR:
                return emitter::emitIns_valid_imm_for_alu(immVal);
                break;
#endif // _TARGET_ARM_

#ifdef _TARGET_ARM64_
            case GT_STORE_LCL_VAR:
                if (immVal == 0)
                    return true;
                break;
#endif
        }
    }

    return false;
}