NvError
NvEcOpen(NvEcHandle *phEc,
         NvU32 InstanceId)
{
    NvEc            *hEc = NULL;
    NvU32           i;
    NvEcPrivState   *ec = &g_ec;
    NvOsMutexHandle mutex = NULL;
    NvError         e = NvSuccess;

    NV_ASSERT( phEc );

    if ( NULL == ec->mutex )
    {
        e = NvOsMutexCreate(&mutex);
        if (NvSuccess != e)
            return e;
        if (0 != NvOsAtomicCompareExchange32((NvS32*)&ec->mutex, 0,
                                                        (NvS32)mutex) )
            NvOsMutexDestroy( mutex );
    }

    NvOsMutexLock(ec->mutex);

    if ( !s_refcount )
    {
        mutex = ec->mutex;
        NvOsMemset( ec, 0, sizeof(NvEcPrivState) );
        ec->mutex = mutex;
        
        NV_CHECK_ERROR_CLEANUP( NvOsMutexCreate( &ec->requestMutex ));
        NV_CHECK_ERROR_CLEANUP( NvOsMutexCreate( &ec->responseMutex ));
        NV_CHECK_ERROR_CLEANUP( NvOsMutexCreate( &ec->eventMutex ));
        
        NV_CHECK_ERROR_CLEANUP( NvOsSemaphoreCreate( &ec->sema, 0));
        NV_CHECK_ERROR_CLEANUP( NvOsSemaphoreCreate( &ec->LowPowerEntrySema, 0));
        NV_CHECK_ERROR_CLEANUP( NvOsSemaphoreCreate( &ec->LowPowerExitSema, 0));
        
        NV_CHECK_ERROR_CLEANUP( NvEcTransportOpen( &ec->transport, InstanceId,
            ec->sema, 0 ) );
    }

    // Set this flag as TRUE to indicate power is enabled
    ec->powerState = NV_TRUE;

    // create private handle for internal communications between NvEc driver
    // and EC
    if ( !s_refcount )
    {
        ec->hEc = NvOsAlloc( sizeof(NvEc) );
        if ( NULL == ec->hEc )
            goto clean;
        
        // reserve the zero tag for internal use by the nvec driver; this ensures
        // that the driver always has a requestor tag available and can therefore
        // always talk to the EC
        ec->tagAllocated[0] = NV_TRUE;
        ec->hEc->ec = ec;
        ec->hEc->tag = 0;

        NV_CHECK_ERROR_CLEANUP(NvOsSemaphoreCreate(&ec->hPingSema, 0));

        // perform startup operations before mutex is unlocked
        NV_CHECK_ERROR_CLEANUP( NvEcPrivInitHook(ec->hEc) );

        // start thread to send "pings" - no-op commands to keep EC "alive"
        NV_CHECK_ERROR_CLEANUP(NvOsThreadCreate(
            (NvOsThreadFunction)NvEcPrivPingThread, ec, &ec->hPingThread));
    }

    hEc = NvOsAlloc( sizeof(NvEc) );
    if ( NULL == hEc )
        goto clean;

    NvOsMemset(hEc, 0x00, sizeof(NvEc));

    hEc->ec = ec;

    hEc->tag = NVEC_REQUESTOR_TAG_INVALID;
    for ( i = 0; i < NVEC_MAX_REQUESTOR_TAG; i++ )
    {
        if ( !ec->tagAllocated[i] )
        {
            ec->tagAllocated[i] = NV_TRUE;
            hEc->tag = i;
            break;
        }
    }
    if ( NVEC_REQUESTOR_TAG_INVALID == hEc->tag )
        goto clean;      // run out of tag, clean it up!

    *phEc = hEc;
    s_refcount++;

    NvOsMutexUnlock( ec->mutex );

    ec->IsEcActive = NV_FALSE;

    return NvSuccess;

clean:
    NvOsFree( hEc );
    NvOsMutexUnlock( ec->mutex );

    return NvError_InsufficientMemory;

fail:
    if (!s_refcount)
    {
        ec->exitPingThread = NV_TRUE;
        if (ec->hPingSema)
            NvOsSemaphoreSignal( ec->hPingSema );
        NvOsThreadJoin( ec->hPingThread );
        NvOsSemaphoreDestroy(ec->hPingSema);
        ec->exitThread = NV_TRUE;
        if (ec->sema)
            NvOsSemaphoreSignal( ec->sema );
        NvOsThreadJoin( ec->thread );
        NvOsFree( ec->hEc );
        if ( ec->transport )
            NvEcTransportClose( ec->transport );
        NvOsMutexDestroy( ec->requestMutex );
        NvOsMutexDestroy( ec->responseMutex );
        NvOsMutexDestroy( ec->eventMutex );
        NvOsSemaphoreDestroy( ec->sema );
        NvOsSemaphoreDestroy( ec->LowPowerEntrySema );
        NvOsSemaphoreDestroy( ec->LowPowerExitSema );
        if ( ec->mutex )
        {
            NvOsMutexUnlock( ec->mutex );
            // Destroying of this mutex here is not safe, if another thread is
            // waiting on this mutex, it can cause issues.  We shold have
            // serialized Init/DeInit calls for creating and destroying this mutex.
            NvOsMutexDestroy( ec->mutex );
            NvOsMemset( ec, 0, sizeof(NvEcPrivState) );
            ec->mutex = NULL;
        }
    }
    return NvError_NotInitialized;
}
NvError
NvDdkUsbPhyOpen(
    NvRmDeviceHandle hRm,
    NvU32 Instance,
    NvDdkUsbPhyHandle *hUsbPhy)
{
    NvError e;
    NvU32 MaxInstances = 0;
    NvDdkUsbPhy *pUsbPhy = NULL;
    NvOsMutexHandle UsbPhyMutex = NULL;
    NvRmModuleInfo info[MAX_USB_INSTANCES];
    NvU32 j;

    NV_ASSERT(hRm);
    NV_ASSERT(hUsbPhy);
    NV_ASSERT(Instance < MAX_USB_INSTANCES);

    NV_CHECK_ERROR(NvRmModuleGetModuleInfo( hRm, NvRmModuleID_Usb2Otg, &MaxInstances, NULL ));
    if (MaxInstances > MAX_USB_INSTANCES)
    {
       // Ceil "instances" to MAX_USB_INSTANCES
       MaxInstances = MAX_USB_INSTANCES;
    }
    NV_CHECK_ERROR(NvRmModuleGetModuleInfo( hRm, NvRmModuleID_Usb2Otg, &MaxInstances, info ));
    for (j = 0; j < MaxInstances; j++)
    {
    // Check whether the requested instance is present
        if(info[j].Instance == Instance)
            break;
    }
    // No match found return
    if (j == MaxInstances)
    {
        return NvError_ModuleNotPresent;
    }

    if (!s_UsbPhyMutex)
    {
        e = NvOsMutexCreate(&UsbPhyMutex);
        if (e!=NvSuccess)
            return e;

        if (NvOsAtomicCompareExchange32(
                (NvS32*)&s_UsbPhyMutex, 0, (NvS32)UsbPhyMutex)!=0)
        {
            NvOsMutexDestroy(UsbPhyMutex);
        }
    }

    NvOsMutexLock(s_UsbPhyMutex);
    if (!s_pUsbPhy)
    {
        s_pUsbPhy = NvOsAlloc(MaxInstances * sizeof(NvDdkUsbPhy));
        if (s_pUsbPhy)
            NvOsMemset(s_pUsbPhy, 0, MaxInstances * sizeof(NvDdkUsbPhy));
    }
    NvOsMutexUnlock(s_UsbPhyMutex);

    if (!s_pUsbPhy)
        return NvError_InsufficientMemory;

    NvOsMutexLock(s_UsbPhyMutex);
    if (!s_pUtmiPadConfig)
    {
        s_pUtmiPadConfig = NvOsAlloc(sizeof(NvDdkUsbPhyUtmiPadConfig));
        if (s_pUtmiPadConfig)
        {
            NvRmPhysAddr PhyAddr;

            NvOsMemset(s_pUtmiPadConfig, 0, sizeof(NvDdkUsbPhyUtmiPadConfig));
            NvRmModuleGetBaseAddress(
                hRm, 
                NVRM_MODULE_ID(NvRmModuleID_Usb2Otg, 0),
                &PhyAddr, &s_pUtmiPadConfig->BankSize);

            NV_CHECK_ERROR_CLEANUP(
                NvRmPhysicalMemMap(
                    PhyAddr, s_pUtmiPadConfig->BankSize, NVOS_MEM_READ_WRITE,
                    NvOsMemAttribute_Uncached, (void **)&s_pUtmiPadConfig->pVirAdr));
        }
    }
    NvOsMutexUnlock(s_UsbPhyMutex);

    if (!s_pUtmiPadConfig)
        return NvError_InsufficientMemory;

    pUsbPhy = &s_pUsbPhy[Instance];

    NvOsMutexLock(s_UsbPhyMutex);
    if (!pUsbPhy->RefCount)
    {
        NvRmPhysAddr PhysAddr;
        NvOsMutexHandle ThreadSafetyMutex = NULL;

        NvOsMemset(pUsbPhy, 0, sizeof(NvDdkUsbPhy));
        pUsbPhy->Instance = Instance;
        pUsbPhy->hRmDevice = hRm;
        pUsbPhy->RefCount = 1;
        pUsbPhy->IsPhyPoweredUp = NV_FALSE;
        pUsbPhy->pUtmiPadConfig = s_pUtmiPadConfig;
        pUsbPhy->pProperty = NvOdmQueryGetUsbProperty(
                                    NvOdmIoModule_Usb, pUsbPhy->Instance);
        pUsbPhy->TurnOffPowerRail = UsbPhyTurnOffPowerRail(MaxInstances);

        NV_CHECK_ERROR_CLEANUP(NvOsMutexCreate(&ThreadSafetyMutex));
        if (NvOsAtomicCompareExchange32(
                (NvS32*)&pUsbPhy->ThreadSafetyMutex, 0,
                (NvS32)ThreadSafetyMutex)!=0)
        {
            NvOsMutexDestroy(ThreadSafetyMutex);
        }

        NvRmModuleGetBaseAddress(
            pUsbPhy->hRmDevice,
            NVRM_MODULE_ID(NvRmModuleID_Usb2Otg, pUsbPhy->Instance),
            &PhysAddr, &pUsbPhy->UsbBankSize);

        NV_CHECK_ERROR_CLEANUP(
            NvRmPhysicalMemMap(
                PhysAddr, pUsbPhy->UsbBankSize, NVOS_MEM_READ_WRITE,
                NvOsMemAttribute_Uncached, (void **)&pUsbPhy->UsbVirAdr));

        NvRmModuleGetBaseAddress(
            pUsbPhy->hRmDevice,
            NVRM_MODULE_ID(NvRmModuleID_Misc, 0),
            &PhysAddr, &pUsbPhy->MiscBankSize);

        NV_CHECK_ERROR_CLEANUP(
            NvRmPhysicalMemMap(
                PhysAddr, pUsbPhy->MiscBankSize, NVOS_MEM_READ_WRITE,
                NvOsMemAttribute_Uncached, (void **)&pUsbPhy->MiscVirAdr));

        if ( ( pUsbPhy->pProperty->UsbInterfaceType ==
               NvOdmUsbInterfaceType_UlpiNullPhy) ||
             ( pUsbPhy->pProperty->UsbInterfaceType ==
               NvOdmUsbInterfaceType_UlpiExternalPhy))
        {
            if (NvRmSetModuleTristate(
                    pUsbPhy->hRmDevice,
                    NVRM_MODULE_ID(NvRmModuleID_Usb2Otg, pUsbPhy->Instance),
                    NV_FALSE) != NvSuccess )
               return NvError_NotSupported;
        }

        // Register with Power Manager
        NV_CHECK_ERROR_CLEANUP(
            NvOsSemaphoreCreate(&pUsbPhy->hPwrEventSem, 0));

        pUsbPhy->RmPowerClientId = NVRM_POWER_CLIENT_TAG('U','S','B','p');
        NV_CHECK_ERROR_CLEANUP(
            NvRmPowerRegister(pUsbPhy->hRmDevice,
            pUsbPhy->hPwrEventSem, &pUsbPhy->RmPowerClientId));

        // Open the H/W interface
        UsbPhyOpenHwInterface(pUsbPhy);

        // Initialize the USB Phy
        NV_CHECK_ERROR_CLEANUP(UsbPhyInitialize(pUsbPhy));
    }
    else
    {
        pUsbPhy->RefCount++;
    }

    *hUsbPhy = pUsbPhy;
    NvOsMutexUnlock(s_UsbPhyMutex);

    return NvSuccess;

fail:

    NvDdkUsbPhyClose(pUsbPhy);
    NvOsMutexUnlock(s_UsbPhyMutex);
    return e;
}