示例#1
0
static uint64_t get_timer_bits(void)
{
    uint64_t res = OPENSSL_rdtsc();
    struct timespec ts;

    if (res != 0)
        return res;

    if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0)
        return TWO32TO64(ts.tv_sec, ts.tv_nsec);
    return time(NULL);
}
示例#2
0
/*
 * Since we get some randomness from the low-order bits of the
 * high-speec clock, it can help.  But don't return a status since
 * it's not sufficient to indicate whether or not the seeding was
 * done.
 */
void rand_read_tsc(RAND_poll_cb rand_add, void *arg)
{
    unsigned char c;
    int i;

    if ((OPENSSL_ia32cap_P[0] & (1 << 4)) != 0) {
        for (i = 0; i < TSC_READ_COUNT; i++) {
            c = (unsigned char)(OPENSSL_rdtsc() & 0xFF);
            rand_add(arg, &c, 1, 0.5);
        }
    }
}
示例#3
0
static int benchmark_siphash(void)
{
# ifdef OPENSSL_CPUID_OBJ
    SIPHASH siphash;
    unsigned char key[SIPHASH_KEY_SIZE];
    unsigned char buf[8192];
    uint32_t stopwatch;
    unsigned int i;

    memset (buf,0x55,sizeof(buf));
    memset (key,0xAA,sizeof(key));

    (void)SipHash_Init(&siphash, key, 0, 0, 0);

    for (i=0;i<100000;i++)
        SipHash_Update(&siphash, buf, sizeof(buf));

    stopwatch = OPENSSL_rdtsc();
    for (i=0;i<10000;i++)
        SipHash_Update(&siphash, buf, sizeof(buf));
    stopwatch = OPENSSL_rdtsc() - stopwatch;

    BIO_printf(b_stdout, "%g\n",stopwatch/(double)(i*sizeof(buf)));

    stopwatch = OPENSSL_rdtsc();
    for (i=0;i<10000;i++) {
        (void)SipHash_Init(&siphash, key, 0, 0, 0);
        SipHash_Update(&siphash, buf, 16);
        (void)SipHash_Final(&siphash, buf, SIPHASH_MAX_DIGEST_SIZE);
    }
    stopwatch = OPENSSL_rdtsc() - stopwatch;

    BIO_printf(b_stdout, "%g\n",stopwatch/(double)(i));
# else
    BIO_printf(b_stderr,
               "Benchmarking of siphash isn't available on this platform\n");
# endif
    return 1;
}
示例#4
0
/*
 * Acquire entropy from high-speed clock
 *
 * Since we get some randomness from the low-order bits of the
 * high-speed clock, it can help.
 *
 * Returns the total entropy count, if it exceeds the requested
 * entropy count. Otherwise, returns an entropy count of 0.
 */
size_t rand_acquire_entropy_from_tsc(RAND_POOL *pool)
{
    unsigned char c;
    int i;

    if ((OPENSSL_ia32cap_P[0] & (1 << 4)) != 0) {
        for (i = 0; i < TSC_READ_COUNT; i++) {
            c = (unsigned char)(OPENSSL_rdtsc() & 0xFF);
            RAND_POOL_add(pool, &c, 1, 4);
        }
    }
    return RAND_POOL_entropy_available(pool);
}
示例#5
0
static void benchmark_gcm128(const unsigned char *K, size_t Klen,
                             const unsigned char *IV, size_t IVlen)
{
#ifdef OPENSSL_CPUID_OBJ
    GCM128_CONTEXT ctx;
    AES_KEY key;
    uint32_t start, gcm_t, ctr_t;
    union {
        u64 u;
        u8 c[1024];
    } buf;

    AES_set_encrypt_key(K, Klen * 8, &key);
    CRYPTO_gcm128_init(&ctx, &key, (block128_f) AES_encrypt);
    CRYPTO_gcm128_setiv(&ctx, IV, IVlen);

    CRYPTO_gcm128_encrypt(&ctx, buf.c, buf.c, sizeof(buf));
    start = OPENSSL_rdtsc();
    CRYPTO_gcm128_encrypt(&ctx, buf.c, buf.c, sizeof(buf));
    gcm_t = OPENSSL_rdtsc() - start;

    CRYPTO_ctr128_encrypt(buf.c, buf.c, sizeof(buf),
                          &key, ctx.Yi.c, ctx.EKi.c, &ctx.mres,
                          (block128_f) AES_encrypt);
    start = OPENSSL_rdtsc();
    CRYPTO_ctr128_encrypt(buf.c, buf.c, sizeof(buf),
                          &key, ctx.Yi.c, ctx.EKi.c, &ctx.mres,
                          (block128_f) AES_encrypt);
    ctr_t = OPENSSL_rdtsc() - start;

    printf("%.2f-%.2f=%.2f\n",
           gcm_t / (double)sizeof(buf),
           ctr_t / (double)sizeof(buf),
           (gcm_t - ctr_t) / (double)sizeof(buf));
# ifdef GHASH
    {
        void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16],
                             const u8 *inp, size_t len) = ctx.ghash;

        GHASH((&ctx), buf.c, sizeof(buf));
        start = OPENSSL_rdtsc();
        for (i = 0; i < 100; ++i)
            GHASH((&ctx), buf.c, sizeof(buf));
        gcm_t = OPENSSL_rdtsc() - start;
        printf("%.2f\n", gcm_t / (double)sizeof(buf) / (double)i);
    }
# endif
#else
    fprintf(stderr,
            "Benchmarking of modes isn't available on this platform\n");
#endif
}
示例#6
0
/*
 * Get an arbitrary timer value of the highest possible resolution
 *
 * The timer value is added as random noise to the additional data,
 * which is not considered a trusted entropy sourec, so any result
 * is acceptable.
 */
static uint64_t get_timer_bits(void)
{
    uint64_t res = OPENSSL_rdtsc();

    if (res != 0)
        return res;

# if defined(__sun) || defined(__hpux)
    return gethrtime();
# elif defined(_AIX)
    {
        timebasestruct_t t;

        read_wall_time(&t, TIMEBASE_SZ);
        return TWO32TO64(t.tb_high, t.tb_low);
    }
# elif defined(OSSL_POSIX_TIMER_OKAY)
    {
        struct timespec ts;

#  ifdef CLOCK_BOOTTIME
#   define CLOCK_TYPE CLOCK_BOOTTIME
#  elif defined(_POSIX_MONOTONIC_CLOCK)
#   define CLOCK_TYPE CLOCK_MONOTONIC
#  else
#   define CLOCK_TYPE CLOCK_REALTIME
#  endif

        if (clock_gettime(CLOCK_TYPE, &ts) == 0)
            return TWO32TO64(ts.tv_sec, ts.tv_nsec);
    }
# endif
# if defined(__unix__) \
     || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
    {
        struct timeval tv;

        if (gettimeofday(&tv, NULL) == 0)
            return TWO32TO64(tv.tv_sec, tv.tv_usec);
    }
# endif
    return time(NULL);
}
示例#7
0
文件: md_rand.c 项目: G-P-S/openssl
static int rand_bytes(unsigned char *buf, int num, int pseudo)
{
    static volatile int stirred_pool = 0;
    int i, j, k;
    size_t num_ceil, st_idx, st_num;
    int ok;
    long md_c[2];
    unsigned char local_md[MD_DIGEST_LENGTH];
    EVP_MD_CTX *m;
#ifndef GETPID_IS_MEANINGLESS
    pid_t curr_pid = getpid();
#endif
    time_t curr_time = time(NULL);
    int do_stir_pool = 0;
    /* time value for various platforms */
#ifdef OPENSSL_SYS_WIN32
    FILETIME tv;
# ifdef _WIN32_WCE
    SYSTEMTIME t;
    GetSystemTime(&t);
    SystemTimeToFileTime(&t, &tv);
# else
    GetSystemTimeAsFileTime(&tv);
# endif
#elif defined(OPENSSL_SYS_VXWORKS)
    struct timespec tv;
    clock_gettime(CLOCK_REALTIME, &ts);
#elif defined(OPENSSL_SYS_DSPBIOS)
    unsigned long long tv, OPENSSL_rdtsc();
    tv = OPENSSL_rdtsc();
#else
    struct timeval tv;
    gettimeofday(&tv, NULL);
#endif

#ifdef PREDICT
    if (rand_predictable) {
        static unsigned char val = 0;

        for (i = 0; i < num; i++)
            buf[i] = val++;
        return (1);
    }
#endif

    if (num <= 0)
        return 1;

    m = EVP_MD_CTX_new();
    if (m == NULL)
        goto err_mem;

    /* round upwards to multiple of MD_DIGEST_LENGTH/2 */
    num_ceil =
        (1 + (num - 1) / (MD_DIGEST_LENGTH / 2)) * (MD_DIGEST_LENGTH / 2);

    /*
     * (Based on the rand(3) manpage:)
     *
     * For each group of 10 bytes (or less), we do the following:
     *
     * Input into the hash function the local 'md' (which is initialized from
     * the global 'md' before any bytes are generated), the bytes that are to
     * be overwritten by the random bytes, and bytes from the 'state'
     * (incrementing looping index). From this digest output (which is kept
     * in 'md'), the top (up to) 10 bytes are returned to the caller and the
     * bottom 10 bytes are xored into the 'state'.
     *
     * Finally, after we have finished 'num' random bytes for the
     * caller, 'count' (which is incremented) and the local and global 'md'
     * are fed into the hash function and the results are kept in the
     * global 'md'.
     */

    if (!RUN_ONCE(&rand_lock_init, do_rand_lock_init))
        goto err_mem;

    CRYPTO_THREAD_write_lock(rand_lock);
    /*
     * We could end up in an async engine while holding this lock so ensure
     * we don't pause and cause a deadlock
     */
    ASYNC_block_pause();

    /* prevent rand_bytes() from trying to obtain the lock again */
    CRYPTO_THREAD_write_lock(rand_tmp_lock);
    locking_threadid = CRYPTO_THREAD_get_current_id();
    CRYPTO_THREAD_unlock(rand_tmp_lock);
    crypto_lock_rand = 1;

    if (!initialized) {
        RAND_poll();
        initialized = 1;
    }

    if (!stirred_pool)
        do_stir_pool = 1;

    ok = (entropy >= ENTROPY_NEEDED);
    if (!ok) {
        /*
         * If the PRNG state is not yet unpredictable, then seeing the PRNG
         * output may help attackers to determine the new state; thus we have
         * to decrease the entropy estimate. Once we've had enough initial
         * seeding we don't bother to adjust the entropy count, though,
         * because we're not ambitious to provide *information-theoretic*
         * randomness. NOTE: This approach fails if the program forks before
         * we have enough entropy. Entropy should be collected in a separate
         * input pool and be transferred to the output pool only when the
         * entropy limit has been reached.
         */
        entropy -= num;
        if (entropy < 0)
            entropy = 0;
    }

    if (do_stir_pool) {
        /*
         * In the output function only half of 'md' remains secret, so we
         * better make sure that the required entropy gets 'evenly
         * distributed' through 'state', our randomness pool. The input
         * function (rand_add) chains all of 'md', which makes it more
         * suitable for this purpose.
         */

        int n = STATE_SIZE;     /* so that the complete pool gets accessed */
        while (n > 0) {
#if MD_DIGEST_LENGTH > 20
# error "Please adjust DUMMY_SEED."
#endif
#define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */
            /*
             * Note that the seed does not matter, it's just that
             * rand_add expects to have something to hash.
             */
            rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0);
            n -= MD_DIGEST_LENGTH;
        }
        if (ok)
            stirred_pool = 1;
    }

    st_idx = state_index;
    st_num = state_num;
    md_c[0] = md_count[0];
    md_c[1] = md_count[1];
    memcpy(local_md, md, sizeof md);

    state_index += num_ceil;
    if (state_index > state_num)
        state_index %= state_num;

    /*
     * state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num] are now
     * ours (but other threads may use them too)
     */

    md_count[0] += 1;

    /* before unlocking, we must clear 'crypto_lock_rand' */
    crypto_lock_rand = 0;
    ASYNC_unblock_pause();
    CRYPTO_THREAD_unlock(rand_lock);

    while (num > 0) {
        /* num_ceil -= MD_DIGEST_LENGTH/2 */
        j = (num >= MD_DIGEST_LENGTH / 2) ? MD_DIGEST_LENGTH / 2 : num;
        num -= j;
        if (!MD_Init(m))
            goto err;
#ifndef GETPID_IS_MEANINGLESS
        if (curr_pid) {         /* just in the first iteration to save time */
            if (!MD_Update(m, (unsigned char *)&curr_pid, sizeof curr_pid))
                goto err;
            curr_pid = 0;
        }
#endif
        if (curr_time) {        /* just in the first iteration to save time */
            if (!MD_Update(m, (unsigned char *)&curr_time, sizeof curr_time))
                goto err;
            if (!MD_Update(m, (unsigned char *)&tv, sizeof tv))
                goto err;
            curr_time = 0;
            if (!rand_hw_seed(m))
                goto err;
        }
        if (!MD_Update(m, local_md, MD_DIGEST_LENGTH))
            goto err;
        if (!MD_Update(m, (unsigned char *)&(md_c[0]), sizeof(md_c)))
            goto err;

        k = (st_idx + MD_DIGEST_LENGTH / 2) - st_num;
        if (k > 0) {
            if (!MD_Update(m, &(state[st_idx]), MD_DIGEST_LENGTH / 2 - k))
                goto err;
            if (!MD_Update(m, &(state[0]), k))
                goto err;
        } else if (!MD_Update(m, &(state[st_idx]), MD_DIGEST_LENGTH / 2))
            goto err;
        if (!MD_Final(m, local_md))
            goto err;

        for (i = 0; i < MD_DIGEST_LENGTH / 2; i++) {
            /* may compete with other threads */
            state[st_idx++] ^= local_md[i];
            if (st_idx >= st_num)
                st_idx = 0;
            if (i < j)
                *(buf++) = local_md[i + MD_DIGEST_LENGTH / 2];
        }
    }

    if (!MD_Init(m)
            || !MD_Update(m, (unsigned char *)&(md_c[0]), sizeof(md_c))
            || !MD_Update(m, local_md, MD_DIGEST_LENGTH))
        goto err;
    CRYPTO_THREAD_write_lock(rand_lock);
    /*
     * Prevent deadlocks if we end up in an async engine
     */
    ASYNC_block_pause();
    if (!MD_Update(m, md, MD_DIGEST_LENGTH) || !MD_Final(m, md)) {
        CRYPTO_THREAD_unlock(rand_lock);
        goto err;
    }
    ASYNC_unblock_pause();
    CRYPTO_THREAD_unlock(rand_lock);

    EVP_MD_CTX_free(m);
    if (ok)
        return (1);
    else if (pseudo)
        return 0;
    else {
        RANDerr(RAND_F_RAND_BYTES, RAND_R_PRNG_NOT_SEEDED);
        ERR_add_error_data(1, "You need to read the OpenSSL FAQ, "
                           "https://www.openssl.org/docs/faq.html");
        return (0);
    }
err:
    RANDerr(RAND_F_RAND_BYTES, ERR_R_EVP_LIB);
    EVP_MD_CTX_free(m);
    return 0;
err_mem:
    RANDerr(RAND_F_RAND_BYTES, ERR_R_MALLOC_FAILURE);
    EVP_MD_CTX_free(m);
    return 0;

}
示例#8
0
文件: rand_lib.c 项目: ngoyal/openssl
/*
 * Find a suitable source of time.  Start with the highest resolution source
 * and work down to the slower ones.  This is added as additional data and
 * isn't counted as randomness, so any result is acceptable.
 *
 * Returns 0 when we weren't able to find any time source
 */
static uint64_t get_timer_bits(void)
{
    uint64_t res = OPENSSL_rdtsc();

    if (res != 0)
        return res;
#if defined(_WIN32)
    {
        LARGE_INTEGER t;
        FILETIME ft;

        if (QueryPerformanceCounter(&t) != 0)
            return t.QuadPart;
        GetSystemTimeAsFileTime(&ft);
        return TWO32TO64(ft.dwHighDateTime, ft.dwLowDateTime);
    }
#elif defined(__sun) || defined(__hpux)
    return gethrtime();
#elif defined(_AIX)
    {
        timebasestruct_t t;

        read_wall_time(&t, TIMEBASE_SZ);
        return TWO32TO64(t.tb_high, t.tb_low);
    }
#else

# if defined(OSSL_POSIX_TIMER_OKAY)
    {
        struct timespec ts;
        clockid_t cid;

#  ifdef CLOCK_BOOTTIME
        cid = CLOCK_BOOTTIME;
#  elif defined(_POSIX_MONOTONIC_CLOCK)
        cid = CLOCK_MONOTONIC;
#  else
        cid = CLOCK_REALTIME;
#  endif

        if (clock_gettime(cid, &ts) == 0)
            return TWO32TO64(ts.tv_sec, ts.tv_nsec);
    }
# endif
# if defined(__unix__) \
     || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
    {
        struct timeval tv;

        if (gettimeofday(&tv, NULL) == 0)
            return TWO32TO64(tv.tv_sec, tv.tv_usec);
    }
# endif
    {
        time_t t = time(NULL);
        if (t == (time_t)-1)
            return 0;
        return t;
    }
#endif
}