static uint64_t get_timer_bits(void) { uint64_t res = OPENSSL_rdtsc(); struct timespec ts; if (res != 0) return res; if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) return TWO32TO64(ts.tv_sec, ts.tv_nsec); return time(NULL); }
/* * Since we get some randomness from the low-order bits of the * high-speec clock, it can help. But don't return a status since * it's not sufficient to indicate whether or not the seeding was * done. */ void rand_read_tsc(RAND_poll_cb rand_add, void *arg) { unsigned char c; int i; if ((OPENSSL_ia32cap_P[0] & (1 << 4)) != 0) { for (i = 0; i < TSC_READ_COUNT; i++) { c = (unsigned char)(OPENSSL_rdtsc() & 0xFF); rand_add(arg, &c, 1, 0.5); } } }
static int benchmark_siphash(void) { # ifdef OPENSSL_CPUID_OBJ SIPHASH siphash; unsigned char key[SIPHASH_KEY_SIZE]; unsigned char buf[8192]; uint32_t stopwatch; unsigned int i; memset (buf,0x55,sizeof(buf)); memset (key,0xAA,sizeof(key)); (void)SipHash_Init(&siphash, key, 0, 0, 0); for (i=0;i<100000;i++) SipHash_Update(&siphash, buf, sizeof(buf)); stopwatch = OPENSSL_rdtsc(); for (i=0;i<10000;i++) SipHash_Update(&siphash, buf, sizeof(buf)); stopwatch = OPENSSL_rdtsc() - stopwatch; BIO_printf(b_stdout, "%g\n",stopwatch/(double)(i*sizeof(buf))); stopwatch = OPENSSL_rdtsc(); for (i=0;i<10000;i++) { (void)SipHash_Init(&siphash, key, 0, 0, 0); SipHash_Update(&siphash, buf, 16); (void)SipHash_Final(&siphash, buf, SIPHASH_MAX_DIGEST_SIZE); } stopwatch = OPENSSL_rdtsc() - stopwatch; BIO_printf(b_stdout, "%g\n",stopwatch/(double)(i)); # else BIO_printf(b_stderr, "Benchmarking of siphash isn't available on this platform\n"); # endif return 1; }
/* * Acquire entropy from high-speed clock * * Since we get some randomness from the low-order bits of the * high-speed clock, it can help. * * Returns the total entropy count, if it exceeds the requested * entropy count. Otherwise, returns an entropy count of 0. */ size_t rand_acquire_entropy_from_tsc(RAND_POOL *pool) { unsigned char c; int i; if ((OPENSSL_ia32cap_P[0] & (1 << 4)) != 0) { for (i = 0; i < TSC_READ_COUNT; i++) { c = (unsigned char)(OPENSSL_rdtsc() & 0xFF); RAND_POOL_add(pool, &c, 1, 4); } } return RAND_POOL_entropy_available(pool); }
static void benchmark_gcm128(const unsigned char *K, size_t Klen, const unsigned char *IV, size_t IVlen) { #ifdef OPENSSL_CPUID_OBJ GCM128_CONTEXT ctx; AES_KEY key; uint32_t start, gcm_t, ctr_t; union { u64 u; u8 c[1024]; } buf; AES_set_encrypt_key(K, Klen * 8, &key); CRYPTO_gcm128_init(&ctx, &key, (block128_f) AES_encrypt); CRYPTO_gcm128_setiv(&ctx, IV, IVlen); CRYPTO_gcm128_encrypt(&ctx, buf.c, buf.c, sizeof(buf)); start = OPENSSL_rdtsc(); CRYPTO_gcm128_encrypt(&ctx, buf.c, buf.c, sizeof(buf)); gcm_t = OPENSSL_rdtsc() - start; CRYPTO_ctr128_encrypt(buf.c, buf.c, sizeof(buf), &key, ctx.Yi.c, ctx.EKi.c, &ctx.mres, (block128_f) AES_encrypt); start = OPENSSL_rdtsc(); CRYPTO_ctr128_encrypt(buf.c, buf.c, sizeof(buf), &key, ctx.Yi.c, ctx.EKi.c, &ctx.mres, (block128_f) AES_encrypt); ctr_t = OPENSSL_rdtsc() - start; printf("%.2f-%.2f=%.2f\n", gcm_t / (double)sizeof(buf), ctr_t / (double)sizeof(buf), (gcm_t - ctr_t) / (double)sizeof(buf)); # ifdef GHASH { void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len) = ctx.ghash; GHASH((&ctx), buf.c, sizeof(buf)); start = OPENSSL_rdtsc(); for (i = 0; i < 100; ++i) GHASH((&ctx), buf.c, sizeof(buf)); gcm_t = OPENSSL_rdtsc() - start; printf("%.2f\n", gcm_t / (double)sizeof(buf) / (double)i); } # endif #else fprintf(stderr, "Benchmarking of modes isn't available on this platform\n"); #endif }
/* * Get an arbitrary timer value of the highest possible resolution * * The timer value is added as random noise to the additional data, * which is not considered a trusted entropy sourec, so any result * is acceptable. */ static uint64_t get_timer_bits(void) { uint64_t res = OPENSSL_rdtsc(); if (res != 0) return res; # if defined(__sun) || defined(__hpux) return gethrtime(); # elif defined(_AIX) { timebasestruct_t t; read_wall_time(&t, TIMEBASE_SZ); return TWO32TO64(t.tb_high, t.tb_low); } # elif defined(OSSL_POSIX_TIMER_OKAY) { struct timespec ts; # ifdef CLOCK_BOOTTIME # define CLOCK_TYPE CLOCK_BOOTTIME # elif defined(_POSIX_MONOTONIC_CLOCK) # define CLOCK_TYPE CLOCK_MONOTONIC # else # define CLOCK_TYPE CLOCK_REALTIME # endif if (clock_gettime(CLOCK_TYPE, &ts) == 0) return TWO32TO64(ts.tv_sec, ts.tv_nsec); } # endif # if defined(__unix__) \ || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L) { struct timeval tv; if (gettimeofday(&tv, NULL) == 0) return TWO32TO64(tv.tv_sec, tv.tv_usec); } # endif return time(NULL); }
static int rand_bytes(unsigned char *buf, int num, int pseudo) { static volatile int stirred_pool = 0; int i, j, k; size_t num_ceil, st_idx, st_num; int ok; long md_c[2]; unsigned char local_md[MD_DIGEST_LENGTH]; EVP_MD_CTX *m; #ifndef GETPID_IS_MEANINGLESS pid_t curr_pid = getpid(); #endif time_t curr_time = time(NULL); int do_stir_pool = 0; /* time value for various platforms */ #ifdef OPENSSL_SYS_WIN32 FILETIME tv; # ifdef _WIN32_WCE SYSTEMTIME t; GetSystemTime(&t); SystemTimeToFileTime(&t, &tv); # else GetSystemTimeAsFileTime(&tv); # endif #elif defined(OPENSSL_SYS_VXWORKS) struct timespec tv; clock_gettime(CLOCK_REALTIME, &ts); #elif defined(OPENSSL_SYS_DSPBIOS) unsigned long long tv, OPENSSL_rdtsc(); tv = OPENSSL_rdtsc(); #else struct timeval tv; gettimeofday(&tv, NULL); #endif #ifdef PREDICT if (rand_predictable) { static unsigned char val = 0; for (i = 0; i < num; i++) buf[i] = val++; return (1); } #endif if (num <= 0) return 1; m = EVP_MD_CTX_new(); if (m == NULL) goto err_mem; /* round upwards to multiple of MD_DIGEST_LENGTH/2 */ num_ceil = (1 + (num - 1) / (MD_DIGEST_LENGTH / 2)) * (MD_DIGEST_LENGTH / 2); /* * (Based on the rand(3) manpage:) * * For each group of 10 bytes (or less), we do the following: * * Input into the hash function the local 'md' (which is initialized from * the global 'md' before any bytes are generated), the bytes that are to * be overwritten by the random bytes, and bytes from the 'state' * (incrementing looping index). From this digest output (which is kept * in 'md'), the top (up to) 10 bytes are returned to the caller and the * bottom 10 bytes are xored into the 'state'. * * Finally, after we have finished 'num' random bytes for the * caller, 'count' (which is incremented) and the local and global 'md' * are fed into the hash function and the results are kept in the * global 'md'. */ if (!RUN_ONCE(&rand_lock_init, do_rand_lock_init)) goto err_mem; CRYPTO_THREAD_write_lock(rand_lock); /* * We could end up in an async engine while holding this lock so ensure * we don't pause and cause a deadlock */ ASYNC_block_pause(); /* prevent rand_bytes() from trying to obtain the lock again */ CRYPTO_THREAD_write_lock(rand_tmp_lock); locking_threadid = CRYPTO_THREAD_get_current_id(); CRYPTO_THREAD_unlock(rand_tmp_lock); crypto_lock_rand = 1; if (!initialized) { RAND_poll(); initialized = 1; } if (!stirred_pool) do_stir_pool = 1; ok = (entropy >= ENTROPY_NEEDED); if (!ok) { /* * If the PRNG state is not yet unpredictable, then seeing the PRNG * output may help attackers to determine the new state; thus we have * to decrease the entropy estimate. Once we've had enough initial * seeding we don't bother to adjust the entropy count, though, * because we're not ambitious to provide *information-theoretic* * randomness. NOTE: This approach fails if the program forks before * we have enough entropy. Entropy should be collected in a separate * input pool and be transferred to the output pool only when the * entropy limit has been reached. */ entropy -= num; if (entropy < 0) entropy = 0; } if (do_stir_pool) { /* * In the output function only half of 'md' remains secret, so we * better make sure that the required entropy gets 'evenly * distributed' through 'state', our randomness pool. The input * function (rand_add) chains all of 'md', which makes it more * suitable for this purpose. */ int n = STATE_SIZE; /* so that the complete pool gets accessed */ while (n > 0) { #if MD_DIGEST_LENGTH > 20 # error "Please adjust DUMMY_SEED." #endif #define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */ /* * Note that the seed does not matter, it's just that * rand_add expects to have something to hash. */ rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0); n -= MD_DIGEST_LENGTH; } if (ok) stirred_pool = 1; } st_idx = state_index; st_num = state_num; md_c[0] = md_count[0]; md_c[1] = md_count[1]; memcpy(local_md, md, sizeof md); state_index += num_ceil; if (state_index > state_num) state_index %= state_num; /* * state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num] are now * ours (but other threads may use them too) */ md_count[0] += 1; /* before unlocking, we must clear 'crypto_lock_rand' */ crypto_lock_rand = 0; ASYNC_unblock_pause(); CRYPTO_THREAD_unlock(rand_lock); while (num > 0) { /* num_ceil -= MD_DIGEST_LENGTH/2 */ j = (num >= MD_DIGEST_LENGTH / 2) ? MD_DIGEST_LENGTH / 2 : num; num -= j; if (!MD_Init(m)) goto err; #ifndef GETPID_IS_MEANINGLESS if (curr_pid) { /* just in the first iteration to save time */ if (!MD_Update(m, (unsigned char *)&curr_pid, sizeof curr_pid)) goto err; curr_pid = 0; } #endif if (curr_time) { /* just in the first iteration to save time */ if (!MD_Update(m, (unsigned char *)&curr_time, sizeof curr_time)) goto err; if (!MD_Update(m, (unsigned char *)&tv, sizeof tv)) goto err; curr_time = 0; if (!rand_hw_seed(m)) goto err; } if (!MD_Update(m, local_md, MD_DIGEST_LENGTH)) goto err; if (!MD_Update(m, (unsigned char *)&(md_c[0]), sizeof(md_c))) goto err; k = (st_idx + MD_DIGEST_LENGTH / 2) - st_num; if (k > 0) { if (!MD_Update(m, &(state[st_idx]), MD_DIGEST_LENGTH / 2 - k)) goto err; if (!MD_Update(m, &(state[0]), k)) goto err; } else if (!MD_Update(m, &(state[st_idx]), MD_DIGEST_LENGTH / 2)) goto err; if (!MD_Final(m, local_md)) goto err; for (i = 0; i < MD_DIGEST_LENGTH / 2; i++) { /* may compete with other threads */ state[st_idx++] ^= local_md[i]; if (st_idx >= st_num) st_idx = 0; if (i < j) *(buf++) = local_md[i + MD_DIGEST_LENGTH / 2]; } } if (!MD_Init(m) || !MD_Update(m, (unsigned char *)&(md_c[0]), sizeof(md_c)) || !MD_Update(m, local_md, MD_DIGEST_LENGTH)) goto err; CRYPTO_THREAD_write_lock(rand_lock); /* * Prevent deadlocks if we end up in an async engine */ ASYNC_block_pause(); if (!MD_Update(m, md, MD_DIGEST_LENGTH) || !MD_Final(m, md)) { CRYPTO_THREAD_unlock(rand_lock); goto err; } ASYNC_unblock_pause(); CRYPTO_THREAD_unlock(rand_lock); EVP_MD_CTX_free(m); if (ok) return (1); else if (pseudo) return 0; else { RANDerr(RAND_F_RAND_BYTES, RAND_R_PRNG_NOT_SEEDED); ERR_add_error_data(1, "You need to read the OpenSSL FAQ, " "https://www.openssl.org/docs/faq.html"); return (0); } err: RANDerr(RAND_F_RAND_BYTES, ERR_R_EVP_LIB); EVP_MD_CTX_free(m); return 0; err_mem: RANDerr(RAND_F_RAND_BYTES, ERR_R_MALLOC_FAILURE); EVP_MD_CTX_free(m); return 0; }
/* * Find a suitable source of time. Start with the highest resolution source * and work down to the slower ones. This is added as additional data and * isn't counted as randomness, so any result is acceptable. * * Returns 0 when we weren't able to find any time source */ static uint64_t get_timer_bits(void) { uint64_t res = OPENSSL_rdtsc(); if (res != 0) return res; #if defined(_WIN32) { LARGE_INTEGER t; FILETIME ft; if (QueryPerformanceCounter(&t) != 0) return t.QuadPart; GetSystemTimeAsFileTime(&ft); return TWO32TO64(ft.dwHighDateTime, ft.dwLowDateTime); } #elif defined(__sun) || defined(__hpux) return gethrtime(); #elif defined(_AIX) { timebasestruct_t t; read_wall_time(&t, TIMEBASE_SZ); return TWO32TO64(t.tb_high, t.tb_low); } #else # if defined(OSSL_POSIX_TIMER_OKAY) { struct timespec ts; clockid_t cid; # ifdef CLOCK_BOOTTIME cid = CLOCK_BOOTTIME; # elif defined(_POSIX_MONOTONIC_CLOCK) cid = CLOCK_MONOTONIC; # else cid = CLOCK_REALTIME; # endif if (clock_gettime(cid, &ts) == 0) return TWO32TO64(ts.tv_sec, ts.tv_nsec); } # endif # if defined(__unix__) \ || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L) { struct timeval tv; if (gettimeofday(&tv, NULL) == 0) return TWO32TO64(tv.tv_sec, tv.tv_usec); } # endif { time_t t = time(NULL); if (t == (time_t)-1) return 0; return t; } #endif }