// user function
inline void drhouupdx_kernel(const double *rhou_new, const double *rho_new,
                             const double *rhoE_new, double *rhou_res) {

  double fni =
      rhou_new[OPS_ACC0(0)] * rhou_new[OPS_ACC0(0)] / rho_new[OPS_ACC1(0)];
  double p = gam1 * (rhoE_new[OPS_ACC2(0)] - 0.5 * fni);
  fni = fni + p;
  double fnim1 =
      rhou_new[OPS_ACC0(-1)] * rhou_new[OPS_ACC0(-1)] / rho_new[OPS_ACC1(-1)];
  p = gam1 * (rhoE_new[OPS_ACC2(-1)] - 0.5 * fnim1);
  fnim1 = fnim1 + p;
  double fnim2 =
      rhou_new[OPS_ACC0(-2)] * rhou_new[OPS_ACC0(-2)] / rho_new[OPS_ACC1(-2)];
  p = gam1 * (rhoE_new[OPS_ACC2(-2)] - 0.5 * fnim2);
  fnim2 = fnim2 + p;
  double fnip1 =
      rhou_new[OPS_ACC0(1)] * rhou_new[OPS_ACC0(1)] / rho_new[OPS_ACC1(1)];
  p = gam1 * (rhoE_new[OPS_ACC2(1)] - 0.5 * fnip1);
  fnip1 = fnip1 + p;
  double fnip2 =
      rhou_new[OPS_ACC0(2)] * rhou_new[OPS_ACC0(2)] / rho_new[OPS_ACC1(2)];
  p = gam1 * (rhoE_new[OPS_ACC2(2)] - 0.5 * fnip2);
  fnip2 = fnip2 + p;

  double deriv = (fnim2 - fnip2 + 8.0 * (fnip1 - fnim1)) / (12.00 * dx);
  rhou_res[OPS_ACC3(0)] = deriv;
}
inline void advec_cell_kernel2_zdir( double *pre_vol, double *post_vol, const double *volume,
                        const double *vol_flux_z) {

  pre_vol[OPS_ACC0(0,0,0)] = volume[OPS_ACC2(0,0,0)] + vol_flux_z[OPS_ACC3(0,0,1)] - vol_flux_z[OPS_ACC3(0,0,0)];
  post_vol[OPS_ACC1(0,0,0)] = volume[OPS_ACC2(0,0,0)];

}
// user function
inline void flux_calc_kernelx(double *vol_flux_x, const double *xarea,
                              const double *xvel0, const double *xvel1) {

  vol_flux_x[OPS_ACC0(0, 0)] =
      0.25 * dt * (xarea[OPS_ACC1(0, 0)]) *
      ((xvel0[OPS_ACC2(0, 0)]) + (xvel0[OPS_ACC2(0, 1)]) +
       (xvel1[OPS_ACC3(0, 0)]) + (xvel1[OPS_ACC3(0, 1)]));
}
//user function
inline 
void flux_calc_kernelz( double *vol_flux_z, const double *zarea,
                        const double *zvel0, const double *zvel1) {

  vol_flux_z[OPS_ACC0(0,0,0)] = 0.125 * dt * (zarea[OPS_ACC1(0,0,0)]) *
  ( zvel0[OPS_ACC2(0,0,0)] + zvel0[OPS_ACC2(1,0,0)] + zvel0[OPS_ACC2(1,0,0)] + zvel0[OPS_ACC2(1,1,0)] +
    zvel1[OPS_ACC3(0,0,0)] + zvel1[OPS_ACC3(1,0,0)] + zvel1[OPS_ACC3(0,1,0)] + zvel1[OPS_ACC3(1,1,0)]);
}
// user function
inline void tea_leaf_common_init_diag_init_kernel(double *Mi, const double *Kx,
                                                  const double *Ky,
                                                  const double *rx,
                                                  const double *ry) {
  Mi[OPS_ACC0(0, 0)] =
      1.0 / (1.0 + (*ry) * (Ky[OPS_ACC2(0, 1)] + Ky[OPS_ACC2(0, 0)]) +
             (*rx) * (Kx[OPS_ACC1(1, 0)] + Kx[OPS_ACC1(0, 0)]));
}
// user function
inline void calc_dt_kernel(const double *celldx, const double *celldy,
                           const double *soundspeed, const double *viscosity,
                           const double *density0, const double *xvel0,
                           const double *xarea, const double *volume,
                           const double *yvel0, const double *yarea,
                           double *dt_min, const double *celldz,
                           const double *zvel0, const double *zarea) {

  double div, ds, dtut, dtvt, dtct, dtwt, dtdivt, cc, dv1, dv2, du1, du2, dw1,
      dw2;

  ds = MIN(MIN(celldx[OPS_ACC0(0, 0, 0)], celldy[OPS_ACC1(0, 0, 0)]),
           celldz[OPS_ACC11(0, 0, 0)]);
  ds = 1.0 / (ds * ds);

  cc = soundspeed[OPS_ACC2(0, 0, 0)] * soundspeed[OPS_ACC2(0, 0, 0)];
  cc = cc + 2.0 * viscosity[OPS_ACC3(0, 0, 0)] / density0[OPS_ACC4(0, 0, 0)];

  dtct = ds * cc;
  dtct = dtc_safe * 1.0 / MAX(sqrt(dtct), g_small);

  du1 = (xvel0[OPS_ACC5(0, 0, 0)] + xvel0[OPS_ACC5(0, 1, 0)] +
         xvel0[OPS_ACC5(0, 0, 1)] + xvel0[OPS_ACC5(0, 1, 1)]) *
        xarea[OPS_ACC6(0, 0, 0)];
  du2 = (xvel0[OPS_ACC5(1, 0, 0)] + xvel0[OPS_ACC5(1, 1, 0)] +
         xvel0[OPS_ACC5(1, 0, 1)] + xvel0[OPS_ACC5(1, 1, 1)]) *
        xarea[OPS_ACC6(0, 0, 0)];

  dtut = dtu_safe * 4.0 * volume[OPS_ACC7(0, 0, 0)] /
         MAX(MAX(fabs(du1), fabs(du2)), 1.0e-5 * volume[OPS_ACC7(0, 0, 0)]);

  dv1 = (yvel0[OPS_ACC8(0, 0, 0)] + yvel0[OPS_ACC8(1, 0, 0)] +
         yvel0[OPS_ACC8(0, 0, 1)] + yvel0[OPS_ACC8(1, 0, 1)]) *
        yarea[OPS_ACC9(0, 0, 0)];
  dv2 = (yvel0[OPS_ACC8(0, 1, 0)] + yvel0[OPS_ACC8(1, 1, 0)] +
         yvel0[OPS_ACC8(0, 1, 1)] + yvel0[OPS_ACC8(1, 1, 1)]) *
        yarea[OPS_ACC9(0, 0, 0)];

  dtvt = dtv_safe * 4.0 * volume[OPS_ACC7(0, 0, 0)] /
         MAX(MAX(fabs(dv1), fabs(dv2)), 1.0e-5 * volume[OPS_ACC7(0, 0, 0)]);

  dw1 = (zvel0[OPS_ACC12(0, 0, 0)] + zvel0[OPS_ACC12(0, 1, 0)] +
         zvel0[OPS_ACC12(1, 0, 0)] + zvel0[OPS_ACC12(1, 1, 0)]) *
        zarea[OPS_ACC13(0, 0, 0)];
  dw2 = (zvel0[OPS_ACC12(0, 0, 1)] + zvel0[OPS_ACC12(0, 1, 1)] +
         zvel0[OPS_ACC12(1, 0, 1)] + zvel0[OPS_ACC12(1, 1, 1)]) *
        zarea[OPS_ACC13(0, 0, 0)];

  dtwt = dtw_safe * 4.0 * volume[OPS_ACC7(0, 0, 0)] /
         MAX(MAX(fabs(dw1), fabs(dw2)), 1.0e-5 * volume[OPS_ACC7(0, 0, 0)]);

  div = du2 - du1 + dv2 - dv1 + dw2 - dw1;
  dtdivt = dtdiv_safe * 4.0 * (volume[OPS_ACC7(0, 0, 0)]) /
           MAX(volume[OPS_ACC7(0, 0, 0)] * 1.0e-05, fabs(div));

  dt_min[OPS_ACC10(0, 0, 0)] =
      MIN(MIN(MIN(dtct, dtut), MIN(dtvt, dtdivt)), dtwt);
}
// user function
inline void flux_calc_kernely(double *vol_flux_y, const double *yarea,
                              const double *yvel0, const double *yvel1) {

  vol_flux_y[OPS_ACC0(0, 0, 0)] =
      0.125 * dt * (yarea[OPS_ACC1(0, 0, 0)]) *
      (yvel0[OPS_ACC2(0, 0, 0)] + yvel0[OPS_ACC2(1, 0, 0)] +
       yvel0[OPS_ACC2(0, 0, 1)] + yvel0[OPS_ACC2(1, 0, 1)] +
       yvel1[OPS_ACC3(0, 0, 0)] + yvel1[OPS_ACC3(1, 0, 0)] +
       yvel1[OPS_ACC3(0, 0, 1)] + yvel1[OPS_ACC3(1, 0, 1)]);
}
// user function
inline void calvar_kernel(const double *rho_new, const double *rhou_new,
                          const double *rhoE_new, double *workarray2,
                          double *workarray3) {
  double p, rhoi, u;
  rhoi = 1 / rho_new[OPS_ACC0(0)];
  u = rhou_new[OPS_ACC1(0)] * rhoi;
  p = gam1 * (rhoE_new[OPS_ACC2(0)] - 0.5 * rho_new[OPS_ACC0(0)] * u * u);

  workarray2[OPS_ACC3(0)] = p + rhou_new[OPS_ACC1(0)] * u;
  workarray3[OPS_ACC4(0)] = (p + rhoE_new[OPS_ACC2(0)]) * u;
}
inline void advec_mom_kernel_post_pre_advec_y( double *node_mass_post, const double *post_vol,
                                  const double *density1, double *node_mass_pre, const double *node_flux) {



  node_mass_post[OPS_ACC0(0,0)] = 0.25 * ( density1[OPS_ACC2(0,-1)] * post_vol[OPS_ACC1(0,-1)] +
                              density1[OPS_ACC2(0,0)]   * post_vol[OPS_ACC1(0,0)]   +
                              density1[OPS_ACC2(-1,-1)] * post_vol[OPS_ACC1(-1,-1)] +
                              density1[OPS_ACC2(-1,0)]  * post_vol[OPS_ACC1(-1,0)]  );

  node_mass_pre[OPS_ACC3(0,0)] = node_mass_post[OPS_ACC0(0,0)] - node_flux[OPS_ACC4(0,-1)] + node_flux[OPS_ACC4(0,0)];

}
inline void update_halo_kernel1_fr2(double *density0, double *density1,
                          double *energy0, double *energy1,
                          double *pressure, double *viscosity,
                          double *soundspeed , const int* fields) {
  if(fields[FIELD_DENSITY0] == 1) density0[OPS_ACC0(0,0,0)] = density0[OPS_ACC0(0,0,-3)];
  if(fields[FIELD_DENSITY1] == 1) density1[OPS_ACC1(0,0,0)] = density1[OPS_ACC1(0,0,-3)];
  if(fields[FIELD_ENERGY0] == 1) energy0[OPS_ACC2(0,0,0)] = energy0[OPS_ACC2(0,0,-3)];
  if(fields[FIELD_ENERGY1] == 1) energy1[OPS_ACC3(0,0,0)] = energy1[OPS_ACC3(0,0,-3)];
  if(fields[FIELD_PRESSURE] == 1) pressure[OPS_ACC4(0,0,0)] = pressure[OPS_ACC4(0,0,-3)];
  if(fields[FIELD_VISCOSITY] == 1) viscosity[OPS_ACC5(0,0,0)] = viscosity[OPS_ACC5(0,0,-3)];
  if(fields[FIELD_SOUNDSPEED] == 1) soundspeed[OPS_ACC6(0,0,0)] = soundspeed[OPS_ACC6(0,0,-3)];

}
// user function
inline void tea_leaf_cg_calc_w_reduce_kernel(double *w, const double *Kx,
                                             const double *Ky, const double *p,
                                             const double *rx, const double *ry,
                                             double *pw) {
  w[OPS_ACC0(0, 0)] = (1.0 + (*ry) * (Ky[OPS_ACC2(0, 1)] + Ky[OPS_ACC2(0, 0)]) +
                       (*rx) * (Kx[OPS_ACC1(1, 0)] + Kx[OPS_ACC1(0, 0)])) *
                          p[OPS_ACC3(0, 0)] -
                      (*ry) * (Ky[OPS_ACC2(0, 1)] * p[OPS_ACC3(0, 1)] +
                               Ky[OPS_ACC2(0, 0)] * p[OPS_ACC3(0, -1)]) -
                      (*rx) * (Kx[OPS_ACC1(1, 0)] * p[OPS_ACC3(1, 0)] +
                               Kx[OPS_ACC1(0, 0)] * p[OPS_ACC3(-1, 0)]);
  *pw = *pw + w[OPS_ACC0(0, 0)] * p[OPS_ACC3(0, 0)];
}
// user function
inline void tea_leaf_common_init_Kx_Ky_kernel(double *Kx, double *Ky,
                                              const double *w) {
  Kx[OPS_ACC0(0, 0)] = (w[OPS_ACC2(-1, 0)] + w[OPS_ACC2(0, 0)]) /
                       (2.0 * w[OPS_ACC2(-1, 0)] * w[OPS_ACC2(0, 0)]);
  Ky[OPS_ACC1(0, 0)] = (w[OPS_ACC2(0, -1)] + w[OPS_ACC2(0, 0)]) /
                       (2.0 * w[OPS_ACC2(0, -1)] * w[OPS_ACC2(0, 0)]);
}
// user function
inline void calc_dt_kernel_print(const double *xvel0, const double *yvel0,
                                 const double *zvel0, const double *density0,
                                 const double *energy0, const double *pressure,
                                 const double *soundspeed, double *output) {
  output[0] = xvel0[OPS_ACC0(0, 0, 0)];
  output[1] = yvel0[OPS_ACC1(0, 0, 0)];
  output[2] = zvel0[OPS_ACC2(0, 0, 0)];
  output[3] = xvel0[OPS_ACC0(1, 0, 0)];
  output[4] = yvel0[OPS_ACC1(1, 0, 0)];
  output[5] = zvel0[OPS_ACC2(0, 0, 0)];
  output[6] = xvel0[OPS_ACC0(1, 1, 0)];
  output[7] = yvel0[OPS_ACC1(1, 1, 0)];
  output[8] = zvel0[OPS_ACC2(0, 0, 0)];
  output[9] = xvel0[OPS_ACC0(0, 1, 0)];
  output[10] = yvel0[OPS_ACC1(0, 1, 0)];
  output[11] = zvel0[OPS_ACC2(0, 0, 0)];
  output[12] = xvel0[OPS_ACC0(0, 0, 1)];
  output[13] = yvel0[OPS_ACC1(0, 0, 1)];
  output[14] = zvel0[OPS_ACC2(0, 0, 1)];
  output[15] = xvel0[OPS_ACC0(1, 0, 1)];
  output[16] = yvel0[OPS_ACC1(1, 0, 1)];
  output[17] = zvel0[OPS_ACC2(0, 0, 1)];
  output[18] = xvel0[OPS_ACC0(1, 1, 1)];
  output[19] = yvel0[OPS_ACC1(1, 1, 1)];
  output[20] = zvel0[OPS_ACC2(0, 0, 1)];
  output[21] = xvel0[OPS_ACC0(0, 1, 1)];
  output[22] = yvel0[OPS_ACC1(0, 1, 1)];
  output[23] = zvel0[OPS_ACC2(0, 0, 1)];
  output[24] = density0[OPS_ACC3(0, 0, 0)];
  output[25] = energy0[OPS_ACC4(0, 0, 0)];
  output[26] = pressure[OPS_ACC5(0, 0, 0)];
  output[27] = soundspeed[OPS_ACC6(0, 0, 0)];
}
inline void update_halo_kernel1_r2(double *density0, double *energy0,
                                   double *energy1, double *u, double *p,
                                   double *sd, const int *fields) {
  if (fields[FIELD_DENSITY] == 1)
    density0[OPS_ACC0(0, 0)] = density0[OPS_ACC0(-3, 0)];
  if (fields[FIELD_ENERGY0] == 1)
    energy0[OPS_ACC1(0, 0)] = energy0[OPS_ACC1(-3, 0)];
  if (fields[FIELD_ENERGY1] == 1)
    energy1[OPS_ACC2(0, 0)] = energy1[OPS_ACC2(-3, 0)];
  if (fields[FIELD_U] == 1)
    u[OPS_ACC3(0, 0)] = u[OPS_ACC3(-3, 0)];
  if (fields[FIELD_P] == 1)
    p[OPS_ACC4(0, 0)] = p[OPS_ACC4(-3, 0)];
  if (fields[FIELD_SD] == 1)
    sd[OPS_ACC5(0, 0)] = sd[OPS_ACC5(-3, 0)];
}
//user function
inline void preproc_kernel(const double *u, double *du,
double *ax, double *bx, double *cx, double *ay, double *by, double *cy,
double *az, double *bz, double *cz, int *idx){

  double a, b, c, d;

  if(idx[0]==0 || idx[0]==nx-1 || idx[1]==0 || idx[1]==ny-1 || idx[2]==0 || idx[2]==nz-1) {
    d = 0.0f;
    a = 0.0f;
    b = 1.0f;
    c = 0.0f;
  } else {
    d = lambda*( u[OPS_ACC0(-1,0,0)] + u[OPS_ACC0(1,0,0)]
               + u[OPS_ACC0(0,-1,0)] + u[OPS_ACC0(0,1,0)]
               + u[OPS_ACC0(0,0,-1)] + u[OPS_ACC0(0,0,1)]
               - 6.0f*u[OPS_ACC0(0,0,0)]);
    a = -0.5f * lambda;
    b =  1.0f + lambda;
    c = -0.5f * lambda;

  }

  du[OPS_ACC1(0,0,0)] = d;
  ax[OPS_ACC2(0,0,0)] = a;
  bx[OPS_ACC3(0,0,0)] = b;
  cx[OPS_ACC4(0,0,0)] = c;
  ay[OPS_ACC5(0,0,0)] = a;
  by[OPS_ACC6(0,0,0)] = b;
  cy[OPS_ACC7(0,0,0)] = c;
  az[OPS_ACC8(0,0,0)] = a;
  bz[OPS_ACC9(0,0,0)] = b;
  cz[OPS_ACC10(0,0,0)] = c;
}
// user function
inline void save_kernel(double *rho_old, double *rhou_old, double *rhoE_old,
                        const double *rho_new, const double *rhou_new,
                        const double *rhoE_new) {
  rho_old[OPS_ACC0(0)] = rho_new[OPS_ACC3(0)];
  rhou_old[OPS_ACC1(0)] = rhou_new[OPS_ACC4(0)];
  rhoE_old[OPS_ACC2(0)] = rhoE_new[OPS_ACC5(0)];
}
// user function
inline void field_summary_kernel(const double *volume, const double *density0,
                                 const double *energy0, const double *pressure,
                                 const double *xvel0, const double *yvel0,
                                 double *vol, double *mass, double *ie,
                                 double *ke, double *press) {

  double vsqrd, cell_vol, cell_mass;

  vsqrd = 0.0;
  vsqrd = vsqrd +
          0.25 * (xvel0[OPS_ACC4(0, 0)] * xvel0[OPS_ACC4(0, 0)] +
                  yvel0[OPS_ACC5(0, 0)] * yvel0[OPS_ACC5(0, 0)]);
  vsqrd = vsqrd +
          0.25 * (xvel0[OPS_ACC4(1, 0)] * xvel0[OPS_ACC4(1, 0)] +
                  yvel0[OPS_ACC5(1, 0)] * yvel0[OPS_ACC5(1, 0)]);
  vsqrd = vsqrd +
          0.25 * (xvel0[OPS_ACC4(0, 1)] * xvel0[OPS_ACC4(0, 1)] +
                  yvel0[OPS_ACC5(0, 1)] * yvel0[OPS_ACC5(0, 1)]);
  vsqrd = vsqrd +
          0.25 * (xvel0[OPS_ACC4(1, 1)] * xvel0[OPS_ACC4(1, 1)] +
                  yvel0[OPS_ACC5(1, 1)] * yvel0[OPS_ACC5(1, 1)]);

  cell_vol = volume[OPS_ACC0(0, 0)];
  cell_mass = cell_vol * density0[OPS_ACC1(0, 0)];
  *vol = *vol + cell_vol;
  *mass = *mass + cell_mass;
  *ie = *ie + cell_mass * energy0[OPS_ACC2(0, 0)];
  *ke = *ke + cell_mass * 0.5 * vsqrd;
  *press = *press + cell_vol * pressure[OPS_ACC3(0, 0)];
}
// user function
inline void ideal_gas_kernel(const double *density, const double *energy,
                             double *pressure, double *soundspeed) {

  double sound_speed_squared, v, pressurebyenergy, pressurebyvolume;

  v = 1.0 / density[OPS_ACC0(0, 0, 0)];
  pressure[OPS_ACC2(0, 0, 0)] =
      (1.4 - 1.0) * density[OPS_ACC0(0, 0, 0)] * energy[OPS_ACC1(0, 0, 0)];

  pressurebyenergy = (1.4 - 1.0) * density[OPS_ACC0(0, 0, 0)];
  pressurebyvolume =
      -1.0 * density[OPS_ACC0(0, 0, 0)] * pressure[OPS_ACC2(0, 0, 0)];
  sound_speed_squared =
      v * v *
      (pressure[OPS_ACC2(0, 0, 0)] * pressurebyenergy - pressurebyvolume);
  soundspeed[OPS_ACC3(0, 0, 0)] = sqrt(sound_speed_squared);
}
// user function
inline void calc_dt_kernel(const double *celldx, const double *celldy,
                           const double *soundspeed, const double *viscosity,
                           const double *density0, const double *xvel0,
                           const double *xarea, const double *volume,
                           const double *yvel0, const double *yarea,
                           double *dt_min) {

  double div, dsx, dsy, dtut, dtvt, dtct, dtdivt, cc, dv1, dv2;

  dsx = celldx[OPS_ACC0(0, 0)];
  dsy = celldy[OPS_ACC1(0, 0)];

  cc = soundspeed[OPS_ACC2(0, 0)] * soundspeed[OPS_ACC2(0, 0)];
  cc = cc + 2.0 * viscosity[OPS_ACC3(0, 0)] / density0[OPS_ACC4(0, 0)];
  cc = MAX(sqrt(cc), g_small);

  dtct = dtc_safe * MIN(dsx, dsy) / cc;

  div = 0.0;

  dv1 = (xvel0[OPS_ACC5(0, 0)] + xvel0[OPS_ACC5(0, 1)]) * xarea[OPS_ACC6(0, 0)];
  dv2 = (xvel0[OPS_ACC5(1, 0)] + xvel0[OPS_ACC5(1, 1)]) * xarea[OPS_ACC6(1, 0)];

  div = div + dv2 - dv1;

  dtut = dtu_safe * 2.0 * volume[OPS_ACC7(0, 0)] /
         MAX(MAX(fabs(dv1), fabs(dv2)), g_small * volume[OPS_ACC7(0, 0)]);

  dv1 = (yvel0[OPS_ACC8(0, 0)] + yvel0[OPS_ACC8(1, 0)]) * yarea[OPS_ACC9(0, 0)];
  dv2 = (yvel0[OPS_ACC8(0, 1)] + yvel0[OPS_ACC8(1, 1)]) * yarea[OPS_ACC9(0, 1)];

  div = div + dv2 - dv1;

  dtvt = dtv_safe * 2.0 * volume[OPS_ACC7(0, 0)] /
         MAX(MAX(fabs(dv1), fabs(dv2)), g_small * volume[OPS_ACC7(0, 0)]);

  div = div / (2.0 * volume[OPS_ACC7(0, 0)]);

  if (div < -g_small)
    dtdivt = dtdiv_safe * (-1.0 / div);
  else
    dtdivt = g_big;

  dt_min[OPS_ACC10(0, 0)] = MIN(MIN(dtct, dtut), MIN(dtvt, dtdivt));
}
inline void advec_mom_kernel_x1( double *pre_vol, double *post_vol,
                          const double *volume,
                          const double *vol_flux_x, const double *vol_flux_y, const double *vol_flux_z) {

  post_vol[OPS_ACC1(0,0,0)] = volume[OPS_ACC2(0,0,0)] + vol_flux_y[OPS_ACC4(0,1,0)] -  vol_flux_y[OPS_ACC4(0,0,0)]
                                                      + vol_flux_z[OPS_ACC5(0,0,1)] -  vol_flux_z[OPS_ACC5(0,0,0)];
  pre_vol[OPS_ACC0(0,0,0)] = post_vol[OPS_ACC1(0,0,0)] + vol_flux_x[OPS_ACC3(1,0,0)] - vol_flux_x[OPS_ACC3(0,0,0)];

}
// user function
inline void advec_mom_kernel2_x(double *vel1, const double *node_mass_post,
                                const double *node_mass_pre,
                                const double *mom_flux) {

  vel1[OPS_ACC0(0, 0, 0)] =
      (vel1[OPS_ACC0(0, 0, 0)] * node_mass_pre[OPS_ACC2(0, 0, 0)] +
       mom_flux[OPS_ACC3(-1, 0, 0)] - mom_flux[OPS_ACC3(0, 0, 0)]) /
      node_mass_post[OPS_ACC1(0, 0, 0)];
}
inline void advec_mom_kernel_y2(double *pre_vol, double *post_vol,
                                const double *volume,
                                const double *vol_flux_x) {

  post_vol[OPS_ACC1(0, 0)] = volume[OPS_ACC2(0, 0)];
  pre_vol[OPS_ACC0(0, 0)] = post_vol[OPS_ACC1(0, 0)] +
                            vol_flux_x[OPS_ACC3(1, 0)] -
                            vol_flux_x[OPS_ACC3(0, 0)];
}
// user function
inline void initialise_chunk_kernel_celly(const double *vertexy, double *celly,
                                          double *celldy) {

  double d_y;
  d_y = (grid.ymax - grid.ymin) / (double)grid.y_cells;

  celly[OPS_ACC1(0, 0)] =
      0.5 * (vertexy[OPS_ACC0(0, 0)] + vertexy[OPS_ACC0(0, 1)]);
  celldy[OPS_ACC2(0, 0)] = d_y;
}
// user function
inline void initialise_chunk_kernel_y(double *vertexy, const int *yy,
                                      double *vertexdy) {
  int y_min = field.y_min - 2;

  double min_y, d_y;
  d_y = (grid.ymax - grid.ymin) / (double)grid.y_cells;
  min_y = grid.ymin + d_y * field.bottom;

  vertexy[OPS_ACC0(0, 0, 0)] = min_y + d_y * (yy[OPS_ACC1(0, 0, 0)] - y_min);
  vertexdy[OPS_ACC2(0, 0, 0)] = (double)d_y;
}
// user function
inline void checkop_kernel(const double *rho_new, const double *x,
                           const double *rhoin, double *pre, double *post,
                           int *num) {
  double diff;
  diff = (rho_new[OPS_ACC0(0)] - rhoin[OPS_ACC2(0)]);
  if (fabs(diff) < 0.01 && x[OPS_ACC1(0)] > -4.1) {
    *post = *post + diff * diff;
    *num = *num + 1;

  } else
    *pre = *pre + (rho_new[OPS_ACC0(0)] - rhol) * (rho_new[OPS_ACC0(0)] - rhol);
}
// user function
inline void advec_cell_kernel1_ydir(double *pre_vol, double *post_vol,
                                    const double *volume,
                                    const double *vol_flux_x,
                                    const double *vol_flux_y) {

  pre_vol[OPS_ACC0(0, 0)] =
      volume[OPS_ACC2(0, 0)] +
      (vol_flux_y[OPS_ACC4(0, 1)] - vol_flux_y[OPS_ACC4(0, 0)] +
       vol_flux_x[OPS_ACC3(1, 0)] - vol_flux_x[OPS_ACC3(0, 0)]);
  post_vol[OPS_ACC1(0, 0)] =
      pre_vol[OPS_ACC0(0, 0)] -
      (vol_flux_y[OPS_ACC4(0, 1)] - vol_flux_y[OPS_ACC4(0, 0)]);
}
// user function
inline void initialise_chunk_kernel_volume(double *volume, const double *celldy,
                                           double *xarea, const double *celldx,
                                           double *yarea) {

  double d_x, d_y;

  d_x = (grid.xmax - grid.xmin) / (double)grid.x_cells;
  d_y = (grid.ymax - grid.ymin) / (double)grid.y_cells;

  volume[OPS_ACC0(0, 0)] = d_x * d_y;
  xarea[OPS_ACC2(0, 0)] = celldy[OPS_ACC1(0, 0)];
  yarea[OPS_ACC4(0, 0)] = celldx[OPS_ACC3(0, 0)];
}
// user function
inline void
advec_cell_kernel4_zdir(double *density1, double *energy1,
                        const double *mass_flux_z, const double *vol_flux_z,
                        const double *pre_vol, const double *post_vol,
                        double *pre_mass, double *post_mass, double *advec_vol,
                        double *post_ener, const double *ener_flux) {

  pre_mass[OPS_ACC6(0, 0, 0)] =
      density1[OPS_ACC0(0, 0, 0)] * pre_vol[OPS_ACC4(0, 0, 0)];
  post_mass[OPS_ACC7(0, 0, 0)] = pre_mass[OPS_ACC6(0, 0, 0)] +
                                 mass_flux_z[OPS_ACC2(0, 0, 0)] -
                                 mass_flux_z[OPS_ACC2(0, 0, 1)];
  post_ener[OPS_ACC9(0, 0, 0)] =
      (energy1[OPS_ACC1(0, 0, 0)] * pre_mass[OPS_ACC6(0, 0, 0)] +
       ener_flux[OPS_ACC10(0, 0, 0)] - ener_flux[OPS_ACC10(0, 0, 1)]) /
      post_mass[OPS_ACC7(0, 0, 0)];
  advec_vol[OPS_ACC8(0, 0, 0)] = pre_vol[OPS_ACC4(0, 0, 0)] +
                                 vol_flux_z[OPS_ACC3(0, 0, 0)] -
                                 vol_flux_z[OPS_ACC3(0, 0, 1)];
  density1[OPS_ACC0(0, 0, 0)] =
      post_mass[OPS_ACC7(0, 0, 0)] / advec_vol[OPS_ACC8(0, 0, 0)];
  energy1[OPS_ACC1(0, 0, 0)] = post_ener[OPS_ACC9(0, 0, 0)];
}
// user function
inline void Riemann_kernel(const double *rho_new, const double *rhou_new,
                           const double *rhoE_new, double *alam, double *r,
                           double *al) {

  double rl, rr, rho, u, hl, hr, h, Vsq, csq, c;
  double dw1, dw2, dw3, delpc2, rdeluc;

  rl = sqrt(rho_new[OPS_ACC0(0)]);
  rr = sqrt(rho_new[OPS_ACC0(1)]);
  rho = rl + rr;
  u = ((rhou_new[OPS_ACC1(0)] / rl) + (rhou_new[OPS_ACC1(1)] / rr)) / rho;
  double fni =
      rhou_new[OPS_ACC1(0)] * rhou_new[OPS_ACC1(0)] / rho_new[OPS_ACC0(0)];
  double p = gam1 * (rhoE_new[OPS_ACC2(0)] - 0.5 * fni);
  hl = (rhoE_new[OPS_ACC2(0)] + p) / rl;
  fni = rhou_new[OPS_ACC1(1)] * rhou_new[OPS_ACC1(1)] / rho_new[OPS_ACC0(1)];
  p = gam1 * (rhoE_new[OPS_ACC2(1)] - 0.5 * fni);
  hr = (rhoE_new[OPS_ACC2(1)] + p) / rr;
  h = (hl + hr) / rho;
  Vsq = u * u;
  csq = gam1 * (h - 0.5 * Vsq);
  c = sqrt(csq);

  alam[OPS_ACC_MD3(0, 0)] = u - c;
  alam[OPS_ACC_MD3(1, 0)] = u;
  alam[OPS_ACC_MD3(2, 0)] = u + c;

  r[OPS_ACC_MD4(0, 0)] = 1.0;
  r[OPS_ACC_MD4(1, 0)] = 1.0;
  r[OPS_ACC_MD4(2, 0)] = 1.0;

  r[OPS_ACC_MD4(3, 0)] = u - c;
  r[OPS_ACC_MD4(4, 0)] = u;
  r[OPS_ACC_MD4(5, 0)] = u + c;

  r[OPS_ACC_MD4(6, 0)] = h - u * c;
  r[OPS_ACC_MD4(7, 0)] = 0.5 * Vsq;
  r[OPS_ACC_MD4(8, 0)] = h + u * c;

  for (int m = 0; m < 9; m++)
    r[OPS_ACC_MD4(m, 0)] = r[OPS_ACC_MD4(m, 0)] / csq;

  dw1 = rho_new[OPS_ACC0(1)] - rho_new[OPS_ACC0(0)];
  dw2 = rhou_new[OPS_ACC1(1)] - rhou_new[OPS_ACC1(0)];
  dw3 = rhoE_new[OPS_ACC2(1)] - rhoE_new[OPS_ACC2(0)];

  delpc2 = gam1 * (dw3 + 0.50 * Vsq * dw1 - u * dw2) / csq;
  rdeluc = (dw2 - u * dw1) / c;

  al[OPS_ACC_MD5(0, 0)] = 0.5 * (delpc2 - rdeluc);
  al[OPS_ACC_MD5(1, 0)] = dw1 - delpc2;
  al[OPS_ACC_MD5(2, 0)] = 0.5 * (delpc2 + rdeluc);

  for (int m = 0; m < 3; m++)
    al[OPS_ACC_MD5(m, 0)] = al[OPS_ACC_MD5(m, 0)] * csq;
}
// user function
inline void calc_dt_kernel_print(const double *xvel0, const double *yvel0,
                                 const double *density0, const double *energy0,
                                 const double *pressure,
                                 const double *soundspeed, double *output) {
  output[0] = xvel0[OPS_ACC0(1, 0)];
  output[1] = yvel0[OPS_ACC1(1, 0)];
  output[2] = xvel0[OPS_ACC0(-1, 0)];
  output[3] = yvel0[OPS_ACC1(-1, 0)];
  output[4] = xvel0[OPS_ACC0(0, 1)];
  output[5] = yvel0[OPS_ACC1(0, 1)];
  output[6] = xvel0[OPS_ACC0(0, -1)];
  output[7] = yvel0[OPS_ACC1(0, -1)];
  output[8] = density0[OPS_ACC2(0, 0)];
  output[9] = energy0[OPS_ACC3(0, 0)];
  output[10] = pressure[OPS_ACC4(0, 0)];
  output[11] = soundspeed[OPS_ACC5(0, 0)];
}