/* * Perform the MPPE rekey algorithm, from RFC 3078, sec. 7.3. * Well, not what's written there, but rather what they meant. */ static void mppe_rekey(struct ppp_mppe_state * state, int initial_key) { struct scatterlist sg_in[1], sg_out[1]; struct blkcipher_desc desc = { .tfm = state->arc4 }; get_new_key_from_sha(state); if (!initial_key) { crypto_blkcipher_setkey(state->arc4, state->sha1_digest, state->keylen); sg_init_table(sg_in, 1); sg_init_table(sg_out, 1); setup_sg(sg_in, state->sha1_digest, state->keylen); setup_sg(sg_out, state->session_key, state->keylen); if (crypto_blkcipher_encrypt(&desc, sg_out, sg_in, state->keylen) != 0) { printk(KERN_WARNING "mppe_rekey: cipher_encrypt failed\n"); } } else { memcpy(state->session_key, state->sha1_digest, state->keylen); } if (state->keylen == 8) { /* See RFC 3078 */ state->session_key[0] = 0xd1; state->session_key[1] = 0x26; state->session_key[2] = 0x9e; } crypto_blkcipher_setkey(state->arc4, state->session_key, state->keylen); } /* * Allocate space for a (de)compressor. */ static void *mppe_alloc(unsigned char *options, int optlen) { struct ppp_mppe_state *state; unsigned int digestsize; if (optlen != CILEN_MPPE + sizeof(state->master_key) || options[0] != CI_MPPE || options[1] != CILEN_MPPE) goto out; state = kzalloc(sizeof(*state), GFP_KERNEL); if (state == NULL) goto out; state->arc4 = crypto_alloc_blkcipher("ecb(arc4)", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(state->arc4)) { state->arc4 = NULL; goto out_free; } state->sha1 = crypto_alloc_hash("sha1", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(state->sha1)) { state->sha1 = NULL; goto out_free; } digestsize = crypto_hash_digestsize(state->sha1); if (digestsize < MPPE_MAX_KEY_LEN) goto out_free; state->sha1_digest = kmalloc(digestsize, GFP_KERNEL); if (!state->sha1_digest) goto out_free; /* Save keys. */ memcpy(state->master_key, &options[CILEN_MPPE], sizeof(state->master_key)); memcpy(state->session_key, state->master_key, sizeof(state->master_key)); /* * We defer initial key generation until mppe_init(), as mppe_alloc() * is called frequently during negotiation. */ return (void *)state; out_free: if (state->sha1_digest) kfree(state->sha1_digest); if (state->sha1) crypto_free_hash(state->sha1); if (state->arc4) crypto_free_blkcipher(state->arc4); kfree(state); out: return NULL; } /* * Deallocate space for a (de)compressor. */ static void mppe_free(void *arg) { struct ppp_mppe_state *state = (struct ppp_mppe_state *) arg; if (state) { if (state->sha1_digest) kfree(state->sha1_digest); if (state->sha1) crypto_free_hash(state->sha1); if (state->arc4) crypto_free_blkcipher(state->arc4); kfree(state); } } /* * Initialize (de)compressor state. */ static int mppe_init(void *arg, unsigned char *options, int optlen, int unit, int debug, const char *debugstr) { struct ppp_mppe_state *state = (struct ppp_mppe_state *) arg; unsigned char mppe_opts; if (optlen != CILEN_MPPE || options[0] != CI_MPPE || options[1] != CILEN_MPPE) return 0; MPPE_CI_TO_OPTS(&options[2], mppe_opts); if (mppe_opts & MPPE_OPT_128) state->keylen = 16; else if (mppe_opts & MPPE_OPT_40) state->keylen = 8; else { printk(KERN_WARNING "%s[%d]: unknown key length\n", debugstr, unit); return 0; } if (mppe_opts & MPPE_OPT_STATEFUL) state->stateful = 1; /* Generate the initial session key. */ mppe_rekey(state, 1); if (debug) { int i; char mkey[sizeof(state->master_key) * 2 + 1]; char skey[sizeof(state->session_key) * 2 + 1]; printk(KERN_DEBUG "%s[%d]: initialized with %d-bit %s mode\n", debugstr, unit, (state->keylen == 16) ? 128 : 40, (state->stateful) ? "stateful" : "stateless"); for (i = 0; i < sizeof(state->master_key); i++) sprintf(mkey + i * 2, "%02x", state->master_key[i]); for (i = 0; i < sizeof(state->session_key); i++) sprintf(skey + i * 2, "%02x", state->session_key[i]); printk(KERN_DEBUG "%s[%d]: keys: master: %s initial session: %s\n", debugstr, unit, mkey, skey); } /* * Initialize the coherency count. The initial value is not specified * in RFC 3078, but we can make a reasonable assumption that it will * start at 0. Setting it to the max here makes the comp/decomp code * do the right thing (determined through experiment). */ state->ccount = MPPE_CCOUNT_SPACE - 1; /* * Note that even though we have initialized the key table, we don't * set the FLUSHED bit. This is contrary to RFC 3078, sec. 3.1. */ state->bits = MPPE_BIT_ENCRYPTED; state->unit = unit; state->debug = debug; return 1; } static int mppe_comp_init(void *arg, unsigned char *options, int optlen, int unit, int hdrlen, int debug) { /* ARGSUSED */ return mppe_init(arg, options, optlen, unit, debug, "mppe_comp_init"); } /* * We received a CCP Reset-Request (actually, we are sending a Reset-Ack), * tell the compressor to rekey. Note that we MUST NOT rekey for * every CCP Reset-Request; we only rekey on the next xmit packet. * We might get multiple CCP Reset-Requests if our CCP Reset-Ack is lost. * So, rekeying for every CCP Reset-Request is broken as the peer will not * know how many times we've rekeyed. (If we rekey and THEN get another * CCP Reset-Request, we must rekey again.) */ static void mppe_comp_reset(void *arg) { struct ppp_mppe_state *state = (struct ppp_mppe_state *) arg; state->bits |= MPPE_BIT_FLUSHED; } /* * Compress (encrypt) a packet. * It's strange to call this a compressor, since the output is always * MPPE_OVHD + 2 bytes larger than the input. */ static int mppe_compress(void *arg, unsigned char *ibuf, unsigned char *obuf, int isize, int osize) { struct ppp_mppe_state *state = (struct ppp_mppe_state *) arg; struct blkcipher_desc desc = { .tfm = state->arc4 }; int proto; struct scatterlist sg_in[1], sg_out[1]; /* * Check that the protocol is in the range we handle. */ proto = PPP_PROTOCOL(ibuf); if (proto < 0x0021 || proto > 0x00fa) return 0; /* Make sure we have enough room to generate an encrypted packet. */ if (osize < isize + MPPE_OVHD + 2) { /* Drop the packet if we should encrypt it, but can't. */ printk(KERN_DEBUG "mppe_compress[%d]: osize too small! " "(have: %d need: %d)\n", state->unit, osize, osize + MPPE_OVHD + 2); return -1; } osize = isize + MPPE_OVHD + 2; /* * Copy over the PPP header and set control bits. */ obuf[0] = PPP_ADDRESS(ibuf); obuf[1] = PPP_CONTROL(ibuf); obuf[2] = PPP_COMP >> 8; /* isize + MPPE_OVHD + 1 */ obuf[3] = PPP_COMP; /* isize + MPPE_OVHD + 2 */ obuf += PPP_HDRLEN; state->ccount = (state->ccount + 1) % MPPE_CCOUNT_SPACE; if (state->debug >= 7) printk(KERN_DEBUG "mppe_compress[%d]: ccount %d\n", state->unit, state->ccount); obuf[0] = state->ccount >> 8; obuf[1] = state->ccount & 0xff; if (!state->stateful || /* stateless mode */ ((state->ccount & 0xff) == 0xff) || /* "flag" packet */ (state->bits & MPPE_BIT_FLUSHED)) { /* CCP Reset-Request */ /* We must rekey */ if (state->debug && state->stateful) printk(KERN_DEBUG "mppe_compress[%d]: rekeying\n", state->unit); mppe_rekey(state, 0); state->bits |= MPPE_BIT_FLUSHED; } obuf[0] |= state->bits; state->bits &= ~MPPE_BIT_FLUSHED; /* reset for next xmit */ obuf += MPPE_OVHD; ibuf += 2; /* skip to proto field */ isize -= 2; /* Encrypt packet */ sg_init_table(sg_in, 1); sg_init_table(sg_out, 1); setup_sg(sg_in, ibuf, isize); setup_sg(sg_out, obuf, osize); if (crypto_blkcipher_encrypt(&desc, sg_out, sg_in, isize) != 0) { printk(KERN_DEBUG "crypto_cypher_encrypt failed\n"); return -1; } state->stats.unc_bytes += isize; state->stats.unc_packets++; state->stats.comp_bytes += osize; state->stats.comp_packets++; return osize; } /* * Since every frame grows by MPPE_OVHD + 2 bytes, this is always going * to look bad ... and the longer the link is up the worse it will get. */ static void mppe_comp_stats(void *arg, struct compstat *stats) { struct ppp_mppe_state *state = (struct ppp_mppe_state *) arg; *stats = state->stats; } static int mppe_decomp_init(void *arg, unsigned char *options, int optlen, int unit, int hdrlen, int mru, int debug) { /* ARGSUSED */ return mppe_init(arg, options, optlen, unit, debug, "mppe_decomp_init"); } /* * We received a CCP Reset-Ack. Just ignore it. */ static void mppe_decomp_reset(void *arg) { /* ARGSUSED */ return; } /* * Decompress (decrypt) an MPPE packet. */ static int mppe_decompress(void *arg, unsigned char *ibuf, int isize, unsigned char *obuf, int osize) { struct ppp_mppe_state *state = (struct ppp_mppe_state *) arg; struct blkcipher_desc desc = { .tfm = state->arc4 }; unsigned ccount; int flushed = MPPE_BITS(ibuf) & MPPE_BIT_FLUSHED; int sanity = 0; struct scatterlist sg_in[1], sg_out[1]; if (isize <= PPP_HDRLEN + MPPE_OVHD) { if (state->debug) printk(KERN_DEBUG "mppe_decompress[%d]: short pkt (%d)\n", state->unit, isize); return DECOMP_ERROR; } /* * Make sure we have enough room to decrypt the packet. * Note that for our test we only subtract 1 byte whereas in * mppe_compress() we added 2 bytes (+MPPE_OVHD); * this is to account for possible PFC. */ if (osize < isize - MPPE_OVHD - 1) { printk(KERN_DEBUG "mppe_decompress[%d]: osize too small! " "(have: %d need: %d)\n", state->unit, osize, isize - MPPE_OVHD - 1); return DECOMP_ERROR; } osize = isize - MPPE_OVHD - 2; /* assume no PFC */ ccount = MPPE_CCOUNT(ibuf); if (state->debug >= 7) printk(KERN_DEBUG "mppe_decompress[%d]: ccount %d\n", state->unit, ccount); /* sanity checks -- terminate with extreme prejudice */ if (!(MPPE_BITS(ibuf) & MPPE_BIT_ENCRYPTED)) { printk(KERN_DEBUG "mppe_decompress[%d]: ENCRYPTED bit not set!\n", state->unit); state->sanity_errors += 100; sanity = 1; } if (!state->stateful && !flushed) { printk(KERN_DEBUG "mppe_decompress[%d]: FLUSHED bit not set in " "stateless mode!\n", state->unit); state->sanity_errors += 100; sanity = 1; } if (state->stateful && ((ccount & 0xff) == 0xff) && !flushed) { printk(KERN_DEBUG "mppe_decompress[%d]: FLUSHED bit not set on " "flag packet!\n", state->unit); state->sanity_errors += 100; sanity = 1; } if (sanity) { if (state->sanity_errors < SANITY_MAX) return DECOMP_ERROR; else /* * Take LCP down if the peer is sending too many bogons. * We don't want to do this for a single or just a few * instances since it could just be due to packet corruption. */ return DECOMP_FATALERROR; } /* * Check the coherency count. */ if (!state->stateful) { /* RFC 3078, sec 8.1. Rekey for every packet. */ while (state->ccount != ccount) { mppe_rekey(state, 0); state->ccount = (state->ccount + 1) % MPPE_CCOUNT_SPACE; } } else { /* RFC 3078, sec 8.2. */ if (!state->discard) { /* normal state */ state->ccount = (state->ccount + 1) % MPPE_CCOUNT_SPACE; if (ccount != state->ccount) { /* * (ccount > state->ccount) * Packet loss detected, enter the discard state. * Signal the peer to rekey (by sending a CCP Reset-Request). */ state->discard = 1; return DECOMP_ERROR; } } else { /* discard state */ if (!flushed) { /* ccp.c will be silent (no additional CCP Reset-Requests). */ return DECOMP_ERROR; } else { /* Rekey for every missed "flag" packet. */ while ((ccount & ~0xff) != (state->ccount & ~0xff)) { mppe_rekey(state, 0); state->ccount = (state->ccount + 256) % MPPE_CCOUNT_SPACE; } /* reset */ state->discard = 0; state->ccount = ccount; /* * Another problem with RFC 3078 here. It implies that the * peer need not send a Reset-Ack packet. But RFC 1962 * requires it. Hopefully, M$ does send a Reset-Ack; even * though it isn't required for MPPE synchronization, it is * required to reset CCP state. */ } } if (flushed) mppe_rekey(state, 0); } /* * Fill in the first part of the PPP header. The protocol field * comes from the decrypted data. */ obuf[0] = PPP_ADDRESS(ibuf); /* +1 */ obuf[1] = PPP_CONTROL(ibuf); /* +1 */ obuf += 2; ibuf += PPP_HDRLEN + MPPE_OVHD; isize -= PPP_HDRLEN + MPPE_OVHD; /* -6 */ /* net osize: isize-4 */ /* * Decrypt the first byte in order to check if it is * a compressed or uncompressed protocol field. */ sg_init_table(sg_in, 1); sg_init_table(sg_out, 1); setup_sg(sg_in, ibuf, 1); setup_sg(sg_out, obuf, 1); if (crypto_blkcipher_decrypt(&desc, sg_out, sg_in, 1) != 0) { printk(KERN_DEBUG "crypto_cypher_decrypt failed\n"); return DECOMP_ERROR; } /* * Do PFC decompression. * This would be nicer if we were given the actual sk_buff * instead of a char *. */ if ((obuf[0] & 0x01) != 0) { obuf[1] = obuf[0]; obuf[0] = 0; obuf++; osize++; } /* And finally, decrypt the rest of the packet. */ setup_sg(sg_in, ibuf + 1, isize - 1); setup_sg(sg_out, obuf + 1, osize - 1); if (crypto_blkcipher_decrypt(&desc, sg_out, sg_in, isize - 1)) { printk(KERN_DEBUG "crypto_cypher_decrypt failed\n"); return DECOMP_ERROR; } state->stats.unc_bytes += osize; state->stats.unc_packets++; state->stats.comp_bytes += isize; state->stats.comp_packets++; /* good packet credit */ state->sanity_errors >>= 1; return osize; } /* * Incompressible data has arrived (this should never happen!). * We should probably drop the link if the protocol is in the range * of what should be encrypted. At the least, we should drop this * packet. (How to do this?) */ static void mppe_incomp(void *arg, unsigned char *ibuf, int icnt) { struct ppp_mppe_state *state = (struct ppp_mppe_state *) arg; if (state->debug && (PPP_PROTOCOL(ibuf) >= 0x0021 && PPP_PROTOCOL(ibuf) <= 0x00fa)) printk(KERN_DEBUG "mppe_incomp[%d]: incompressible (unencrypted) data! " "(proto %04x)\n", state->unit, PPP_PROTOCOL(ibuf)); state->stats.inc_bytes += icnt; state->stats.inc_packets++; state->stats.unc_bytes += icnt; state->stats.unc_packets++; } /************************************************************* * Module interface table *************************************************************/ /* * Procedures exported to if_ppp.c. */ static struct compressor ppp_mppe = { .compress_proto = CI_MPPE, .comp_alloc = mppe_alloc, .comp_free = mppe_free, .comp_init = mppe_comp_init, .comp_reset = mppe_comp_reset, .compress = mppe_compress, .comp_stat = mppe_comp_stats, .decomp_alloc = mppe_alloc, .decomp_free = mppe_free, .decomp_init = mppe_decomp_init, .decomp_reset = mppe_decomp_reset, .decompress = mppe_decompress, .incomp = mppe_incomp, .decomp_stat = mppe_comp_stats, .owner = THIS_MODULE, .comp_extra = MPPE_PAD, }; /* * ppp_mppe_init() * * Prior to allowing load, try to load the arc4 and sha1 crypto * libraries. The actual use will be allocated later, but * this way the module will fail to insmod if they aren't available. */ static int __init ppp_mppe_init(void) { int answer; if (!(crypto_has_blkcipher("ecb(arc4)", 0, CRYPTO_ALG_ASYNC) && crypto_has_hash("sha1", 0, CRYPTO_ALG_ASYNC))) return -ENODEV; sha_pad = kmalloc(sizeof(struct sha_pad), GFP_KERNEL); if (!sha_pad) return -ENOMEM; sha_pad_init(sha_pad); answer = ppp_register_compressor(&ppp_mppe); if (answer == 0) printk(KERN_INFO "PPP MPPE Compression module registered\n"); else kfree(sha_pad); return answer; } static void __exit ppp_mppe_cleanup(void) { ppp_unregister_compressor(&ppp_mppe); kfree(sha_pad); } module_init(ppp_mppe_init); module_exit(ppp_mppe_cleanup);
/* * Queue a packet. Start transmission if not active. * Packet is placed in Information field of PPP frame. * Called at splnet as the if->if_output handler. * Called at splnet from pppwrite(). */ static int pppoutput_serialized(struct ifnet *ifp, struct ifaltq_subque *ifsq, struct mbuf *m0, struct sockaddr *dst, struct rtentry *rtp) { struct ppp_softc *sc = &ppp_softc[ifp->if_dunit]; int protocol, address, control; u_char *cp; int error; #ifdef INET struct ip *ip; #endif struct ifqueue *ifq; enum NPmode mode; int len; struct mbuf *m; struct altq_pktattr pktattr; if (sc->sc_devp == NULL || (ifp->if_flags & IFF_RUNNING) == 0 || ((ifp->if_flags & IFF_UP) == 0 && dst->sa_family != AF_UNSPEC)) { error = ENETDOWN; /* sort of */ goto bad; } ifq_classify(&ifp->if_snd, m0, dst->sa_family, &pktattr); /* * Compute PPP header. */ m0->m_flags &= ~M_HIGHPRI; switch (dst->sa_family) { #ifdef INET case AF_INET: address = PPP_ALLSTATIONS; control = PPP_UI; protocol = PPP_IP; mode = sc->sc_npmode[NP_IP]; /* * If this packet has the "low delay" bit set in the IP header, * put it on the fastq instead. */ ip = mtod(m0, struct ip *); if (ip->ip_tos & IPTOS_LOWDELAY) m0->m_flags |= M_HIGHPRI; break; #endif #ifdef IPX case AF_IPX: /* * This is pretty bogus.. We dont have an ipxcp module in pppd * yet to configure the link parameters. Sigh. I guess a * manual ifconfig would do.... -Peter */ address = PPP_ALLSTATIONS; control = PPP_UI; protocol = PPP_IPX; mode = NPMODE_PASS; break; #endif case AF_UNSPEC: address = PPP_ADDRESS(dst->sa_data); control = PPP_CONTROL(dst->sa_data); protocol = PPP_PROTOCOL(dst->sa_data); mode = NPMODE_PASS; break; default: kprintf("%s: af%d not supported\n", ifp->if_xname, dst->sa_family); error = EAFNOSUPPORT; goto bad; } /* * Drop this packet, or return an error, if necessary. */ if (mode == NPMODE_ERROR) { error = ENETDOWN; goto bad; } if (mode == NPMODE_DROP) { error = 0; goto bad; } /* * Add PPP header. If no space in first mbuf, allocate another. * (This assumes M_LEADINGSPACE is always 0 for a cluster mbuf.) */ if (M_LEADINGSPACE(m0) < PPP_HDRLEN) { m0 = m_prepend(m0, PPP_HDRLEN, MB_DONTWAIT); if (m0 == NULL) { error = ENOBUFS; goto bad; } m0->m_len = 0; } else m0->m_data -= PPP_HDRLEN; cp = mtod(m0, u_char *); *cp++ = address; *cp++ = control; *cp++ = protocol >> 8; *cp++ = protocol & 0xff; m0->m_len += PPP_HDRLEN; len = 0; for (m = m0; m != NULL; m = m->m_next) len += m->m_len; if (sc->sc_flags & SC_LOG_OUTPKT) { kprintf("%s output: ", ifp->if_xname); pppdumpm(m0); } if ((protocol & 0x8000) == 0) { #ifdef PPP_FILTER /* * Apply the pass and active filters to the packet, * but only if it is a data packet. */ *mtod(m0, u_char *) = 1; /* indicates outbound */ if (sc->sc_pass_filt.bf_insns != NULL && bpf_filter(sc->sc_pass_filt.bf_insns, (u_char *) m0, len, 0) == 0) { error = 0; /* drop this packet */ goto bad; } /* * Update the time we sent the most recent packet. */ if (sc->sc_active_filt.bf_insns == NULL || bpf_filter(sc->sc_active_filt.bf_insns, (u_char *) m0, len, 0)) sc->sc_last_sent = time_uptime; *mtod(m0, u_char *) = address; #else /* * Update the time we sent the most recent data packet. */ sc->sc_last_sent = time_uptime; #endif /* PPP_FILTER */ } BPF_MTAP(ifp, m0); /* * Put the packet on the appropriate queue. */ crit_enter(); if (mode == NPMODE_QUEUE) { /* XXX we should limit the number of packets on this queue */ *sc->sc_npqtail = m0; m0->m_nextpkt = NULL; sc->sc_npqtail = &m0->m_nextpkt; } else { /* fastq and if_snd are emptied at spl[soft]net now */ if ((m0->m_flags & M_HIGHPRI) && !ifq_is_enabled(&sc->sc_if.if_snd)) { ifq = &sc->sc_fastq; if (IF_QFULL(ifq) && dst->sa_family != AF_UNSPEC) { IF_DROP(ifq); m_freem(m0); error = ENOBUFS; } else { IF_ENQUEUE(ifq, m0); error = 0; } } else { ASSERT_ALTQ_SQ_SERIALIZED_HW(ifsq); error = ifsq_enqueue(ifsq, m0, &pktattr); } if (error) { crit_exit(); IFNET_STAT_INC(&sc->sc_if, oerrors, 1); sc->sc_stats.ppp_oerrors++; return (error); } (*sc->sc_start)(sc); } getmicrotime(&ifp->if_lastchange); IFNET_STAT_INC(ifp, opackets, 1); IFNET_STAT_INC(ifp, obytes, len); crit_exit(); return (0); bad: m_freem(m0); return (error); }
/* * Get a packet to send. This procedure is intended to be called at * splsoftnet, since it may involve time-consuming operations such as * applying VJ compression, packet compression, address/control and/or * protocol field compression to the packet. */ struct mbuf * ppp_dequeue(struct ppp_softc *sc) { struct mbuf *m, *mp; u_char *cp; int address, control, protocol; /* * Grab a packet to send: first try the fast queue, then the * normal queue. */ IF_DEQUEUE(&sc->sc_fastq, m); if (m == NULL) m = ifsq_dequeue(ifq_get_subq_default(&sc->sc_if.if_snd)); if (m == NULL) return NULL; ++sc->sc_stats.ppp_opackets; /* * Extract the ppp header of the new packet. * The ppp header will be in one mbuf. */ cp = mtod(m, u_char *); address = PPP_ADDRESS(cp); control = PPP_CONTROL(cp); protocol = PPP_PROTOCOL(cp); switch (protocol) { case PPP_IP: #ifdef VJC /* * If the packet is a TCP/IP packet, see if we can compress it. */ if ((sc->sc_flags & SC_COMP_TCP) && sc->sc_comp != NULL) { struct ip *ip; int type; mp = m; ip = (struct ip *) (cp + PPP_HDRLEN); if (mp->m_len <= PPP_HDRLEN) { mp = mp->m_next; if (mp == NULL) break; ip = mtod(mp, struct ip *); } /* this code assumes the IP/TCP header is in one non-shared mbuf */ if (ip->ip_p == IPPROTO_TCP) { type = sl_compress_tcp(mp, ip, sc->sc_comp, !(sc->sc_flags & SC_NO_TCP_CCID)); switch (type) { case TYPE_UNCOMPRESSED_TCP: protocol = PPP_VJC_UNCOMP; break; case TYPE_COMPRESSED_TCP: protocol = PPP_VJC_COMP; cp = mtod(m, u_char *); cp[0] = address; /* header has moved */ cp[1] = control; cp[2] = 0; break; } cp[3] = protocol; /* update protocol in PPP header */ } }
/** * z_compress - compress a PPP packet with Deflate compression. * @arg: pointer to private state for the compressor * @rptr: uncompressed packet (input) * @obuf: compressed packet (output) * @isize: size of uncompressed packet * @osize: space available at @obuf * * Returns the length of the compressed packet, or 0 if the * packet is incompressible. */ static int z_compress(void *arg, unsigned char *rptr, unsigned char *obuf, int isize, int osize) { struct ppp_deflate_state *state = (struct ppp_deflate_state *) arg; int r, proto, off, olen, oavail; unsigned char *wptr; /* * Check that the protocol is in the range we handle. */ proto = PPP_PROTOCOL(rptr); if (proto > 0x3fff || proto == 0xfd || proto == 0xfb) return 0; /* Don't generate compressed packets which are larger than the uncompressed packet. */ if (osize > isize) osize = isize; wptr = obuf; /* * Copy over the PPP header and store the 2-byte sequence number. */ wptr[0] = PPP_ADDRESS(rptr); wptr[1] = PPP_CONTROL(rptr); wptr[2] = PPP_COMP >> 8; wptr[3] = PPP_COMP; wptr += PPP_HDRLEN; wptr[0] = state->seqno >> 8; wptr[1] = state->seqno; wptr += DEFLATE_OVHD; olen = PPP_HDRLEN + DEFLATE_OVHD; state->strm.next_out = wptr; state->strm.avail_out = oavail = osize - olen; ++state->seqno; off = (proto > 0xff) ? 2 : 3; /* skip 1st proto byte if 0 */ rptr += off; state->strm.next_in = rptr; state->strm.avail_in = (isize - off); for (;;) { r = zlib_deflate(&state->strm, Z_PACKET_FLUSH); if (r != Z_OK) { if (state->debug) printk(KERN_ERR "z_compress: deflate returned %d\n", r); break; } if (state->strm.avail_out == 0) { olen += oavail; state->strm.next_out = NULL; state->strm.avail_out = oavail = 1000000; } else { break; /* all done */ } } olen += oavail - state->strm.avail_out; /* * See if we managed to reduce the size of the packet. */ if (olen < isize) { state->stats.comp_bytes += olen; state->stats.comp_packets++; } else { state->stats.inc_bytes += isize; state->stats.inc_packets++; olen = 0; } state->stats.unc_bytes += isize; state->stats.unc_packets++; return olen; }
/** * z_decompress - decompress a Deflate-compressed packet. * @arg: pointer to private state for the decompressor * @ibuf: pointer to input (compressed) packet data * @isize: length of input packet * @obuf: pointer to space for output (decompressed) packet * @osize: amount of space available at @obuf * * Because of patent problems, we return DECOMP_ERROR for errors * found by inspecting the input data and for system problems, but * DECOMP_FATALERROR for any errors which could possibly be said to * be being detected "after" decompression. For DECOMP_ERROR, * we can issue a CCP reset-request; for DECOMP_FATALERROR, we may be * infringing a patent of Motorola's if we do, so we take CCP down * instead. * * Given that the frame has the correct sequence number and a good FCS, * errors such as invalid codes in the input most likely indicate a * bug, so we return DECOMP_FATALERROR for them in order to turn off * compression, even though they are detected by inspecting the input. */ static int z_decompress(void *arg, unsigned char *ibuf, int isize, unsigned char *obuf, int osize) { struct ppp_deflate_state *state = (struct ppp_deflate_state *) arg; int olen, seq, r; int decode_proto, overflow; unsigned char overflow_buf[1]; if (isize <= PPP_HDRLEN + DEFLATE_OVHD) { if (state->debug) printk(KERN_DEBUG "z_decompress%d: short pkt (%d)\n", state->unit, isize); return DECOMP_ERROR; } /* Check the sequence number. */ seq = (ibuf[PPP_HDRLEN] << 8) + ibuf[PPP_HDRLEN+1]; if (seq != (state->seqno & 0xffff)) { if (state->debug) printk(KERN_DEBUG "z_decompress%d: bad seq # %d, expected %d\n", state->unit, seq, state->seqno & 0xffff); return DECOMP_ERROR; } ++state->seqno; /* * Fill in the first part of the PPP header. The protocol field * comes from the decompressed data. */ obuf[0] = PPP_ADDRESS(ibuf); obuf[1] = PPP_CONTROL(ibuf); obuf[2] = 0; /* * Set up to call inflate. We set avail_out to 1 initially so we can * look at the first byte of the output and decide whether we have * a 1-byte or 2-byte protocol field. */ state->strm.next_in = ibuf + PPP_HDRLEN + DEFLATE_OVHD; state->strm.avail_in = isize - (PPP_HDRLEN + DEFLATE_OVHD); state->strm.next_out = obuf + 3; state->strm.avail_out = 1; decode_proto = 1; overflow = 0; /* * Call inflate, supplying more input or output as needed. */ for (;;) { r = zlib_inflate(&state->strm, Z_PACKET_FLUSH); if (r != Z_OK) { if (state->debug) printk(KERN_DEBUG "z_decompress%d: inflate returned %d (%s)\n", state->unit, r, (state->strm.msg? state->strm.msg: "")); return DECOMP_FATALERROR; } if (state->strm.avail_out != 0) break; /* all done */ if (decode_proto) { state->strm.avail_out = osize - PPP_HDRLEN; if ((obuf[3] & 1) == 0) { /* 2-byte protocol field */ obuf[2] = obuf[3]; --state->strm.next_out; ++state->strm.avail_out; } decode_proto = 0; } else if (!overflow) { /* * We've filled up the output buffer; the only way to * find out whether inflate has any more characters * left is to give it another byte of output space. */ state->strm.next_out = overflow_buf; state->strm.avail_out = 1; overflow = 1; } else { if (state->debug) printk(KERN_DEBUG "z_decompress%d: ran out of mru\n", state->unit); return DECOMP_FATALERROR; } } if (decode_proto) { if (state->debug) printk(KERN_DEBUG "z_decompress%d: didn't get proto\n", state->unit); return DECOMP_ERROR; } olen = osize + overflow - state->strm.avail_out; state->stats.unc_bytes += olen; state->stats.unc_packets++; state->stats.comp_bytes += isize; state->stats.comp_packets++; return olen; }
/* * Queue a packet. Start transmission if not active. * Packet is placed in Information field of PPP frame. */ int pppoutput(struct ifnet *ifp, struct mbuf *m0, struct sockaddr *dst, struct rtentry *rtp) { struct ppp_softc *sc = ifp->if_softc; int protocol, address, control; u_char *cp; int s, error; struct ip *ip; struct ifqueue *ifq; enum NPmode mode; int len; if (sc->sc_devp == NULL || (ifp->if_flags & IFF_RUNNING) == 0 || ((ifp->if_flags & IFF_UP) == 0 && dst->sa_family != AF_UNSPEC)) { error = ENETDOWN; /* sort of */ goto bad; } #ifdef DIAGNOSTIC if (ifp->if_rdomain != rtable_l2(m0->m_pkthdr.ph_rtableid)) { printf("%s: trying to send packet on wrong domain. " "if %d vs. mbuf %d, AF %d\n", ifp->if_xname, ifp->if_rdomain, rtable_l2(m0->m_pkthdr.ph_rtableid), dst->sa_family); } #endif /* * Compute PPP header. */ m0->m_flags &= ~M_HIGHPRI; switch (dst->sa_family) { #ifdef INET case AF_INET: address = PPP_ALLSTATIONS; control = PPP_UI; protocol = PPP_IP; mode = sc->sc_npmode[NP_IP]; /* * If this packet has the "low delay" bit set in the IP header, * put it on the fastq instead. */ ip = mtod(m0, struct ip *); if (ip->ip_tos & IPTOS_LOWDELAY) m0->m_flags |= M_HIGHPRI; break; #endif case AF_UNSPEC: address = PPP_ADDRESS(dst->sa_data); control = PPP_CONTROL(dst->sa_data); protocol = PPP_PROTOCOL(dst->sa_data); mode = NPMODE_PASS; break; default: printf("%s: af%d not supported\n", ifp->if_xname, dst->sa_family); error = EAFNOSUPPORT; goto bad; } /* * Drop this packet, or return an error, if necessary. */ if (mode == NPMODE_ERROR) { error = ENETDOWN; goto bad; } if (mode == NPMODE_DROP) { error = 0; goto bad; } /* * Add PPP header. If no space in first mbuf, allocate another. * (This assumes M_LEADINGSPACE is always 0 for a cluster mbuf.) */ M_PREPEND(m0, PPP_HDRLEN, M_DONTWAIT); if (m0 == 0) { error = ENOBUFS; goto bad; } cp = mtod(m0, u_char *); *cp++ = address; *cp++ = control; *cp++ = protocol >> 8; *cp++ = protocol & 0xff; if ((m0->m_flags & M_PKTHDR) == 0) panic("mbuf packet without packet header!"); len = m0->m_pkthdr.len; if (sc->sc_flags & SC_LOG_OUTPKT) { printf("%s output: ", ifp->if_xname); pppdumpm(m0); } if ((protocol & 0x8000) == 0) { #if NBPFILTER > 0 /* * Apply the pass and active filters to the packet, * but only if it is a data packet. */ *mtod(m0, u_char *) = 1; /* indicates outbound */ if (sc->sc_pass_filt.bf_insns != 0 && bpf_filter(sc->sc_pass_filt.bf_insns, (u_char *) m0, len, 0) == 0) { error = 0; /* drop this packet */ goto bad; } /* * Update the time we sent the most recent packet. */ if (sc->sc_active_filt.bf_insns == 0 || bpf_filter(sc->sc_active_filt.bf_insns, (u_char *) m0, len, 0)) sc->sc_last_sent = time_second; *mtod(m0, u_char *) = address; #else /* * Update the time we sent the most recent packet. */ sc->sc_last_sent = time_second; #endif } #if NBPFILTER > 0 /* * See if bpf wants to look at the packet. */ if (sc->sc_bpf) bpf_mtap(sc->sc_bpf, m0, BPF_DIRECTION_OUT); #endif /* * Put the packet on the appropriate queue. */ s = splsoftnet(); if (mode == NPMODE_QUEUE) { /* XXX we should limit the number of packets on this queue */ *sc->sc_npqtail = m0; m0->m_nextpkt = NULL; sc->sc_npqtail = &m0->m_nextpkt; } else { if (m0->m_flags & M_HIGHPRI) { ifq = &sc->sc_fastq; if (IF_QFULL(ifq) && dst->sa_family != AF_UNSPEC) { IF_DROP(ifq); m_freem(m0); error = ENOBUFS; } else { IF_ENQUEUE(ifq, m0); error = 0; } } else IFQ_ENQUEUE(&sc->sc_if.if_snd, m0, NULL, error); if (error) { splx(s); sc->sc_if.if_oerrors++; sc->sc_stats.ppp_oerrors++; return (error); } (*sc->sc_start)(sc); } ifp->if_opackets++; ifp->if_obytes += len; splx(s); return (0); bad: m_freem(m0); return (error); }
/* * Decompress (decrypt) an MPPE packet. */ static int mppe_decompress(void *arg, unsigned char *ibuf, int isize, unsigned char *obuf, int osize) { struct ppp_mppe_state *state = (struct ppp_mppe_state *) arg; unsigned ccount; int flushed = MPPE_BITS(ibuf) & MPPE_BIT_FLUSHED; int sanity = 0; struct scatterlist sg_in[1], sg_out[1]; if (isize <= PPP_HDRLEN + MPPE_OVHD) { if (state->debug) printk(KERN_DEBUG "mppe_decompress[%d]: short pkt (%d)\n", state->unit, isize); return DECOMP_ERROR; } /* * Make sure we have enough room to decrypt the packet. * Note that for our test we only subtract 1 byte whereas in * mppe_compress() we added 2 bytes (+MPPE_OVHD); * this is to account for possible PFC. */ if (osize < isize - MPPE_OVHD - 1) { printk(KERN_DEBUG "mppe_decompress[%d]: osize too small! " "(have: %d need: %d)\n", state->unit, osize, isize - MPPE_OVHD - 1); return DECOMP_ERROR; } osize = isize - MPPE_OVHD - 2; /* assume no PFC */ ccount = MPPE_CCOUNT(ibuf); if (state->debug >= 7) printk(KERN_DEBUG "mppe_decompress[%d]: ccount %d\n", state->unit, ccount); /* sanity checks -- terminate with extreme prejudice */ if (!(MPPE_BITS(ibuf) & MPPE_BIT_ENCRYPTED)) { printk(KERN_DEBUG "mppe_decompress[%d]: ENCRYPTED bit not set!\n", state->unit); state->sanity_errors += 100; sanity = 1; } if (!state->stateful && !flushed) { printk(KERN_DEBUG "mppe_decompress[%d]: FLUSHED bit not set in " "stateless mode!\n", state->unit); state->sanity_errors += 100; sanity = 1; } if (state->stateful && ((ccount & 0xff) == 0xff) && !flushed) { printk(KERN_DEBUG "mppe_decompress[%d]: FLUSHED bit not set on " "flag packet!\n", state->unit); state->sanity_errors += 100; sanity = 1; } if (sanity) { if (state->sanity_errors < SANITY_MAX) return DECOMP_ERROR; else /* * Take LCP down if the peer is sending too many bogons. * We don't want to do this for a single or just a few * instances since it could just be due to packet corruption. */ return DECOMP_FATALERROR; } /* * Check the coherency count. */ if (!state->stateful) { /* RFC 3078, sec 8.1. Rekey for every packet. */ while (state->ccount != ccount) { mppe_rekey(state, 0); state->ccount = (state->ccount + 1) % MPPE_CCOUNT_SPACE; } } else { /* RFC 3078, sec 8.2. */ if (!state->discard) { /* normal state */ state->ccount = (state->ccount + 1) % MPPE_CCOUNT_SPACE; if (ccount != state->ccount) { /* * (ccount > state->ccount) * Packet loss detected, enter the discard state. * Signal the peer to rekey (by sending a CCP Reset-Request). */ state->discard = 1; return DECOMP_ERROR; } } else { /* discard state */ if (!flushed) { /* ccp.c will be silent (no additional CCP Reset-Requests). */ return DECOMP_ERROR; } else { /* Rekey for every missed "flag" packet. */ while ((ccount & ~0xff) != (state->ccount & ~0xff)) { mppe_rekey(state, 0); state->ccount = (state->ccount + 256) % MPPE_CCOUNT_SPACE; } /* reset */ state->discard = 0; state->ccount = ccount; /* * Another problem with RFC 3078 here. It implies that the * peer need not send a Reset-Ack packet. But RFC 1962 * requires it. Hopefully, M$ does send a Reset-Ack; even * though it isn't required for MPPE synchronization, it is * required to reset CCP state. */ } } if (flushed) mppe_rekey(state, 0); } /* * Fill in the first part of the PPP header. The protocol field * comes from the decrypted data. */ obuf[0] = PPP_ADDRESS(ibuf); /* +1 */ obuf[1] = PPP_CONTROL(ibuf); /* +1 */ obuf += 2; ibuf += PPP_HDRLEN + MPPE_OVHD; isize -= PPP_HDRLEN + MPPE_OVHD; /* -6 */ /* net osize: isize-4 */ /* * Decrypt the first byte in order to check if it is * a compressed or uncompressed protocol field. */ setup_sg(sg_in, ibuf, 1); setup_sg(sg_out, obuf, 1); if (crypto_cipher_decrypt(state->arc4, sg_out, sg_in, 1) != 0) { printk(KERN_DEBUG "crypto_cypher_decrypt failed\n"); return DECOMP_ERROR; } /* * Do PFC decompression. * This would be nicer if we were given the actual sk_buff * instead of a char *. */ if ((obuf[0] & 0x01) != 0) { obuf[1] = obuf[0]; obuf[0] = 0; obuf++; osize++; } /* And finally, decrypt the rest of the packet. */ setup_sg(sg_in, ibuf + 1, isize - 1); setup_sg(sg_out, obuf + 1, osize - 1); if (crypto_cipher_decrypt(state->arc4, sg_out, sg_in, isize - 1) != 0) { printk(KERN_DEBUG "crypto_cypher_decrypt failed\n"); return DECOMP_ERROR; } state->stats.unc_bytes += osize; state->stats.unc_packets++; state->stats.comp_bytes += isize; state->stats.comp_packets++; /* good packet credit */ state->sanity_errors >>= 1; return osize; }
/* * Compress (encrypt) a packet. * It's strange to call this a compressor, since the output is always * MPPE_OVHD + 2 bytes larger than the input. */ static int mppe_compress(void *arg, unsigned char *ibuf, unsigned char *obuf, int isize, int osize) { struct ppp_mppe_state *state = (struct ppp_mppe_state *) arg; int proto; struct scatterlist sg_in[1], sg_out[1]; /* * Check that the protocol is in the range we handle. */ proto = PPP_PROTOCOL(ibuf); if (proto < 0x0021 || proto > 0x00fa) return 0; /* Make sure we have enough room to generate an encrypted packet. */ if (osize < isize + MPPE_OVHD + 2) { /* Drop the packet if we should encrypt it, but can't. */ printk(KERN_DEBUG "mppe_compress[%d]: osize too small! " "(have: %d need: %d)\n", state->unit, osize, osize + MPPE_OVHD + 2); return -1; } osize = isize + MPPE_OVHD + 2; /* * Copy over the PPP header and set control bits. */ obuf[0] = PPP_ADDRESS(ibuf); obuf[1] = PPP_CONTROL(ibuf); obuf[2] = PPP_COMP >> 8; /* isize + MPPE_OVHD + 1 */ obuf[3] = PPP_COMP; /* isize + MPPE_OVHD + 2 */ obuf += PPP_HDRLEN; state->ccount = (state->ccount + 1) % MPPE_CCOUNT_SPACE; if (state->debug >= 7) printk(KERN_DEBUG "mppe_compress[%d]: ccount %d\n", state->unit, state->ccount); obuf[0] = state->ccount >> 8; obuf[1] = state->ccount & 0xff; if (!state->stateful || /* stateless mode */ ((state->ccount & 0xff) == 0xff) || /* "flag" packet */ (state->bits & MPPE_BIT_FLUSHED)) { /* CCP Reset-Request */ /* We must rekey */ if (state->debug && state->stateful) printk(KERN_DEBUG "mppe_compress[%d]: rekeying\n", state->unit); mppe_rekey(state, 0); state->bits |= MPPE_BIT_FLUSHED; } obuf[0] |= state->bits; state->bits &= ~MPPE_BIT_FLUSHED; /* reset for next xmit */ obuf += MPPE_OVHD; ibuf += 2; /* skip to proto field */ isize -= 2; /* Encrypt packet */ setup_sg(sg_in, ibuf, isize); setup_sg(sg_out, obuf, osize); if (crypto_cipher_encrypt(state->arc4, sg_out, sg_in, isize) != 0) { printk(KERN_DEBUG "crypto_cypher_encrypt failed\n"); return -1; } state->stats.unc_bytes += isize; state->stats.unc_packets++; state->stats.comp_bytes += osize; state->stats.comp_packets++; return osize; }
static int z_decompress(void *arg, unsigned char *ibuf, int isize, unsigned char *obuf, int osize) { struct ppp_deflate_state *state = (struct ppp_deflate_state *) arg; int olen, seq, r; int decode_proto, overflow; unsigned char overflow_buf[1]; if (isize <= PPP_HDRLEN + DEFLATE_OVHD) { if (state->debug) printk(KERN_DEBUG "z_decompress%d: short pkt (%d)\n", state->unit, isize); return DECOMP_ERROR; } /* */ seq = get_unaligned_be16(ibuf + PPP_HDRLEN); if (seq != (state->seqno & 0xffff)) { if (state->debug) printk(KERN_DEBUG "z_decompress%d: bad seq # %d, expected %d\n", state->unit, seq, state->seqno & 0xffff); return DECOMP_ERROR; } ++state->seqno; /* */ obuf[0] = PPP_ADDRESS(ibuf); obuf[1] = PPP_CONTROL(ibuf); obuf[2] = 0; /* */ state->strm.next_in = ibuf + PPP_HDRLEN + DEFLATE_OVHD; state->strm.avail_in = isize - (PPP_HDRLEN + DEFLATE_OVHD); state->strm.next_out = obuf + 3; state->strm.avail_out = 1; decode_proto = 1; overflow = 0; /* */ for (;;) { r = zlib_inflate(&state->strm, Z_PACKET_FLUSH); if (r != Z_OK) { if (state->debug) printk(KERN_DEBUG "z_decompress%d: inflate returned %d (%s)\n", state->unit, r, (state->strm.msg? state->strm.msg: "")); return DECOMP_FATALERROR; } if (state->strm.avail_out != 0) break; /* */ if (decode_proto) { state->strm.avail_out = osize - PPP_HDRLEN; if ((obuf[3] & 1) == 0) { /* */ obuf[2] = obuf[3]; --state->strm.next_out; ++state->strm.avail_out; } decode_proto = 0; } else if (!overflow) { /* */ state->strm.next_out = overflow_buf; state->strm.avail_out = 1; overflow = 1; } else { if (state->debug) printk(KERN_DEBUG "z_decompress%d: ran out of mru\n", state->unit); return DECOMP_FATALERROR; } } if (decode_proto) { if (state->debug) printk(KERN_DEBUG "z_decompress%d: didn't get proto\n", state->unit); return DECOMP_ERROR; } olen = osize + overflow - state->strm.avail_out; state->stats.unc_bytes += olen; state->stats.unc_packets++; state->stats.comp_bytes += isize; state->stats.comp_packets++; return olen; }
static int z_compress(void *arg, unsigned char *rptr, unsigned char *obuf, int isize, int osize) { struct ppp_deflate_state *state = (struct ppp_deflate_state *) arg; int r, proto, off, olen, oavail; unsigned char *wptr; /* */ proto = PPP_PROTOCOL(rptr); if (proto > 0x3fff || proto == 0xfd || proto == 0xfb) return 0; /* */ if (osize > isize) osize = isize; wptr = obuf; /* */ wptr[0] = PPP_ADDRESS(rptr); wptr[1] = PPP_CONTROL(rptr); put_unaligned_be16(PPP_COMP, wptr + 2); wptr += PPP_HDRLEN; put_unaligned_be16(state->seqno, wptr); wptr += DEFLATE_OVHD; olen = PPP_HDRLEN + DEFLATE_OVHD; state->strm.next_out = wptr; state->strm.avail_out = oavail = osize - olen; ++state->seqno; off = (proto > 0xff) ? 2 : 3; /* */ rptr += off; state->strm.next_in = rptr; state->strm.avail_in = (isize - off); for (;;) { r = zlib_deflate(&state->strm, Z_PACKET_FLUSH); if (r != Z_OK) { if (state->debug) printk(KERN_ERR "z_compress: deflate returned %d\n", r); break; } if (state->strm.avail_out == 0) { olen += oavail; state->strm.next_out = NULL; state->strm.avail_out = oavail = 1000000; } else { break; /* */ } } olen += oavail - state->strm.avail_out; /* */ if (olen < isize) { state->stats.comp_bytes += olen; state->stats.comp_packets++; } else { state->stats.inc_bytes += isize; state->stats.inc_packets++; olen = 0; } state->stats.unc_bytes += isize; state->stats.unc_packets++; return olen; }