示例#1
0
文件: request.c 项目: snsl/pvfs2-osd
int pvfs_check_vector(const struct iovec *iov,
                      int count,
                      PVFS_Request *req,
                      void **buf)
{
    int i;
    int vstart;
    int vlen;
    int bsz;
    PVFS_size stride;
    int32_t *bsz_array;
    PVFS_size *disp_array;
    PVFS_Request *req_array;
    int rblk;

    /* set up request arrays */
    bsz_array = (int32_t *)malloc(count * sizeof(int32_t));
    if (!bsz_array)
    {
        return -1;
    }
    disp_array = (PVFS_size *)malloc(count * sizeof(PVFS_size));
    if (!disp_array)
    {
        free(bsz_array);
        return -1;
    }
    req_array = (PVFS_Request *)malloc(count * sizeof(PVFS_Request));
    if (!disp_array)
    {
        free(disp_array);
        free(bsz_array);
        return -1;
    }
    /* for now we assume that addresses in the iovec are ascending */
    /* not that otherwise won't work, but we're not sure */
    /* the first address will be assumed to be the base address of */
    /* the whole request.  the displacement of each vector is relative */
    /* to that address */
    if (count > 0)
    {
        *buf = iov[0].iov_base;
    }
    rblk = 0;
    /* start at beginning of iovec */
    i = 0;
    while(i < count)
    {
        /* starting a new vector at position i */
        vstart = i;
        vlen = 1;
        bsz = iov[i].iov_len;
        stride = 0;
        /* vector blocks must be of equal size */
        while(++i < count && iov[i].iov_len == bsz)
        {
            if(vlen == 1)
            {
                /* two blocks of equal size are a vector of two */
                stride = (u_char *)iov[i].iov_base -
                        (u_char *)iov[i - 1].iov_base;
                if (stride < bsz)
                {
                    /* overlapping blocks and negative strides are problems */
                    break;
                }
                vlen++;
            }
            else if (((u_char *)iov[i].iov_base -
                        (u_char *)iov[i - 1].iov_base) == stride)
            {
                /* to add more blocks, stride must match */
                vlen++;
            }
            else
            {
                /* doesn't match - end of vector */
                break;
            }
        }
        if (vlen == 1)
        {
            /* trivial conversion */
            bsz_array[rblk] = iov[vstart].iov_len;
            disp_array[rblk] = (PVFS_size)((u_char *)iov[vstart].iov_base -
                                                (u_char *)*buf);
            req_array[rblk] = PVFS_BYTE;
            rblk++;
        }
        else
        {
            /* found a vector */
            bsz_array[rblk] = 1;
            disp_array[rblk] = (PVFS_size)((u_char *)iov[vstart].iov_base -
                                                (u_char *)*buf);
            PVFS_Request_vector(vlen, bsz, stride, PVFS_BYTE, &req_array[rblk]);
            rblk++;
        }
    }
    /* now build full request */
    PVFS_Request_struct(rblk, bsz_array, disp_array, req_array, req);
    PVFS_Request_commit(req);
    free(bsz_array);
    free(disp_array);
    while (rblk--)
    {
        if (req_array[rblk] != PVFS_BYTE)
        {
            PVFS_Request_free(&req_array[rblk]);
        }
    }
    free(req_array);
    /* req is not freed, the caller is expected to do that */
    return 0;
}
示例#2
0
int convert_mpi_pvfs2_dtype(MPI_Datatype *mpi_dtype,
			    PVFS_Request *pvfs_dtype)
{
    int num_int = -1, num_addr = -1, num_dtype = -1,
	combiner = -1, i = -1, ret = -1, leaf = -1;
    int *arr_int = NULL;
    MPI_Aint *arr_addr = NULL;
    MPI_Datatype *arr_dtype = NULL;
    PVFS_Request *old_pvfs_dtype = NULL;
    PVFS_Request *old_pvfs_dtype_arr = NULL;
    int arr_count = -1;
    PVFS_size *pvfs_arr_disp = NULL;
    int *pvfs_arr_len = NULL;

    MPI_Type_get_envelope(*mpi_dtype,
			  &num_int,
			  &num_addr,
			  &num_dtype,
			  &combiner);

    /* Depending on type of datatype do the following
     * operations */

    if (combiner == MPI_COMBINER_NAMED)
    {
	convert_named(mpi_dtype, pvfs_dtype, combiner);
	return 1;
    }

    /* Allocate space for the arrays necessary for
     * MPI_Type_get_contents */

    if ((arr_int = ADIOI_Malloc(sizeof(int)*num_int)) == NULL)
    {
	fprintf(stderr, "Failed to allocate array_int\n");
	return -1;
    }
    if ((arr_addr = ADIOI_Malloc(sizeof(int)*num_addr)) == NULL)
    {
	ADIOI_Free(arr_int);
	fprintf(stderr, "Failed to allocate array_addr\n");
	return -1;
    }
    if ((arr_dtype = ADIOI_Malloc(sizeof(MPI_Datatype)*num_dtype)) == NULL)
    {
	ADIOI_Free(arr_int);
	ADIOI_Free(arr_addr);
	fprintf(stderr, "Failed to allocate array_dtypes\n");
	return -1;
    }

    MPI_Type_get_contents(*mpi_dtype,
			  num_int,
			  num_addr,
			  num_dtype,
			  arr_int,
			  arr_addr,
			  arr_dtype);

    /* If it's not a predefined datatype, it is either a
     * derived datatype or a structured datatype */

    if (combiner != MPI_COMBINER_STRUCT)
    {
	if ((old_pvfs_dtype = ADIOI_Malloc(sizeof(PVFS_Request))) == NULL)
	    fprintf(stderr, "convert_mpi_pvfs2_dtype: "
		    "Failed to allocate PVFS_Request\n");
	switch (combiner)
	{
	    case MPI_COMBINER_CONTIGUOUS:
		leaf = convert_mpi_pvfs2_dtype(&arr_dtype[0], old_pvfs_dtype);
		ret = PVFS_Request_contiguous(arr_int[0],
					      *old_pvfs_dtype, pvfs_dtype);
		break;
	    case MPI_COMBINER_VECTOR:
		leaf = convert_mpi_pvfs2_dtype(&arr_dtype[0], old_pvfs_dtype);
		ret = PVFS_Request_vector(arr_int[0], arr_int[1],
					  arr_int[2], *old_pvfs_dtype,
					  pvfs_dtype);
		break;
	    case MPI_COMBINER_HVECTOR:
		leaf = convert_mpi_pvfs2_dtype(&arr_dtype[0], old_pvfs_dtype);
		ret = PVFS_Request_hvector(arr_int[0], arr_int[1],
					   arr_addr[0], *old_pvfs_dtype,
					   pvfs_dtype);
		break;
		/* Both INDEXED and HINDEXED types require PVFS_size
		 * address arrays.  Therefore, we need to copy and
		 * convert the data from MPI_get_contents() into
		 * a PVFS_size buffer */
	    case MPI_COMBINER_INDEXED:
		leaf = convert_mpi_pvfs2_dtype(&arr_dtype[0], old_pvfs_dtype);
		if ((pvfs_arr_disp =
			    ADIOI_Malloc(arr_int[0]*sizeof(PVFS_size))) == 0)
		{
		    fprintf(stderr, "convert_mpi_pvfs2_dtype: "
			    "Failed to allocate pvfs_arr_disp\n");
		}
		for (i = 0; i < arr_int[0]; i++)
		{
		    pvfs_arr_disp[i] =
			(PVFS_size) arr_int[arr_int[0]+1+i];
		}
		ret = PVFS_Request_indexed(arr_int[0], &arr_int[1],
				     pvfs_arr_disp,
				     *old_pvfs_dtype, pvfs_dtype);
		ADIOI_Free(pvfs_arr_disp);
		break;
	    case MPI_COMBINER_HINDEXED:
		leaf = convert_mpi_pvfs2_dtype(&arr_dtype[0], old_pvfs_dtype);
		if ((pvfs_arr_disp =
			    ADIOI_Malloc(arr_int[0]*sizeof(PVFS_size))) == 0)
		{
		    fprintf(stderr, "convert_mpi_pvfs2_dtype: "
			    "Failed to allocate pvfs_arr_disp\n");
		}
		for (i = 0; i < arr_int[0]; i++)
		{
		    pvfs_arr_disp[i] =
			(PVFS_size) arr_addr[i];
		}
		ret = PVFS_Request_hindexed(arr_int[0], &arr_int[1],
				      (int64_t *)&arr_addr[0],
				      *old_pvfs_dtype, pvfs_dtype);
		ADIOI_Free(pvfs_arr_disp);
		break;
	    case MPI_COMBINER_DUP:
                leaf = convert_mpi_pvfs2_dtype(&arr_dtype[0], old_pvfs_dtype);
		ret = PVFS_Request_contiguous(1,
					      *old_pvfs_dtype, pvfs_dtype);

                break;
	    case MPI_COMBINER_INDEXED_BLOCK:
		/* No native PVFS2 support for this operation currently */
		ADIOI_Free(old_pvfs_dtype);
		fprintf(stderr, "convert_mpi_pvfs2_dtype: "
			"INDEXED_BLOCK is unsupported\n");
		break;
	    case MPI_COMBINER_HINDEXED_BLOCK:
		/* No native PVFS2 support for this operation currently */
		ADIOI_Free(old_pvfs_dtype);
		fprintf(stderr, "convert_mpi_pvfs2_dtype: "
			"HINDEXED_BLOCK is unsupported\n");
		break;
	    case MPI_COMBINER_HINDEXED_INTEGER:
		ADIOI_Free(old_pvfs_dtype);
		fprintf(stderr, "convert_mpi_pvfs2_dtype: "
			"HINDEXED_INTEGER is unsupported\n");
		break;
	    case MPI_COMBINER_STRUCT_INTEGER:
		ADIOI_Free(old_pvfs_dtype);
		fprintf(stderr, "convert_mpi_pvfs2_dtype: "
			"STRUCT_INTEGER is unsupported\n");
		break;
	    case MPI_COMBINER_SUBARRAY:
		ADIOI_Free(old_pvfs_dtype);
		fprintf(stderr, "convert_mpi_pvfs2_dtype: "
			"SUBARRAY is unsupported\n");
		break;
	    case MPI_COMBINER_DARRAY:
		ADIOI_Free(old_pvfs_dtype);
		fprintf(stderr, "convert_mpi_pvfs2_dtype: "
			"DARRAY is unsupported\n");
		break;
	    case MPI_COMBINER_F90_REAL:
		ADIOI_Free(old_pvfs_dtype);
		fprintf(stderr, "convert_mpi_pvfs2_dtype: "
			"F90_REAL is unsupported\n");
		break;
	    case MPI_COMBINER_F90_COMPLEX:
		ADIOI_Free(old_pvfs_dtype);
		fprintf(stderr, "convert_mpi_pvfs2_dtype: "
			"F90_COMPLEX is unsupported\n");
		break;
	    case MPI_COMBINER_F90_INTEGER:
		ADIOI_Free(old_pvfs_dtype);
		fprintf(stderr, "convert_mpi_pvfs2_dtype: "
			"F90_INTEGER is unsupported\n");
		break;
	    case MPI_COMBINER_RESIZED:
		ADIOI_Free(old_pvfs_dtype);
		fprintf(stderr, "convert_mpi_pvfs2_dtype: "
			"RESIZED is unsupported\n");
		break;
	    default:
		break;
	}

	if (ret != 0)
	    fprintf(stderr, "Error in PVFS_Request_* "
		    "for a derived datatype\n");

#ifdef DEBUG_DTYPE
	print_dtype_info(combiner,
			 num_int,
			 num_addr,
			 num_dtype,
			 arr_int,
			 arr_addr,
			 arr_dtype);
#endif

	if (leaf != 1 && combiner != MPI_COMBINER_DUP)
	    MPI_Type_free(&arr_dtype[0]);

	ADIOI_Free(arr_int);
	ADIOI_Free(arr_addr);
	ADIOI_Free(arr_dtype);

	PVFS_Request_free(old_pvfs_dtype);
	ADIOI_Free(old_pvfs_dtype);

	return ret;
    }
    else /* MPI_COMBINER_STRUCT */
    {
	MPI_Aint mpi_lb = -1, mpi_extent = -1;
	PVFS_offset pvfs_lb = -1;
	PVFS_size pvfs_extent = -1;
	int has_lb_ub = 0;

	/* When converting into a PVFS_Request_struct, we no longer
	 * can use MPI_LB and MPI_UB.  Therfore, we have to do the
	 * following.
	 * We simply ignore all the MPI_LB and MPI_UB types and
	 * get the lb and extent and pass it on through a
	 * PVFS resized_req */

	arr_count = 0;
	for (i = 0; i < arr_int[0]; i++)
	{
	    if (arr_dtype[i] != MPI_LB &&
		arr_dtype[i] != MPI_UB)
	    {
		arr_count++;
	    }
	}

	if (arr_int[0] != arr_count)
	{
	    MPI_Type_get_extent(*mpi_dtype, &mpi_lb, &mpi_extent);
	    pvfs_lb = mpi_lb;
	    pvfs_extent = mpi_extent;
	    if ((pvfs_arr_len = ADIOI_Malloc(arr_count*sizeof(int)))
		== NULL)
	    {
		fprintf(stderr, "convert_mpi_pvfs2_dtype: "
			"Failed to allocate pvfs_arr_len\n");
	    }
	    has_lb_ub = 1;
	}

	if ((old_pvfs_dtype_arr
	     = ADIOI_Malloc(arr_count*sizeof(PVFS_Request))) == NULL)
	    fprintf(stderr, "convert_mpi_pvfs2_dtype: "
		    "Failed to allocate PVFS_Requests\n");

	if ((pvfs_arr_disp = ADIOI_Malloc(arr_count*sizeof(PVFS_size)))
	    == NULL)
	{
	    fprintf(stderr, "convert_mpi_pvfs2_dtype: "
		    "Failed to allocate pvfs_arr_disp\n");
	}

	arr_count = 0;
	for (i = 0; i < arr_int[0]; i++)
	{
	    if (arr_dtype[i] != MPI_LB &&
		arr_dtype[i] != MPI_UB)
	    {
		leaf = convert_mpi_pvfs2_dtype(
		    &arr_dtype[i], &old_pvfs_dtype_arr[arr_count]);
		if (leaf != 1)
		    MPI_Type_free(&arr_dtype[i]);
		pvfs_arr_disp[arr_count] =
		    (PVFS_size) arr_addr[i];
		if (has_lb_ub)
		{
		    pvfs_arr_len[arr_count] =
			arr_int[i+1];
		}
		arr_count++;
	    }
	}

	/* If a MPI_UB or MPI_LB did exist, we have to
	 * resize the datatype */
	if (has_lb_ub)
	{
	    PVFS_Request *tmp_pvfs_dtype = NULL;
	    if ((tmp_pvfs_dtype = ADIOI_Malloc(sizeof(PVFS_Request))) == NULL)
		fprintf(stderr, "convert_mpi_pvfs2_dtype: "
			"Failed to allocate PVFS_Request\n");

	    ret = PVFS_Request_struct(arr_count, pvfs_arr_len,
				      pvfs_arr_disp,
				      old_pvfs_dtype_arr, tmp_pvfs_dtype);
	    if (ret != 0)
		fprintf(stderr, "Error in PVFS_Request_struct\n");

	    arr_count = 0;
	    for (i = 0; i < arr_int[0]; i++)
	    {
		if (arr_dtype[i] != MPI_LB &&
		    arr_dtype[i] != MPI_UB)
		{
		    PVFS_Request_free(&old_pvfs_dtype_arr[arr_count]);
		    arr_count++;
		}
	    }

#ifdef DEBUG_DTYPE
	    fprintf(stderr, "STRUCT(WITHOUT %d LB or UB)(%d,[",
		    arr_int[0] - arr_count, arr_count);
	    for (i = 0; i < arr_count; i++)
		fprintf(stderr, "(%d,%Ld) ",
			pvfs_arr_len[i],
			pvfs_arr_disp[i]);
	    fprintf(stderr, "]\n");
	    fprintf(stderr, "RESIZED(LB = %Ld, EXTENT = %Ld)\n",
		    pvfs_lb, pvfs_extent);
#endif
	    ret = PVFS_Request_resized(*tmp_pvfs_dtype,
				       pvfs_lb, pvfs_extent, pvfs_dtype);
	    if (ret != 0)
		fprintf(stderr, "Error in PVFS_Request_resize\n");

	    PVFS_Request_free(tmp_pvfs_dtype);
	    ADIOI_Free(tmp_pvfs_dtype);
	}
	else /* No MPI_LB or MPI_UB datatypes */
	{
	    ret = PVFS_Request_struct(arr_int[0], &arr_int[1],
				      pvfs_arr_disp,
				      old_pvfs_dtype_arr, pvfs_dtype);
	    if (ret != 0)
		fprintf(stderr, "Error in PVFS_Request_struct\n");

	    for (i = 0; i < arr_int[0]; i++)
	    {
		if (arr_dtype[i] != MPI_LB &&
		    arr_dtype[i] != MPI_UB)
		    PVFS_Request_free(&old_pvfs_dtype_arr[i]);
	    }

#ifdef DEBUG_DTYPE
	    print_dtype_info(combiner,
			     num_int,
			     num_addr,
			     num_dtype,
			     arr_int,
			     arr_addr,
			     arr_dtype);
#endif
	}

	ADIOI_Free(arr_int);
	ADIOI_Free(arr_addr);
	ADIOI_Free(arr_dtype);

	ADIOI_Free(old_pvfs_dtype_arr);
	ADIOI_Free(pvfs_arr_disp);
	ADIOI_Free(pvfs_arr_len);

	return ret;
    }

    /* Shouldn't have gotten here */
    fprintf(stderr, "convert_mpi_pvfs2_dtype:  SERIOUS ERROR\n");
    return -1;
}