void ECvsDiff::ParseLine(const char *line, int len) { if ((len > 7) && (strncmp(line, "Index: ", 7) == 0)) { // Filename free(CurrFile); CurrFile = strdup(line + 7); CurrLine = ToLine = InToFile = 0; AddLine(CurrFile, -1, line); } else if ((len > 8) && (strncmp(line, "*** ", 4) == 0)) { // From file or from hunk if (strcmp(line + len - 5, " ****") == 0) { // From hunk ParseFromTo(line, len); } InToFile = 0; AddLine(0, -1, line); } else if ((len > 8) && (strncmp(line, "--- ", 4) == 0)) { // To file or to hunk if (strcmp(line + len - 5, " ----") == 0) { // To hunk if (CurrFile) { ParseFromTo(line, len); AddLine(CurrFile, CurrLine, line, 1); } else AddLine(0, -1, line); } else { // To-file AddLine(CurrFile, -1, line); } InToFile = 1; } else if (strcmp(line, "***************") == 0) { // Hunk start CurrLine = ToLine = 0; AddLine(0, -1, line); } else if (CurrLine < ToLine) { // Diff line (markable, if CurrFile is set, also hilited) if (InToFile) AddLine(CurrFile, CurrLine, line, 5); else AddLine(0, CurrLine, line, 4); CurrLine++; } else AddLine(0, -1, line); }
// XXX currently you can not add the same adjacency (i.e. you can't have multiple // XXX stream converters registering to handle the same from-to combination. It's // XXX not programatically prohibited, it's just that results are un-predictable // XXX right now. nsresult nsStreamConverterService::AddAdjacency(const char *aContractID) { nsresult rv; // first parse out the FROM and TO MIME-types. nsAutoCString fromStr, toStr; rv = ParseFromTo(aContractID, fromStr, toStr); if (NS_FAILED(rv)) return rv; // Each MIME-type is a vertex in the graph, so first lets make sure // each MIME-type is represented as a key in our hashtable. nsCOMArray<nsIAtom> *fromEdges = mAdjacencyList.Get(fromStr); if (!fromEdges) { // There is no fromStr vertex, create one. fromEdges = new nsCOMArray<nsIAtom>(); mAdjacencyList.Put(fromStr, fromEdges); } if (!mAdjacencyList.Get(toStr)) { // There is no toStr vertex, create one. mAdjacencyList.Put(toStr, new nsCOMArray<nsIAtom>()); } // Now we know the FROM and TO types are represented as keys in the hashtable. // Let's "connect" the verticies, making an edge. nsCOMPtr<nsIAtom> vertex = do_GetAtom(toStr); if (!vertex) return NS_ERROR_OUT_OF_MEMORY; NS_ASSERTION(fromEdges, "something wrong in adjacency list construction"); if (!fromEdges) return NS_ERROR_FAILURE; return fromEdges->AppendObject(vertex) ? NS_OK : NS_ERROR_FAILURE; }
NS_IMETHODIMP nsStreamConverterService::AsyncConvertData(const char *aFromType, const char *aToType, nsIStreamListener *aListener, nsISupports *aContext, nsIStreamListener **_retval) { if (!aFromType || !aToType || !aListener || !_retval) return NS_ERROR_NULL_POINTER; nsresult rv; // first determine whether we can even handle this conversion // build a CONTRACTID nsAutoCString contractID; contractID.AssignLiteral(NS_ISTREAMCONVERTER_KEY "?from="); contractID.Append(aFromType); contractID.AppendLiteral("&to="); contractID.Append(aToType); const char *cContractID = contractID.get(); nsCOMPtr<nsIStreamConverter> listener(do_CreateInstance(cContractID, &rv)); if (NS_FAILED(rv)) { // couldn't go direct, let's try walking the graph of converters. rv = BuildGraph(); if (NS_FAILED(rv)) return rv; nsTArray<nsCString> *converterChain = nullptr; rv = FindConverter(cContractID, &converterChain); if (NS_FAILED(rv)) { // can't make this conversion. // XXX should have a more descriptive error code. return NS_ERROR_FAILURE; } // aListener is the listener that wants the final, converted, data. // we initialize finalListener w/ aListener so it gets put at the // tail end of the chain, which in the loop below, means the *first* // converter created. nsCOMPtr<nsIStreamListener> finalListener = aListener; // convert the stream using each edge of the graph as a step. // this is our stream conversion traversal. int32_t edgeCount = int32_t(converterChain->Length()); NS_ASSERTION(edgeCount > 0, "findConverter should have failed"); for (int i = 0; i < edgeCount; i++) { const char *lContractID = converterChain->ElementAt(i).get(); // create the converter for this from/to pair nsCOMPtr<nsIStreamConverter> converter(do_CreateInstance(lContractID)); NS_ASSERTION(converter, "graph construction problem, built a contractid that wasn't registered"); nsAutoCString fromStr, toStr; rv = ParseFromTo(lContractID, fromStr, toStr); if (NS_FAILED(rv)) { delete converterChain; return rv; } // connect the converter w/ the listener that should get the converted data. rv = converter->AsyncConvertData(fromStr.get(), toStr.get(), finalListener, aContext); if (NS_FAILED(rv)) { delete converterChain; return rv; } nsCOMPtr<nsIStreamListener> chainListener(do_QueryInterface(converter, &rv)); if (NS_FAILED(rv)) { delete converterChain; return rv; } // the last iteration of this loop will result in finalListener // pointing to the converter that "starts" the conversion chain. // this converter's "from" type is the original "from" type. Prior // to the last iteration, finalListener will continuously be wedged // into the next listener in the chain, then be updated. finalListener = chainListener; } delete converterChain; // return the first listener in the chain. *_retval = finalListener; NS_ADDREF(*_retval); } else { // we're going direct. *_retval = listener; NS_ADDREF(*_retval); rv = listener->AsyncConvertData(aFromType, aToType, aListener, aContext); } return rv; }
NS_IMETHODIMP nsStreamConverterService::Convert(nsIInputStream *aFromStream, const char *aFromType, const char *aToType, nsISupports *aContext, nsIInputStream **_retval) { if (!aFromStream || !aFromType || !aToType || !_retval) return NS_ERROR_NULL_POINTER; nsresult rv; // first determine whether we can even handle this conversion // build a CONTRACTID nsAutoCString contractID; contractID.AssignLiteral(NS_ISTREAMCONVERTER_KEY "?from="); contractID.Append(aFromType); contractID.AppendLiteral("&to="); contractID.Append(aToType); const char *cContractID = contractID.get(); nsCOMPtr<nsIStreamConverter> converter(do_CreateInstance(cContractID, &rv)); if (NS_FAILED(rv)) { // couldn't go direct, let's try walking the graph of converters. rv = BuildGraph(); if (NS_FAILED(rv)) return rv; nsTArray<nsCString> *converterChain = nullptr; rv = FindConverter(cContractID, &converterChain); if (NS_FAILED(rv)) { // can't make this conversion. // XXX should have a more descriptive error code. return NS_ERROR_FAILURE; } int32_t edgeCount = int32_t(converterChain->Length()); NS_ASSERTION(edgeCount > 0, "findConverter should have failed"); // convert the stream using each edge of the graph as a step. // this is our stream conversion traversal. nsCOMPtr<nsIInputStream> dataToConvert = aFromStream; nsCOMPtr<nsIInputStream> convertedData; for (int32_t i = edgeCount-1; i >= 0; i--) { const char *lContractID = converterChain->ElementAt(i).get(); converter = do_CreateInstance(lContractID, &rv); if (NS_FAILED(rv)) { delete converterChain; return rv; } nsAutoCString fromStr, toStr; rv = ParseFromTo(lContractID, fromStr, toStr); if (NS_FAILED(rv)) { delete converterChain; return rv; } rv = converter->Convert(dataToConvert, fromStr.get(), toStr.get(), aContext, getter_AddRefs(convertedData)); dataToConvert = convertedData; if (NS_FAILED(rv)) { delete converterChain; return rv; } } delete converterChain; *_retval = convertedData; NS_ADDREF(*_retval); } else { // we're going direct. rv = converter->Convert(aFromStream, aFromType, aToType, aContext, _retval); } return rv; }
// walks the graph using a breadth-first-search algorithm which generates a discovered // verticies tree. This tree is then walked up (from destination vertex, to origin vertex) // and each link in the chain is added to an nsStringArray. A direct lookup for the given // CONTRACTID should be made prior to calling this method in an attempt to find a direct // converter rather than walking the graph. nsresult nsStreamConverterService::FindConverter(const char *aContractID, nsTArray<nsCString> **aEdgeList) { nsresult rv; if (!aEdgeList) return NS_ERROR_NULL_POINTER; *aEdgeList = nullptr; // walk the graph in search of the appropriate converter. int32_t vertexCount = mAdjacencyList->Count(); if (0 >= vertexCount) return NS_ERROR_FAILURE; // Create a corresponding color table for each vertex in the graph. nsObjectHashtable lBFSTable(nullptr, nullptr, DeleteBFSEntry, nullptr); mAdjacencyList->Enumerate(InitBFSTable, &lBFSTable); NS_ASSERTION(lBFSTable.Count() == vertexCount, "strmconv BFS table init problem"); // This is our source vertex; our starting point. nsAutoCString fromC, toC; rv = ParseFromTo(aContractID, fromC, toC); if (NS_FAILED(rv)) return rv; nsCStringKey *source = new nsCStringKey(fromC.get()); if (!source) return NS_ERROR_OUT_OF_MEMORY; SCTableData *data = (SCTableData*)lBFSTable.Get(source); if (!data) { delete source; return NS_ERROR_FAILURE; } BFSState *state = data->data.state; state->color = gray; state->distance = 0; CStreamConvDeallocator *dtorFunc = new CStreamConvDeallocator(); if (!dtorFunc) { delete source; return NS_ERROR_OUT_OF_MEMORY; } nsDeque grayQ(dtorFunc); // Now generate the shortest path tree. grayQ.Push(source); while (0 < grayQ.GetSize()) { nsCStringKey *currentHead = (nsCStringKey*)grayQ.PeekFront(); SCTableData *data2 = (SCTableData*)mAdjacencyList->Get(currentHead); if (!data2) return NS_ERROR_FAILURE; nsCOMArray<nsIAtom> *edges = data2->data.edges; NS_ASSERTION(edges, "something went wrong with BFS strmconv algorithm"); if (!edges) return NS_ERROR_FAILURE; // Get the state of the current head to calculate the distance of each // reachable vertex in the loop. data2 = (SCTableData*)lBFSTable.Get(currentHead); if (!data2) return NS_ERROR_FAILURE; BFSState *headVertexState = data2->data.state; NS_ASSERTION(headVertexState, "problem with the BFS strmconv algorithm"); if (!headVertexState) return NS_ERROR_FAILURE; int32_t edgeCount = edges->Count(); for (int32_t i = 0; i < edgeCount; i++) { nsIAtom* curVertexAtom = edges->ObjectAt(i); nsAutoString curVertexStr; curVertexAtom->ToString(curVertexStr); nsCStringKey *curVertex = new nsCStringKey(ToNewCString(curVertexStr), curVertexStr.Length(), nsCStringKey::OWN); if (!curVertex) return NS_ERROR_OUT_OF_MEMORY; SCTableData *data3 = (SCTableData*)lBFSTable.Get(curVertex); if (!data3) { delete curVertex; return NS_ERROR_FAILURE; } BFSState *curVertexState = data3->data.state; NS_ASSERTION(curVertexState, "something went wrong with the BFS strmconv algorithm"); if (!curVertexState) return NS_ERROR_FAILURE; if (white == curVertexState->color) { curVertexState->color = gray; curVertexState->distance = headVertexState->distance + 1; curVertexState->predecessor = (nsCStringKey*)currentHead->Clone(); if (!curVertexState->predecessor) { delete curVertex; return NS_ERROR_OUT_OF_MEMORY; } grayQ.Push(curVertex); } else { delete curVertex; // if this vertex has already been discovered, we don't want // to leak it. (non-discovered vertex's get cleaned up when // they're popped). } } headVertexState->color = black; nsCStringKey *cur = (nsCStringKey*)grayQ.PopFront(); delete cur; cur = nullptr; } // The shortest path (if any) has been generated and is represetned by the chain of // BFSState->predecessor keys. Start at the bottom and work our way up. // first parse out the FROM and TO MIME-types being registered. nsAutoCString fromStr, toStr; rv = ParseFromTo(aContractID, fromStr, toStr); if (NS_FAILED(rv)) return rv; // get the root CONTRACTID nsAutoCString ContractIDPrefix(NS_ISTREAMCONVERTER_KEY); nsTArray<nsCString> *shortestPath = new nsTArray<nsCString>(); if (!shortestPath) return NS_ERROR_OUT_OF_MEMORY; nsCStringKey toMIMEType(toStr); data = (SCTableData*)lBFSTable.Get(&toMIMEType); if (!data) { // If this vertex isn't in the BFSTable, then no-one has registered for it, // therefore we can't do the conversion. delete shortestPath; return NS_ERROR_FAILURE; } while (data) { BFSState *curState = data->data.state; nsCStringKey *key = data->key; if (fromStr.Equals(key->GetString())) { // found it. We're done here. *aEdgeList = shortestPath; return NS_OK; } // reconstruct the CONTRACTID. // Get the predecessor. if (!curState->predecessor) break; // no predecessor SCTableData *predecessorData = (SCTableData*)lBFSTable.Get(curState->predecessor); if (!predecessorData) break; // no predecessor, chain doesn't exist. // build out the CONTRACTID. nsAutoCString newContractID(ContractIDPrefix); newContractID.AppendLiteral("?from="); nsCStringKey *predecessorKey = predecessorData->key; newContractID.Append(predecessorKey->GetString()); newContractID.AppendLiteral("&to="); newContractID.Append(key->GetString()); // Add this CONTRACTID to the chain. rv = shortestPath->AppendElement(newContractID) ? NS_OK : NS_ERROR_FAILURE; // XXX this method incorrectly returns a bool NS_ASSERTION(NS_SUCCEEDED(rv), "AppendElement failed"); // move up the tree. data = predecessorData; } delete shortestPath; return NS_ERROR_FAILURE; // couldn't find a stream converter or chain. }
// XXX currently you can not add the same adjacency (i.e. you can't have multiple // XXX stream converters registering to handle the same from-to combination. It's // XXX not programatically prohibited, it's just that results are un-predictable // XXX right now. nsresult nsStreamConverterService::AddAdjacency(const char *aContractID) { nsresult rv; // first parse out the FROM and TO MIME-types. nsAutoCString fromStr, toStr; rv = ParseFromTo(aContractID, fromStr, toStr); if (NS_FAILED(rv)) return rv; // Each MIME-type is a vertex in the graph, so first lets make sure // each MIME-type is represented as a key in our hashtable. nsCStringKey fromKey(fromStr); SCTableData *fromEdges = (SCTableData*)mAdjacencyList->Get(&fromKey); if (!fromEdges) { // There is no fromStr vertex, create one. nsCStringKey *newFromKey = new nsCStringKey(ToNewCString(fromStr), fromStr.Length(), nsCStringKey::OWN); if (!newFromKey) return NS_ERROR_OUT_OF_MEMORY; SCTableData *data = new SCTableData(newFromKey); if (!data) { delete newFromKey; return NS_ERROR_OUT_OF_MEMORY; } nsCOMArray<nsIAtom>* edgeArray = new nsCOMArray<nsIAtom>; if (!edgeArray) { delete newFromKey; data->key = nullptr; delete data; return NS_ERROR_OUT_OF_MEMORY; } data->data.edges = edgeArray; mAdjacencyList->Put(newFromKey, data); fromEdges = data; } nsCStringKey toKey(toStr); if (!mAdjacencyList->Get(&toKey)) { // There is no toStr vertex, create one. nsCStringKey *newToKey = new nsCStringKey(ToNewCString(toStr), toStr.Length(), nsCStringKey::OWN); if (!newToKey) return NS_ERROR_OUT_OF_MEMORY; SCTableData *data = new SCTableData(newToKey); if (!data) { delete newToKey; return NS_ERROR_OUT_OF_MEMORY; } nsCOMArray<nsIAtom>* edgeArray = new nsCOMArray<nsIAtom>; if (!edgeArray) { delete newToKey; data->key = nullptr; delete data; return NS_ERROR_OUT_OF_MEMORY; } data->data.edges = edgeArray; mAdjacencyList->Put(newToKey, data); } // Now we know the FROM and TO types are represented as keys in the hashtable. // Let's "connect" the verticies, making an edge. nsCOMPtr<nsIAtom> vertex = do_GetAtom(toStr); if (!vertex) return NS_ERROR_OUT_OF_MEMORY; NS_ASSERTION(fromEdges, "something wrong in adjacency list construction"); if (!fromEdges) return NS_ERROR_FAILURE; nsCOMArray<nsIAtom> *adjacencyList = fromEdges->data.edges; return adjacencyList->AppendObject(vertex) ? NS_OK : NS_ERROR_FAILURE; }
// walks the graph using a breadth-first-search algorithm which generates a discovered // verticies tree. This tree is then walked up (from destination vertex, to origin vertex) // and each link in the chain is added to an nsStringArray. A direct lookup for the given // CONTRACTID should be made prior to calling this method in an attempt to find a direct // converter rather than walking the graph. nsresult nsStreamConverterService::FindConverter(const char *aContractID, nsTArray<nsCString> **aEdgeList) { nsresult rv; if (!aEdgeList) return NS_ERROR_NULL_POINTER; *aEdgeList = nullptr; // walk the graph in search of the appropriate converter. uint32_t vertexCount = mAdjacencyList.Count(); if (0 >= vertexCount) return NS_ERROR_FAILURE; // Create a corresponding color table for each vertex in the graph. BFSHashTable lBFSTable; mAdjacencyList.EnumerateRead(InitBFSTable, &lBFSTable); NS_ASSERTION(lBFSTable.Count() == vertexCount, "strmconv BFS table init problem"); // This is our source vertex; our starting point. nsAutoCString fromC, toC; rv = ParseFromTo(aContractID, fromC, toC); if (NS_FAILED(rv)) return rv; BFSTableData *data = lBFSTable.Get(fromC); if (!data) { return NS_ERROR_FAILURE; } data->color = gray; data->distance = 0; CStreamConvDeallocator *dtorFunc = new CStreamConvDeallocator(); nsDeque grayQ(dtorFunc); // Now generate the shortest path tree. grayQ.Push(new nsCString(fromC)); while (0 < grayQ.GetSize()) { nsCString *currentHead = (nsCString*)grayQ.PeekFront(); nsCOMArray<nsIAtom> *data2 = mAdjacencyList.Get(*currentHead); if (!data2) return NS_ERROR_FAILURE; // Get the state of the current head to calculate the distance of each // reachable vertex in the loop. BFSTableData *headVertexState = lBFSTable.Get(*currentHead); if (!headVertexState) return NS_ERROR_FAILURE; int32_t edgeCount = data2->Count(); for (int32_t i = 0; i < edgeCount; i++) { nsIAtom* curVertexAtom = data2->ObjectAt(i); nsCString *curVertex = new nsCString(); curVertexAtom->ToUTF8String(*curVertex); BFSTableData *curVertexState = lBFSTable.Get(*curVertex); if (!curVertexState) { delete curVertex; return NS_ERROR_FAILURE; } if (white == curVertexState->color) { curVertexState->color = gray; curVertexState->distance = headVertexState->distance + 1; curVertexState->predecessor = new nsCString(*currentHead); grayQ.Push(curVertex); } else { delete curVertex; // if this vertex has already been discovered, we don't want // to leak it. (non-discovered vertex's get cleaned up when // they're popped). } } headVertexState->color = black; nsCString *cur = (nsCString*)grayQ.PopFront(); delete cur; cur = nullptr; } // The shortest path (if any) has been generated and is represented by the chain of // BFSTableData->predecessor keys. Start at the bottom and work our way up. // first parse out the FROM and TO MIME-types being registered. nsAutoCString fromStr, toMIMEType; rv = ParseFromTo(aContractID, fromStr, toMIMEType); if (NS_FAILED(rv)) return rv; // get the root CONTRACTID nsAutoCString ContractIDPrefix(NS_ISTREAMCONVERTER_KEY); nsTArray<nsCString> *shortestPath = new nsTArray<nsCString>(); data = lBFSTable.Get(toMIMEType); if (!data) { // If this vertex isn't in the BFSTable, then no-one has registered for it, // therefore we can't do the conversion. delete shortestPath; return NS_ERROR_FAILURE; } while (data) { if (fromStr.Equals(data->key)) { // found it. We're done here. *aEdgeList = shortestPath; return NS_OK; } // reconstruct the CONTRACTID. // Get the predecessor. if (!data->predecessor) break; // no predecessor BFSTableData *predecessorData = lBFSTable.Get(*data->predecessor); if (!predecessorData) break; // no predecessor, chain doesn't exist. // build out the CONTRACTID. nsAutoCString newContractID(ContractIDPrefix); newContractID.AppendLiteral("?from="); newContractID.Append(predecessorData->key); newContractID.AppendLiteral("&to="); newContractID.Append(data->key); // Add this CONTRACTID to the chain. rv = shortestPath->AppendElement(newContractID) ? NS_OK : NS_ERROR_FAILURE; // XXX this method incorrectly returns a bool NS_ASSERTION(NS_SUCCEEDED(rv), "AppendElement failed"); // move up the tree. data = predecessorData; } delete shortestPath; return NS_ERROR_FAILURE; // couldn't find a stream converter or chain. }