void mitk::PlanarArrow::GenerateHelperPolyLine(double mmPerDisplayUnit, unsigned int displayHeight) { // Generate helper polyline (orientation line orthogonal to first line) // if the third control point is currently being set if ( this->GetNumberOfControlPoints() != 2 ) { m_HelperPolyLinesToBePainted->SetElement( 0, false ); m_HelperPolyLinesToBePainted->SetElement( 1, false ); return; } this->ClearHelperPolyLines(); m_HelperPolyLinesToBePainted->SetElement( 0, true ); m_HelperPolyLinesToBePainted->SetElement( 1, true ); //Fixed size depending on screen size for the angle float scaleFactor = 0.015; if ( m_ArrowTipScaleFactor > 0.0 ) { scaleFactor = m_ArrowTipScaleFactor; } double nonScalingLength = displayHeight * mmPerDisplayUnit * scaleFactor; // Calculate arrow peak const Point2D p1 = this->GetControlPoint( 0 ); const Point2D p2 = this->GetControlPoint( 1 ); //const Point2D& p1 = m_ControlPoints->ElementAt( 0 ); //const Point2D& p2 = m_ControlPoints->ElementAt( 1 ); Vector2D n1 = p1 - p2; n1.Normalize(); double degrees = 100.0; Vector2D temp; temp[0] = n1[0] * cos(degrees) - n1[1] * sin(degrees); temp[1] = n1[0] * sin(degrees) + n1[1] * cos(degrees); Vector2D temp2; temp2[0] = n1[0] * cos(-degrees) - n1[1] * sin(-degrees); temp2[1] = n1[0] * sin(-degrees) + n1[1] * cos(-degrees); this->AppendPointToHelperPolyLine( 0, PolyLineElement( p1, 0 )); this->AppendPointToHelperPolyLine( 0, PolyLineElement( p1 - temp * nonScalingLength, 0 )); this->AppendPointToHelperPolyLine( 1, PolyLineElement( p1, 0 )); this->AppendPointToHelperPolyLine( 1, PolyLineElement( p1 - temp2 * nonScalingLength, 0 )); //m_HelperPolyLines->ElementAt( 0 )->ElementAt( 0 ) = p1; //m_HelperPolyLines->ElementAt( 0 )->ElementAt( 1 ) = p1 - temp * nonScalingLength; //m_HelperPolyLines->ElementAt( 1 )->ElementAt( 0 ) = p1; //m_HelperPolyLines->ElementAt( 1 )->ElementAt( 1 ) = p1 - temp2 * nonScalingLength; }
void mitk::PlanarEllipse::GeneratePolyLine() { // clear the PolyLine-Contrainer, it will be reconstructed soon enough... this->ClearPolyLines(); const Point2D ¢erPoint = GetControlPoint( 0 ); const Point2D &boundaryPoint1 = GetControlPoint( 1 ); const Point2D &boundaryPoint2 = GetControlPoint( 2 ); Vector2D dir = boundaryPoint1 - centerPoint; dir.Normalize(); vnl_matrix_fixed<float, 2, 2> rot; // differentiate between clockwise and counterclockwise rotation int start = 0; int end = 64; if (dir[1]<0) { dir[0] = -dir[0]; start = -32; end = 32; } // construct rotation matrix to align ellipse with control point vector rot[0][0] = dir[0]; rot[1][1] = rot[0][0]; rot[1][0] = sin(acos(rot[0][0])); rot[0][1] = -rot[1][0]; double radius1 = centerPoint.EuclideanDistanceTo( boundaryPoint1 ); double radius2 = centerPoint.EuclideanDistanceTo( boundaryPoint2 ); // Generate poly-line with 64 segments for ( int t = start; t < end; ++t ) { double alpha = (double) t * vnl_math::pi / 32.0; // construct the new polyline point ... vnl_vector_fixed< float, 2 > vec; vec[0] = radius1 * cos( alpha ); vec[1] = radius2 * sin( alpha ); vec = rot*vec; Point2D polyLinePoint; polyLinePoint[0] = centerPoint[0] + vec[0]; polyLinePoint[1] = centerPoint[1] + vec[1]; // ... and append it to the PolyLine. // No extending supported here, so we can set the index of the PolyLineElement to '0' AppendPointToPolyLine( 0, PolyLineElement( polyLinePoint, 0 ) ); } AppendPointToPolyLine( 1, PolyLineElement( centerPoint, 0 ) ); AppendPointToPolyLine( 1, PolyLineElement( GetControlPoint( 3 ), 0 ) ); }
void mitk::PlanarArrow::GeneratePolyLine() { this->ClearPolyLines(); this->AppendPointToPolyLine( 0, PolyLineElement( this->GetControlPoint( 0 ), 0 )); this->AppendPointToPolyLine( 0, PolyLineElement( this->GetControlPoint( 1 ), 0 )); // TODO: start line at specified start point... // Generate poly-line //m_PolyLines->ElementAt( 0 )->Reserve( 2 ); //m_PolyLines->ElementAt( 0 )->ElementAt( 0 ) = m_ControlPoints->ElementAt( 0 ); //m_PolyLines->ElementAt( 0 )->ElementAt( 1 ) = m_ControlPoints->ElementAt( 1 ); }
void mitk::PlanarCircle::GeneratePolyLine() { // TODO: start circle at specified boundary point... // clear the PolyLine-Contrainer, it will be reconstructed soon enough... this->ClearPolyLines(); const Point2D ¢erPoint = GetControlPoint( 0 ); const Point2D &boundaryPoint = GetControlPoint( 1 ); double radius = centerPoint.EuclideanDistanceTo( boundaryPoint ); // Generate poly-line with 64 segments for ( int t = 0; t < 64; ++t ) { double alpha = (double) t * vnl_math::pi / 32.0; // construct the new polyline point ... Point2D polyLinePoint; polyLinePoint[0] = centerPoint[0] + radius * cos( alpha ); polyLinePoint[1] = centerPoint[1] + radius * sin( alpha ); // ... and append it to the PolyLine. // No extending supported here, so we can set the index of the PolyLineElement to '0' AppendPointToPolyLine( 0, PolyLineElement( polyLinePoint, 0 ) ); } }
void mitk::PlanarRectangle::GeneratePolyLine() { // TODO: start polygon at specified initalize point... ClearPolyLines(); for ( unsigned int i = 0; i < this->GetNumberOfControlPoints(); ++i ) { AppendPointToPolyLine( 0, PolyLineElement( GetControlPoint(i), i ) ); } }
void mitk::PlanarFourPointAngle::GeneratePolyLine() { this->ClearPolyLines(); // TODO: start line at specified start point... // Generate poly-line for ( unsigned int i = 0; i < this->GetNumberOfControlPoints(); ++i ) { int index = i/2; this->AppendPointToPolyLine( index, PolyLineElement( GetControlPoint( i ), i ) ); } }
void mitk::PlanarAngle::GenerateHelperPolyLine(double mmPerDisplayUnit, unsigned int displayHeight) { // Generate helper-poly-line for angle if ( this->GetNumberOfControlPoints() < 3) { m_HelperPolyLinesToBePainted->SetElement(0, false); return; //We do not need to draw an angle as there are no two arms yet } this->ClearHelperPolyLines(); const Point2D centerPoint = this->GetControlPoint( 1 ); const Point2D boundaryPointOne = this->GetControlPoint( 0 ); const Point2D boundaryPointTwo = this->GetControlPoint( 2 ); double radius = centerPoint.EuclideanDistanceTo( boundaryPointOne ); if ( radius > centerPoint.EuclideanDistanceTo( boundaryPointTwo ) ) { radius = centerPoint.EuclideanDistanceTo( boundaryPointTwo ); } //Fixed size radius depending on screen size for the angle double nonScalingRadius = displayHeight * mmPerDisplayUnit * 0.05; if (nonScalingRadius > radius) { m_HelperPolyLinesToBePainted->SetElement(0, false); return; //if the arc has a radius that is longer than the shortest arm it should not be painted } m_HelperPolyLinesToBePainted->SetElement(0, true); radius = nonScalingRadius; double angle = this->GetQuantity( FEATURE_ID_ANGLE ); //Determine from which arm the angle should be drawn Vector2D v0 = boundaryPointOne - centerPoint; Vector2D v1 = boundaryPointTwo - centerPoint; Vector2D v2; v2[0] = 1.0; v2[1] = 0.0; v0[0] = v0[0] * cos( 0.001 ) - v0[1] * sin( 0.001 ); //rotate one arm a bit v0[1] = v0[0] * sin( 0.001 ) + v0[1] * cos( 0.001 ); v0.Normalize(); v1.Normalize(); double testAngle = acos( v0 * v1 ); //if the rotated arm is closer to the other arm than before it is the one from which we start drawing //else we start drawing from the other arm (we want to draw in the mathematically positive direction) if( angle > testAngle ) { v1[0] = v0[0] * cos( -0.001 ) - v0[1] * sin( -0.001 ); v1[1] = v0[0] * sin( -0.001 ) + v0[1] * cos( -0.001 ); //We determine if the arm is mathematically forward or backward //assuming we rotate between -pi and pi if ( acos( v0 * v2 ) > acos ( v1 * v2 )) { testAngle = acos( v1 * v2 ); } else { testAngle = -acos( v1 * v2 ); } } else { v0[0] = v1[0] * cos( -0.001 ) - v1[1] * sin( -0.001 ); v0[1] = v1[0] * sin( -0.001 ) + v1[1] * cos( -0.001 ); //We determine if the arm is mathematically forward or backward //assuming we rotate between -pi and pi if ( acos( v0 * v2 ) < acos ( v1 * v2 )) { testAngle = acos( v1 * v2 ); } else { testAngle = -acos( v1 * v2 ); } } // Generate poly-line with 16 segments for ( int t = 0; t < 16; ++t ) { double alpha = (double) t * angle / 15.0 + testAngle; Point2D polyLinePoint; polyLinePoint[0] = centerPoint[0] + radius * cos( alpha ); polyLinePoint[1] = centerPoint[1] + radius * sin( alpha ); AppendPointToHelperPolyLine( 0, PolyLineElement( polyLinePoint, t ) ); } }