/* code the taskname */ t_taskcode find_taskcode(const char *task_name) { rb_red_blk_node *newNode; assert(libraryStatus == initialized); if ( ( newNode = RBExactQuery( all_tasknames, task_name) ) ) { /* if already present in the collection */ TEST_PROGRESS("find_taskcode ALREADY SPECIFIED, %s --> %d\n", task_name, *(t_taskcode*) newNode->info); return *(t_taskcode*) (newNode->info); } else { /* still not present in the collection */ /* add it to the collection of tasknames */ t_taskcode task_code; task_code = get_new_taskname_code(); add_taskname_to_tree(task_name, task_code, all_tasknames); /* add it to the collection of nonspecified tasknames */ exist_nonspecified_tasknames = True; add_taskname_to_tree(task_name, task_code, nonspecified_tasknames); /* now it is already present in the tree */ newNode = RBExactQuery( all_tasknames, task_name); assert(newNode); TEST_PROGRESS("find_taskcode NOT YET SPECIFIED, %s --> %d\n", task_name, *(t_taskcode*) newNode->info); return *(t_taskcode*) (newNode->info); } }
void write_client_msg(Client* client, int write_fd) { rb_red_blk_node* transfer = RBExactQuery(client->transfers, &write_fd); File_msg* file_msg = (File_msg*)(transfer->info); /*it is Encryption of a request or a transfer + or (data + Encryption)*/ int valwrite = write(write_fd, file_msg->msg.buffer+file_msg->msg.offset, BUFFER_SIZE-file_msg->msg.offset); file_msg->msg.offset += valwrite; if(file_msg->msg.offset == BUFFER_SIZE) { logger("<Client><write_client_msg> got full message to write\n"); if((file_msg->msg.total_len != 0) && (file_msg->msg.offset < file_msg->msg.total_len)) { /*fetch next part of the file*/ if(ENCRYPTION_ENABLED) { char file_read_buffer[BUFFER_SIZE]; for(int i=0; i<BUFFER_SIZE; ++i) file_read_buffer[i] = file_msg->msg.buffer[i]; file_msg->msg.offset += read(file_msg->file_fd, file_read_buffer, BUFFER_SIZE); AES128_ECB_encrypt(file_read_buffer, file_msg->aes_key, file_msg->msg.buffer); logger("<Client><write_client_msg>read full chunck from file and encrypted it\n"); } else { read(file_msg->file_fd, file_msg->msg.buffer, BUFFER_SIZE); logger("<Client><write_client_msg>read full chunck from file and encrypted it\n"); } } else if((file_msg->msg.total_len != 0)) { //write finished logger("<Client><write_client_msg>writing to the other end finished\n"); FD_CLR(write_fd, &(client->fd_write_set)); close(file_msg->file_fd); } else { logger("<Client><write_client_msg>transfer message\n"); char file_read_buffer[BUFFER_SIZE]; for(int i=0; i<BUFFER_SIZE; ++i) file_read_buffer[i] = file_msg->msg.buffer[i]; AES128_ECB_encrypt(file_read_buffer, file_msg->aes_key, file_msg->msg.buffer); FD_CLR(write_fd, &(client->fd_read_set)); } } }
//gets the node at that location, creates one if necessary rb_red_blk_node *get_node(rb_red_blk_tree *tree, int x, unsigned int type) { circ_tree_node query_node; query_node.pos = x; rb_red_blk_node *node = RBExactQuery(tree, &query_node); if (!node) { //construct a new tree and copy contents from the one less than this circ_tree_node *new_node = (circ_tree_node *) malloc(sizeof(circ_tree_node)); new_node->type = type; new_node->pos = x; rb_red_blk_node *node_prev = RBLTEQuery(tree, &query_node); circ_tree_node *circ_node_prev; if (node_prev) circ_node_prev = (circ_tree_node *) node_prev->key; if (type == TOP_LEVEL) { if (node_prev) { //add the nodes only if the previous is not null new_node->data.tree = RBTreeCopy(circ_node_prev->data.tree, circ_tree_node_copy, dummy_fun); } else { new_node->data.tree = create_circ_tree_raw(); } } else { if (node_prev) new_node->data.state = circ_node_prev->data.state; else new_node->data.state = 0; } node = RBTreeInsert(tree, new_node, NULL); } return node; }
dhcp_full_packet_t * dhcp_cache_find(const dhcp_parsed_message_t * request, dhcp_full_packet_t * response, size_t * dhcp_data_len) { /* Lock cache for read */ cache_rdlock(); dhcp_cache_node_t s_data; s_data.if_ipaddr = request->dhcp_dev->ipaddr; s_data.gw_ipaddr = request->raw_dhcp_msg->gw_iaddr.s_addr; s_data.cli_ethaddr = (typeof(s_data.cli_ethaddr))request->raw_dhcp_msg->cli_hwaddr; s_data.header_ethaddr = (typeof(s_data.header_ethaddr))request->from_ether; rb_red_blk_node *f_node; dhcp_cache_node_t * cached_node = NULL; if ( ( f_node = RBExactQuery(cache, &s_data) ) ) { cached_node = f_node->info; *dhcp_data_len = cached_node->dhcp_data_len; memcpy(response, &cached_node->cached_response, *dhcp_data_len); } else { response = NULL; *dhcp_data_len = 0; } cache_unlock(); return response; }
void close_client_connection(Maintainer* maintainer, int current_socket, Node* node, int exception) { getpeername(current_socket, (struct sockaddr*)&(maintainer->address), (socklen_t*)&(maintainer->addrlen)); logger("<Server><close_client_connection>Host disconnected, ip %s, port %d \n", inet_ntoa(maintainer->address.sin_addr), ntohs(maintainer->address.sin_port)); RBDelete(maintainer->nodes_ip,RBExactQuery(maintainer->nodes_ip, &(maintainer->address.sin_addr.s_addr))); /*TODO memory leak?*/ FD_CLR(current_socket, &(maintainer->fd_read_set)); FD_CLR(current_socket, &(maintainer->fd_exception_set)); FD_CLR(current_socket, &(maintainer->fd_write_set)); if(maintainer->max_sd == current_socket) { maintainer->max_sd = maintainer->master_socket; struct Nodes_ll* iterator = maintainer->clients; while(iterator != NULL) { if((iterator->node->socket_fd > maintainer->max_sd) && (iterator->node->socket_fd != current_socket)) maintainer->max_sd = iterator->node->socket_fd; iterator = iterator->next; } } struct Files_ll* iterator= node->node_files; while(iterator != NULL) { --(iterator->file->num_of_owners); struct Nodes_ll* jterator = iterator->file->owners; struct Nodes_ll* pjterator = iterator->file->owners; while(jterator != NULL) { if(jterator->node->socket_fd == current_socket) { if(jterator != iterator->file->owners) { pjterator->next = jterator->next; myfree(jterator); break; } else { iterator->file->owners = iterator->file->owners->next; } } if(jterator != iterator->file->owners) pjterator = pjterator->next; jterator = jterator->next; } struct Files_ll* tmp = iterator; iterator = iterator->next; myfree(tmp); } RBTreeDestroy(node->requests); /*TODO memory leak?*/ node->socket_fd = -1; close(current_socket); }
void RBTree::RBDelete(int key) { rb_red_blk_node* y; rb_red_blk_node* x; rb_red_blk_node* nil=tree->nil; rb_red_blk_node* root=tree->root; rb_red_blk_node* z = RBExactQuery(key); if (!z) { return; } y= ((z->left == nil) || (z->right == nil)) ? z : TreeSuccessor(z); /* XXX: original code was : x= (y->left == nil) ? y->right : y->left; */ x= (y->left > nil) ? y->right : y->left; if (root == (x->parent = y->parent)) { root->left=x; } else { if (y == y->parent->left) { y->parent->left=x; } else { y->parent->right=x; } } if (y != z) { if (!(y->red)) RBDeleteFixUp(x); y->left=z->left; y->right=z->right; y->parent=z->parent; y->red=z->red; z->left->parent=z->right->parent=y; if (z == z->parent->left) { z->parent->left=y; } else { z->parent->right=y; } free(z); } else { if (!(y->red)) RBDeleteFixUp(x); free(y); } }
/* add taskname [task_name, task_code] to tree * check that there is no repetition of task names */ static void add_taskname_to_tree(const char* task_name, t_taskcode task_code, rb_red_blk_tree* tree) { char *newName; t_taskcode *newCode; #if library_TESTING /* make sure there is NOT already present taskname */ rb_red_blk_node *newNode; newNode = RBExactQuery( tree, task_name); if (newNode != NULL) PANIC("duplication of tasknames, repeated taskname: new -> %s and old -> %s\n", task_name, (char *)(newNode->key)); #endif /* make space for storing taskname and taskcode */ newName = make_persistant_taskname(task_name); newCode = make_persistant_taskcode(task_code); /* insert to the tree */ RBTreeInsert(tree, newName, newCode); }
BOOLEAN value_exists(unsigned int set_type, OBJECT_PTR val) { #ifdef GC_USES_HASHTABLE if(set_type == WHITE) return(hashtable_get(white, (void *)val) != NULL); else if(set_type == GREY) return(hashtable_get(grey, (void *)val) != NULL); else if(set_type == BLACK) return(hashtable_get(black, (void *)val) != NULL); else assert(false); #else rb_red_blk_tree *tree; if(set_type == WHITE) tree = white; else if(set_type == GREY) tree = grey; else if(set_type == BLACK) tree = black; else assert(false); if(!tree) return false; rb_red_blk_node* newNode; if((newNode=RBExactQuery(tree,&val))) return true; else return false; #endif }
void remove_node(unsigned int set_type, OBJECT_PTR val) { #ifdef GC_USES_HASHTABLE if(set_type == WHITE) hashtable_remove(white, (void *)val); else if(set_type == GREY) hashtable_remove(grey, (void *)val); else if(set_type == BLACK) hashtable_remove(black, (void *)val); else assert(false); #else rb_red_blk_tree *tree; if(set_type == WHITE) tree = white; else if(set_type == GREY) tree = grey; else if(set_type == BLACK) tree = black; else assert(false); if(!tree) return; rb_red_blk_node* newNode; if((newNode=RBExactQuery(tree,&val))) RBDelete(tree,newNode); #endif }
static SparseMatrix get_overlap_graph(int dim, int n, real *x, real *width){ scan_point *scanpointsx, *scanpointsy; int i, k, neighbor; SparseMatrix A = NULL, B = NULL; rb_red_blk_node *newNode, *newNode0; rb_red_blk_tree* treey; real one = 1; A = SparseMatrix_new(n, n, 1, MATRIX_TYPE_REAL, FORMAT_COORD); scanpointsx = N_GNEW(2*n,scan_point); for (i = 0; i < n; i++){ scanpointsx[2*i].node = i; scanpointsx[2*i].x = x[i*dim] - width[i*dim]; scanpointsx[2*i].status = INTV_OPEN; scanpointsx[2*i+1].node = i+n; scanpointsx[2*i+1].x = x[i*dim] + width[i*dim]; scanpointsx[2*i+1].status = INTV_CLOSE; } qsort(scanpointsx, 2*n, sizeof(scan_point), comp_scan_points); scanpointsy = N_GNEW(2*n,scan_point); for (i = 0; i < n; i++){ scanpointsy[i].node = i; scanpointsy[i].x = x[i*dim+1] - width[i*dim+1]; scanpointsy[i].status = INTV_OPEN; scanpointsy[i+n].node = i; scanpointsy[i+n].x = x[i*dim+1] + width[i*dim+1]; scanpointsy[i+n].status = INTV_CLOSE; } treey = RBTreeCreate(NodeComp,NodeDest,InfoDest,NodePrint,InfoPrint); for (i = 0; i < 2*n; i++){ #ifdef DEBUG_RBTREE fprintf(stderr," k = %d node = %d x====%f\n",(scanpointsx[i].node)%n, (scanpointsx[i].node), (scanpointsx[i].x)); #endif k = (scanpointsx[i].node)%n; if (scanpointsx[i].status == INTV_OPEN){ #ifdef DEBUG_RBTREE fprintf(stderr, "inserting..."); treey->PrintKey(&(scanpointsy[k])); #endif RBTreeInsert(treey, &(scanpointsy[k]), NULL); /* add both open and close int for y */ #ifdef DEBUG_RBTREE fprintf(stderr, "inserting2..."); treey->PrintKey(&(scanpointsy[k+n])); #endif RBTreeInsert(treey, &(scanpointsy[k+n]), NULL); } else { assert(scanpointsx[i].node >= n); newNode = newNode0 = RBExactQuery(treey, &(scanpointsy[k + n])); #ifdef DEBUG_RBTREE fprintf(stderr, "poping..%d....", scanpointsy[k + n].node); treey->PrintKey(newNode->key); #endif assert(treey->nil != newNode); while ((newNode) && ((newNode = TreePredecessor(treey, newNode)) != treey->nil) && ((scan_point *)newNode->key)->node != k){ neighbor = (((scan_point *)newNode->key)->node)%n; A = SparseMatrix_coordinate_form_add_entries(A, 1, &neighbor, &k, &one); #ifdef DEBUG_RBTREE fprintf(stderr,"%d %d\n",k,neighbor); #endif } #ifdef DEBUG_RBTREE fprintf(stderr, "deleteing..."); treey->PrintKey(newNode0->key); #endif if (newNode0) RBDelete(treey,newNode0); if (newNode != treey->nil && newNode != newNode0) { #ifdef DEBUG_RBTREE fprintf(stderr, "deleting2..."); treey->PrintKey(newNode->key) #endif if (newNode0) RBDelete(treey,newNode); } } }
bool RBTree::RBMember(int key) { return RBExactQuery(key) != NULL; }
int main() { stk_stack* enumResult; int option=0; int newKey,newKey2; int* newInt; rb_red_blk_node* newNode; rb_red_blk_tree* tree; tree=RBTreeCreate(IntComp,IntDest,InfoDest,IntPrint,InfoPrint); while(option!=8) { printf("choose one of the following:\n"); printf("(1) add to tree\n(2) delete from tree\n(3) query\n"); printf("(4) find predecessor\n(5) find sucessor\n(6) enumerate\n"); printf("(7) print tree\n(8) quit\n"); do option=fgetc(stdin); while(-1 != option && isspace(option)); option-='0'; switch(option) { case 1: { printf("type key for new node\n"); scanf("%i",&newKey); newInt=(int*) malloc(sizeof(int)); *newInt=newKey; RBTreeInsert(tree,newInt,0); } break; case 2: { printf("type key of node to remove\n"); scanf("%i",&newKey); if ( ( newNode=RBExactQuery(tree,&newKey ) ) ) RBDelete(tree,newNode);/*assignment*/ else printf("key not found in tree, no action taken\n"); } break; case 3: { printf("type key of node to query for\n"); scanf("%i",&newKey); if ( ( newNode = RBExactQuery(tree,&newKey) ) ) {/*assignment*/ printf("data found in tree at location %i\n",(int)newNode); } else { printf("data not in tree\n"); } } break; case 4: { printf("type key of node to find predecessor of\n"); scanf("%i",&newKey); if ( ( newNode = RBExactQuery(tree,&newKey) ) ) {/*assignment*/ newNode=TreePredecessor(tree,newNode); if(tree->nil == newNode) { printf("there is no predecessor for that node (it is a minimum)\n"); } else { printf("predecessor has key %i\n",*(int*)newNode->key); } } else { printf("data not in tree\n"); } } break; case 5: { printf("type key of node to find successor of\n"); scanf("%i",&newKey); if ( (newNode = RBExactQuery(tree,&newKey) ) ) { newNode=TreeSuccessor(tree,newNode); if(tree->nil == newNode) { printf("there is no successor for that node (it is a maximum)\n"); } else { printf("successor has key %i\n",*(int*)newNode->key); } } else { printf("data not in tree\n"); } } break; case 6: { printf("type low and high keys to see all keys between them\n"); scanf("%i %i",&newKey,&newKey2); enumResult=RBEnumerate(tree,&newKey,&newKey2); while ( (newNode = StackPop(enumResult)) ) { tree->PrintKey(newNode->key); printf("\n"); } free(enumResult); } break; case 7: { RBTreePrint(tree); } break; case 8: { RBTreeDestroy(tree); return 0; } break; default: printf("Invalid input; Please try again.\n"); } } return 0; }
void read_client_msg(Client* client, int read_fd) { rb_red_blk_node* transfer = RBExactQuery(client->transfers, &read_fd); File_msg* file_msg = (File_msg*)(transfer->info); int valread = read(read_fd, file_msg->msg.buffer+file_msg->msg.offset, BUFFER_SIZE-file_msg->msg.offset); if(valread == 0) { logger("<Client><read_client_msg>client disconnected\n"); RBDelete(client->transfers, transfer); close(read_fd); FD_CLR(read_fd, &(client->fd_read_set)); FD_CLR(read_fd, &(client->fd_write_set)); return; } file_msg->msg.offset += valread; if(file_msg->msg.offset == BUFFER_SIZE) { if(file_msg->aes_key[0] == '\0') { if(ENCRYPTION_ENABLED) { logger("<Client><read_client_msg>got a full RSA message from another client\n"); char encrypted[BUFFER_SIZE]; for(int i = 0; i<BUFFER_SIZE; ++i) encrypted[i] = file_msg->msg.buffer[i]; private_decrypt(encrypted,BUFFER_SIZE,client->keypair,file_msg->msg.buffer); } char command = file_msg->msg.buffer[0]; if(command == 'r') { logger("<Client><read_client_msg>got a request message\n"); /*rname token AES => cname ip token*/ sscanf(file_msg->msg.buffer+1, "%s %s %s", file_msg->file_name, file_msg->token, file_msg->aes_key); struct sockaddr address; int add_len = sizeof(address); getpeername(read_fd, (struct sockaddr*)&(address), (socklen_t*)&(add_len)); struct in_addr ip_struct; inet_aton(address.sa_data, & ip_struct); int ip = ip_struct.s_addr; RBTreeInsert(client->waiting_list, file_msg->token, &read_fd); sprintf(client->server_msg.buffer, "c%s %d %s", file_msg->file_name, ip, file_msg->token); FD_SET(client->maintainer_fd, &(client->fd_write_set)); file_msg->msg.offset=0; } else { exit(1); } } else { if(ENCRYPTION_ENABLED) { char partial_msg[128]; for(int i = 0; i < (BUFFER_SIZE/128); ++i) { for(int j=0; j<128; ++j) partial_msg[j] = file_msg->msg.buffer[i*128+j]; AES128_ECB_decrypt(partial_msg,file_msg->aes_key,file_msg->msg.buffer+i*128); } logger("<Client><read_client_msg>AES decrypted the message\n"); } if(file_msg->file_fd == -1) { /*ttoken size => in data mode*/ char token[8]; sscanf(file_msg->msg.buffer, "t%s %d", token, file_msg->msg.total_len); logger("<Client><read_client_msg>got a transfer message with %s for and with size %d\n", token, file_msg->msg.total_len); file_msg->token[0] = '\0'; file_msg->msg.offset=0; } else { /*read data mode (write to file)*/ if(ENCRYPTION_ENABLED) { char file_write_buffer[BUFFER_SIZE]; AES128_ECB_decrypt(file_msg->msg.buffer, file_msg->aes_key, file_write_buffer); file_msg->msg.offset += write(file_msg->file_fd, file_write_buffer, (file_msg->msg.total_len-file_msg->msg.offset) > 0 ? BUFFER_SIZE : (file_msg->msg.total_len-file_msg->msg.offset)); } else file_msg->msg.offset += write(file_msg->file_fd, file_msg->msg.buffer, (file_msg->msg.total_len-file_msg->msg.offset) > 0 ? BUFFER_SIZE : (file_msg->msg.total_len-file_msg->msg.offset)); logger("<Client><read_client_msg>wrote to file\n"); if(file_msg->msg.offset == file_msg->msg.total_len) close(file_msg->file_fd); } } } }
void process_server_msg(Client* client) { char command = client->server_msg.buffer[0]; if(command == 'n') logger("<Client><process_server_msg>file not found : %s", client->server_msg.buffer+1); else if(command == 'h') { if(ENCRYPTION_ENABLED) { client->server_msg.extended_buffer = mymalloc(BUFFER_SIZE); for(int i=0; i<BUFFER_SIZE; ++i) client->server_msg.extended_buffer[i] = client->server_msg.buffer[i]; } else { int host_ip, host_port; char file_name[32]; char* token = mymalloc(8); sscanf(client->server_msg.buffer,"h%d:%d %s %s",&host_ip, &host_port, file_name, token); int* new_socket=mymalloc(sizeof(int)); File_msg* file_msg = mymalloc(sizeof(File_msg)); strcpy(file_msg->token, token); file_msg->msg.offset=0; file_msg->msg.dual_msg=FALSE; file_msg->file_fd=-1; file_msg->msg.total_len=BUFFER_SIZE; struct sockaddr_in remote_addr; memset(&remote_addr, 0, sizeof(remote_addr)); remote_addr.sin_family = AF_INET; remote_addr.sin_addr.s_addr = host_ip; remote_addr.sin_port = htons(host_port); *new_socket = socket(AF_INET, SOCK_STREAM, 0); connect(*new_socket, (struct sockaddr *)&remote_addr, sizeof(struct sockaddr)); strcpy(file_msg->aes_key, "NO_KEY"); sprintf(file_msg->msg.buffer, "r%s %s %s", file_name, token, file_msg->aes_key); FD_SET(*new_socket, &(client->fd_read_set)); FD_SET(*new_socket, &(client->fd_write_set)); client->fdmax = client->fdmax > *new_socket ? client->fdmax : *new_socket; RBTreeInsert(client->waiting_list, token, new_socket); RBTreeInsert(client->transfers, new_socket, file_msg); write(*new_socket, file_msg->msg.buffer, BUFFER_SIZE); logger("<Client><process_server_msg>got \'h\'\n"); } } else if(command == 'i') { int host_ip, host_port; char file_name[32]; char* token = mymalloc(8); int read_size = sscanf(client->server_msg.extended_buffer,"h%d:%d %s %s", &host_ip, &host_port, &file_name, token); /*extBuffer+buffer == pub_key*/ char tmp_key[PUBKEY_SIZE]; for(int i=read_size; i<BUFFER_SIZE; ++i) tmp_key[i-read_size]=client->server_msg.extended_buffer[i]; myfree(client->server_msg.extended_buffer); client->server_msg.offset=0; for(int i=BUFFER_SIZE-read_size; i<read_size+PUBKEY_SIZE-BUFFER_SIZE; ++i) tmp_key[i]=client->server_msg.buffer[i-BUFFER_SIZE+read_size+1]; /*we have the other end's public key*/ int* new_socket=mymalloc(sizeof(int)); File_msg* file_msg = mymalloc(sizeof(File_msg)); strcpy(file_msg->token, token); file_msg->msg.offset=0; file_msg->msg.dual_msg=FALSE; file_msg->file_fd=-1; file_msg->msg.total_len=BUFFER_SIZE; strcpy(file_msg->file_name, file_name); struct sockaddr_in remote_addr; memset(&remote_addr, 0, sizeof(remote_addr)); remote_addr.sin_family = AF_INET; remote_addr.sin_addr.s_addr = host_ip; remote_addr.sin_port = htons(host_port); *new_socket = socket(AF_INET, SOCK_STREAM, 0); connect(*new_socket, (struct sockaddr *)&remote_addr, sizeof(struct sockaddr)); generate_random_aes_key(file_msg->aes_key); sprintf(file_msg->msg.buffer, "r%s %s %s", file_name, token, file_msg->aes_key); encrypt_buffer_with_key(file_msg->msg.buffer, tmp_key); FD_SET(*new_socket, &(client->fd_write_set)); FD_SET(*new_socket, &(client->fd_read_set)); client->fdmax = client->fdmax > *new_socket ? client->fdmax : *new_socket; RBTreeInsert(client->waiting_list, token, new_socket); RBTreeInsert(client->transfers, new_socket, file_msg); write(*new_socket, file_msg->msg.buffer, BUFFER_SIZE); logger("<Client><process_server_msg>got \'i\'\n"); } else if(command == 'o') { char given_token[8]; strcpy(given_token, client->server_msg.buffer+1); rb_red_blk_node* request_node = RBExactQuery(client->waiting_list, given_token); if(request_node == NULL) exit(1); FD_SET(*(int*)(request_node->info), &(client->fd_write_set)); rb_red_blk_node* transfer = RBExactQuery(client->transfers, request_node->info); RBDelete(client->waiting_list, request_node); File_msg* file_msg = (File_msg*)(transfer->key); file_msg->file_fd = open(file_msg->file_name, O_RDONLY, 666); if(file_msg->file_fd == -1) exit(1); //make the transfer msg struct stat stat_buf; fstat(file_msg->file_fd, &stat_buf); sprintf(file_msg->msg.buffer, "t %s %d", file_msg->token, stat_buf.st_size); file_msg->msg.offset=0; file_msg->msg.total_len=BUFFER_SIZE; logger("<Client><process_server_msg>got \'o\'\n"); } else if(command == 'f') { char given_token[8]; strcpy(given_token, client->server_msg.buffer+1); rb_red_blk_node* request_node = RBExactQuery(client->waiting_list, given_token); if(request_node == NULL) exit(1); rb_red_blk_node* transfer = RBExactQuery(client->transfers, request_node->info); RBDelete(client->waiting_list, request_node); RBDelete(client->transfers, transfer); logger("<Client><process_server_msg>got \'f\'\n"); } }
int main(int argc, char** argv) { int option=0; int64_t newKey,newKey2; rb_red_blk_node* newNode; rb_red_blk_tree* tree; int64_t* array = 0; int64_t* array2 = 0; unsigned int N = 65536; //total number of elements to insert unsigned int M = 16384; //number of elements to delete from the beginning unsigned int M2 = 16384; //number of elements to delete from the end int i; unsigned int j; time_t t1 = time(0); unsigned int seed = t1; double par = 2.5; for(i=1;i<argc;i++) if(argv[i][0] == '-') switch(argv[i][1]) { case 'N': N = atoi(argv[i+1]); break; case 'M': M = atoi(argv[i+1]); if(i+2 < argc) { if(isdigit(argv[i+2][0])) M2 = atoi(argv[i+2]); else M2 = M; } else M2 = M; break; case 's': seed = atoi(argv[i+1]); break; case 'p': par = atof(argv[i+1]); break; default: fprintf(stderr,"unrecognized parameter: %s!\n",argv[i]); break; } if(M + M2 >= N) { fprintf(stderr,"Error: number of elements to delete (%u + %u) is more than the total number of elements (%u)!\n", M,M2,N); return 1; } tree=RBTreeCreate(CmpInt64,NullFunction,NullFunction,NullFunction,NullFunction,DFInt64,&par); array = SafeMalloc(sizeof(int64_t)*N); for(j=0;j<N;j++) { array[j] = ((int64_t)rand())*((int64_t)rand())*((int64_t)rand()); RBTreeInsert(tree,(void*)(array[j]),0); } for(j=0;j<M;j++) { newNode = RBExactQuery(tree,(void*)(array[j])); if(!newNode) { fprintf(stderr,"Error: node not found!\n"); goto rbt_end; } RBDelete(tree,newNode); } for(j=N-M2;j<N;j++) { newNode = RBExactQuery(tree,(void*)(array[j])); if(!newNode) { fprintf(stderr,"Error: node not found!\n"); goto rbt_end; } RBDelete(tree,newNode); } N = N-M2-M; array2 = array+M; quicksort(array2,0,N); j=0; newNode = TreeFirst(tree); double cdf = 0.0; do { int64_t v1 = (int64_t)(newNode->key); if(v1 != array2[j]) { fprintf(stderr,"error: %d != %d!\n",v1,array2[j]); break; } double cdf2 = GetNodeRank(tree,newNode); double diff = fabs(cdf2-cdf); if(diff > EPSILON) { fprintf(stderr,"wrong cdf value: %g != %g (diff: %g)!\n",cdf,cdf2,diff); break; } j++; cdf += DFInt64((void*)array2[j],&par); newNode = TreeSuccessor(tree,newNode); } while(newNode != tree->nil && j<N); if( !(newNode == tree->nil && j == N) ) { fprintf(stderr,"error: tree or array too short / long!\n"); } rbt_end: RBTreeDestroy(tree); free(array); time_t t2 = time(0); fprintf(stderr,"runtime: %u\n",(unsigned int)(t2-t1)); return 0; }
static SparseMatrix get_overlap_graph(int dim, int n, real *x, real *width, int check_overlap_only){ /* if check_overlap_only = TRUE, we only check whether there is one overlap */ scan_point *scanpointsx, *scanpointsy; int i, k, neighbor; SparseMatrix A = NULL, B = NULL; rb_red_blk_node *newNode, *newNode0, *newNode2 = NULL; rb_red_blk_tree* treey; real one = 1; A = SparseMatrix_new(n, n, 1, MATRIX_TYPE_REAL, FORMAT_COORD); scanpointsx = N_GNEW(2*n,scan_point); for (i = 0; i < n; i++){ scanpointsx[2*i].node = i; scanpointsx[2*i].x = x[i*dim] - width[i*dim]; scanpointsx[2*i].status = INTV_OPEN; scanpointsx[2*i+1].node = i+n; scanpointsx[2*i+1].x = x[i*dim] + width[i*dim]; scanpointsx[2*i+1].status = INTV_CLOSE; } qsort(scanpointsx, 2*n, sizeof(scan_point), comp_scan_points); scanpointsy = N_GNEW(2*n,scan_point); for (i = 0; i < n; i++){ scanpointsy[i].node = i; scanpointsy[i].x = x[i*dim+1] - width[i*dim+1]; scanpointsy[i].status = INTV_OPEN; scanpointsy[i+n].node = i; scanpointsy[i+n].x = x[i*dim+1] + width[i*dim+1]; scanpointsy[i+n].status = INTV_CLOSE; } treey = RBTreeCreate(NodeComp,NodeDest,InfoDest,NodePrint,InfoPrint); for (i = 0; i < 2*n; i++){ #ifdef DEBUG_RBTREE fprintf(stderr," k = %d node = %d x====%f\n",(scanpointsx[i].node)%n, (scanpointsx[i].node), (scanpointsx[i].x)); #endif k = (scanpointsx[i].node)%n; if (scanpointsx[i].status == INTV_OPEN){ #ifdef DEBUG_RBTREE fprintf(stderr, "inserting..."); treey->PrintKey(&(scanpointsy[k])); #endif RBTreeInsert(treey, &(scanpointsy[k]), NULL); /* add both open and close int for y */ #ifdef DEBUG_RBTREE fprintf(stderr, "inserting2..."); treey->PrintKey(&(scanpointsy[k+n])); #endif RBTreeInsert(treey, &(scanpointsy[k+n]), NULL); } else { real bsta, bbsta, bsto, bbsto; int ii; assert(scanpointsx[i].node >= n); newNode = newNode0 = RBExactQuery(treey, &(scanpointsy[k + n])); ii = ((scan_point *)newNode->key)->node; assert(ii < n); bsta = scanpointsy[ii].x; bsto = scanpointsy[ii+n].x; #ifdef DEBUG_RBTREE fprintf(stderr, "poping..%d....yinterval={%f,%f}\n", scanpointsy[k + n].node, bsta, bsto); treey->PrintKey(newNode->key); #endif assert(treey->nil != newNode); while ((newNode) && ((newNode = TreePredecessor(treey, newNode)) != treey->nil)){ neighbor = (((scan_point *)newNode->key)->node)%n; bbsta = scanpointsy[neighbor].x; bbsto = scanpointsy[neighbor+n].x;/* the y-interval of the node that has one end of the interval lower than the top of the leaving interval (bsto) */ #ifdef DEBUG_RBTREE fprintf(stderr," predecessor is node %d y = %f\n", ((scan_point *)newNode->key)->node, ((scan_point *)newNode->key)->x); #endif if (neighbor != k){ if (ABS(0.5*(bsta+bsto) - 0.5*(bbsta+bbsto)) < 0.5*(bsto-bsta) + 0.5*(bbsto-bbsta)){/* if the distance of the centers of the interval is less than sum of width, we have overlap */ A = SparseMatrix_coordinate_form_add_entries(A, 1, &neighbor, &k, &one); #ifdef DEBUG_RBTREE fprintf(stderr,"====================================== %d %d\n",k,neighbor); #endif if (check_overlap_only) goto check_overlap_RETURN; } } else { newNode2 = newNode; } } #ifdef DEBUG_RBTREE fprintf(stderr, "deleteing..."); treey->PrintKey(newNode0->key); #endif if (newNode0) RBDelete(treey,newNode0); if (newNode2 && newNode2 != treey->nil && newNode2 != newNode0) { #ifdef DEBUG_RBTREE fprintf(stderr, "deleteing2..."); treey->PrintKey(newNode2->key); #endif if (newNode0) RBDelete(treey,newNode2); } } } check_overlap_RETURN: FREE(scanpointsx); FREE(scanpointsy); RBTreeDestroy(treey); B = SparseMatrix_from_coordinate_format(A); SparseMatrix_delete(A); A = SparseMatrix_symmetrize(B, FALSE); SparseMatrix_delete(B); if (Verbose) fprintf(stderr, "found %d clashes\n", A->nz); return A; }
int dhcp_cache_update(const dhcp_parsed_message_t * request, const dhcp_full_packet_t * response, uint16_t dhcp_data_len) { char str_ether[STR_ETHER_ALEN + 1]; char str_ipaddr[2][IP4_MAXSTR_ALEN + 1]; etheraddr_bin_to_str(request->raw_dhcp_msg->cli_hwaddr, str_ether); iptos(response->dhcp_data.you_iaddr.s_addr, str_ipaddr[0]); dhcp_cache_node_t s_data; s_data.if_ipaddr = request->dhcp_dev->ipaddr; s_data.gw_ipaddr = request->raw_dhcp_msg->gw_iaddr.s_addr; s_data.cli_ethaddr = (typeof(s_data.cli_ethaddr))request->raw_dhcp_msg->cli_hwaddr; s_data.header_ethaddr = (typeof(s_data.header_ethaddr))request->from_ether; rb_red_blk_node *f_node; cache_wrlock(); time_t now = time(NULL); dhcp_cache_node_t * cached_node = NULL; if ( ( f_node = RBExactQuery(cache, &s_data) ) ) { cached_node = f_node->info; log_wr(DLOG, "Update cached data for client %s/%s.", str_ether, str_ipaddr[0]); cached_node->timestamp = now; memcpy(&cached_node->cached_response, response, sizeof(*response)); } else { /* Node not found in cache. Add. */ cached_node = calloc(1, sizeof(dhcp_cache_node_t)); if(!cached_node) { log_wr(CLOG, "Can't allocate memory for new DHCP cache node: '%s'", strerror(errno)); exit(error_memory); } memcpy(&cached_node->cached_response, response, sizeof(cached_node->cached_response)); cached_node->if_ipaddr = request->dhcp_dev->ipaddr; cached_node->gw_ipaddr = request->raw_dhcp_msg->gw_iaddr.s_addr; cached_node->cli_ethaddr = cached_node->cached_response.dhcp_data.cli_hwaddr; cached_node->header_ethaddr = cached_node->cached_response.eth_head.ether_dhost; cached_node->timestamp = now; f_node = RBTreeInsert(cache, cached_node, cached_node); log_wr(DLOG, "Added response for client %s/%s%s%s%s to DHCP cache.", str_ether, str_ipaddr[0], cached_node->gw_ipaddr ? " (relay: " : "", cached_node->gw_ipaddr ? iptos(cached_node->gw_ipaddr, str_ipaddr[1]) : "", cached_node->gw_ipaddr ? ")" : ""); } /* Set DHCPACK message type for cached response */ uint16_t type_len; uint8_t * cached_response_type = get_dhcp_option_ptr(&cached_node->cached_response.dhcp_data, cached_node->cached_response.udp_header.len, DHCP_OPT_MESSAGE_TYPE, &type_len); if(!cached_response_type) { log_wr(CLOG, "Invalid DHCP message cached (%s/%s): DHCP message type option not found.", str_ether, str_ipaddr); RBDelete(cache, f_node); free(cached_node); cache_unlock(); return 0; } cached_node->dhcp_data_len = dhcp_data_len; *cached_response_type = DHCPACK; cache_unlock(); return 1; }
int process_command(Maintainer* maintainer, Node* node) /*1 on close*/ { if(ENCRYPTION_ENABLED) { char encrypted[BUFFER_SIZE]; for(int i = 0 ; i < BUFFER_SIZE; ++i) encrypted[i] = node->read_msg.buffer[i]; if(private_decrypt(encrypted,BUFFER_SIZE,maintainer->private_key, node->read_msg.buffer) == -1) logger("<Server><process_command>Decryption failed\n"); } char command = node->read_msg.buffer[0]; char* msg = node->read_msg.buffer+1; if(command == 'a') { /*add file*/ logger("<Server><process_command>got add file command\n"); rb_red_blk_node* result = RBExactQuery(maintainer->files, msg); if(result == NULL) { int i=0; for(; i<32; ++i) if(msg[i] == '\0') break; ++i; char* file_name = mymalloc(i*sizeof(char)); for(int j=0; j<i; ++j) file_name[j]=msg[j]; File* new_file = mymalloc(sizeof(File)); strcpy(new_file->name, file_name); new_file->num_of_owners = 0; new_file->owners = mymalloc(sizeof(struct Nodes_ll)); new_file->owners->next = NULL; new_file->owners->node = node; result = RBTreeInsert(maintainer->files, file_name, new_file); } ((File*)(result->info))->num_of_owners++; struct Nodes_ll* owners_head = ((File*)(result->info))->owners; while(owners_head != NULL) if(owners_head->node == node) return 0; else owners_head = owners_head->next; owners_head = mymalloc(sizeof(struct Nodes_ll)); owners_head->next=((File*)(result->info))->owners; ((File*)(result->info))->owners = owners_head; owners_head->node = node; return 0; } else if(command == 'q') { logger("<Server><process_command>got close connection command\n"); close_client_connection(maintainer, node->socket_fd, node, FALSE); return 1; } else if(command == 'd') { logger("<Server><process_command>got delete file command\n"); rb_red_blk_node* founded_node = RBExactQuery(maintainer->files, msg); File* this_file = founded_node->info; struct Nodes_ll* owners_head = this_file->owners; struct Nodes_ll* prev = this_file->owners; while(owners_head != NULL) { if(owners_head->node == node) { prev->next = owners_head->next; this_file->num_of_owners--; if(owners_head == this_file->owners) this_file->owners = this_file->owners->next; myfree(owners_head); break; } if(prev != owners_head) { prev = owners_head; owners_head = owners_head->next; } } return 0; } else if(command == 'l') { sscanf(msg, "%d", &(node->listening_port)); logger("<Server><process_command>got listening port as %d\n", node->listening_port); return 0; } else if(command == 'p') { for(int i=0; i<(BUFFER_SIZE-1); ++i) node->pubkey[i] = msg[i]; logger("<Server><process_command>got the first part of clients pubkey\n"); return 0; } else if(command == 'k') { for(int i=(BUFFER_SIZE-1); i<PUBKEY_SIZE; ++i) node->pubkey[i] = msg[i-BUFFER_SIZE+1]; logger("<Server><process_command>got the second part of clients pubkey\n"); return 0; } else if(command == 'g') { if(node->write_msg.offset != 0) return 1; /*get host info*/ char* file_name = mymalloc(32); sscanf(msg,"%s",file_name); logger("<Server><process_command>get host info for file : %s\n", file_name); rb_red_blk_node* founded_node = RBExactQuery(maintainer->files, file_name); if(founded_node == NULL) { node->write_msg.buffer[0] = 'n'; strcpy(node->write_msg.buffer+1, file_name); if(ENCRYPTION_ENABLED) encrypt_for_client(node->write_msg.buffer, node->pubkey); FD_SET(node->socket_fd, &(maintainer->fd_write_set)); return 0; } int rand_num = myrand()%((File*)(founded_node->info))->num_of_owners; struct Nodes_ll* return_info = ((File*)(founded_node->info))->owners; int i=0; while(i<rand_num) { ++i; return_info = return_info->next; } char* token = mymalloc(8*sizeof(char)); for(i=0; i<7; ++i) token[i] = myrand()%100+20; /*print output*/ token[7]='\0'; logger("<Server><process_command>generated token : %s\n", token); RBTreeInsert(return_info->node->requests, file_name, token); int write_size = sprintf(node->write_msg.buffer, "h%d:%d %s %s", return_info->node->ip, return_info->node->listening_port, file_name, token); node->write_msg.total_len = BUFFER_SIZE; if(write_size == BUFFER_SIZE) { node->write_msg.total_len = 0; return 1; } else if((node->pubkey[0] != '\0') && ENCRYPTION_ENABLED) { for(i=write_size; i<(BUFFER_SIZE); ++i) node->write_msg.buffer[i] = node->pubkey[i-write_size]; node->write_msg.dual_msg = TRUE; node->write_msg.extended_buffer = mymalloc(BUFFER_SIZE); node->write_msg.extended_buffer[0]='i'; for(i=0; i<(PUBKEY_SIZE-BUFFER_SIZE+write_size); ++i) node->write_msg.extended_buffer[i+1] = node->pubkey[i+BUFFER_SIZE-write_size]; if(ENCRYPTION_ENABLED) { encrypt_for_client(node->write_msg.buffer, node->pubkey); encrypt_for_client(node->write_msg.extended_buffer, node->pubkey); } } FD_SET(node->socket_fd, &(maintainer->fd_write_set)); return 0; } else if(command == 'c') { int request_from_ip; char request_file_name[32]; char request_token[8]; /*change this in client side*/ sscanf(msg, "%s %d %s", request_file_name, &request_from_ip, request_token); logger("<Server><process_command>checking credentials : %s %d %s\n", request_file_name, request_from_ip, request_token); rb_red_blk_node* node_from = RBExactQuery(maintainer->nodes_ip, &request_from_ip); node->write_msg.total_len=BUFFER_SIZE; if(node_from == NULL) { sprintf(node->write_msg.buffer, "f%s", request_token); } else { rb_red_blk_node* request_rb_node = RBExactQuery(((Node*)(node_from->info))->requests, request_file_name); if(request_rb_node == NULL) sprintf(node->write_msg.buffer, "f%s", request_token); else { if(strcmp((char*)(request_rb_node->info),request_token)) sprintf(node->write_msg.buffer, "f%s", request_token); else { sprintf(node->write_msg.buffer, "o%s", request_token); logger("<Server><process_command>and it is ok\n"); } } } if(ENCRYPTION_ENABLED) encrypt_for_client(node->write_msg.buffer, node->pubkey); FD_SET(node->socket_fd, &(maintainer->fd_write_set)); } else { /*close_client_connection(maintainer, node->socket_fd, node, TRUE);*/ logger("<Server><process_command>got invalid command from client\n"); return 1; } return 0; }
void render(PaletteRef *raster, int lineWidth, int numLines, const rb_red_blk_tree *scanLinePrimBuckets){ static OntoProj screenPlaneData = {offsetof(Point, z), 0}; static const Transformation screenPlane = {(TransformationF)(&snapOntoProj), &screenPlaneData}; { int line; rb_red_blk_tree activePrimSet; ActiveEdgeList ael = freshAEL(); rb_red_blk_map_tree inFlags; rb_red_blk_tree deFlags; /* This ensures that both trees are initialized and in a cleared state */ RBTreeMapInit(&inFlags, pointerDiffF, NULL, &RBMapNodeAlloc, NULL); RBTreeInit(&deFlags, pointerDiffF, NULL, &RBNodeAlloc); RBTreeInit(&activePrimSet, pointerDiffF, NULL, &RBNodeAlloc); dPrintf(("Scanning line: 0\n")); for(line = 0; line < numLines; (++line), (raster += lineWidth)) { rb_red_blk_node *primIt, *p = NULL, *nextP; dPrintf(("\tUpdating activePrimSet\n")); for (primIt = activePrimSet.first; primIt != activePrimSet.sentinel; (p = primIt), (primIt = nextP)) { const Primitive* prim = primIt->key; const int top = roundOwn(topMostPoint(prim)); nextP = TreeSuccessor(&activePrimSet, primIt); if(top < line){ #ifndef NDEBUG { const int bottom = roundOwn(bottomMostPoint(prim)); dPrintf(("\t\t%d -> %d ( %s ) is not valid here: %d\n",top,bottom,fmtColor(prim->color), line)); } #endif RBDelete(&activePrimSet, primIt); primIt = p; /* We don't want to advance p into garbage data */ } } { const rb_red_blk_tree *bucket = scanLinePrimBuckets + line; const rb_red_blk_node *node; for(node = bucket->first; node != bucket->sentinel; node = TreeSuccessor(bucket, node)) { Primitive * prim = node->key; #ifndef NDEBUG { const int top = roundOwn(topMostPoint(prim)), bottom = roundOwn(bottomMostPoint(prim)); dPrintf(("\t\t%d -> %d ( %s ) is added here: %d\n",top,bottom,fmtColor(prim->color), line)); } #endif RBTreeInsert(&activePrimSet, prim); } } stepEdges(&ael, &activePrimSet); { int curPixel = 0; const Primitive *curDraw = NULL; EdgeListEntry *nextEdge; LinkN* i = ael.activeEdges; if(i){ nextEdge = i->data; while(nextEdge && curPixel < lineWidth){ EdgeListEntry *const startEdge = nextEdge; Primitive *const startOwner = startEdge->owner; int startX = roundOwn(getSmartXForLine(startEdge, line)), nextX; rb_red_blk_map_node *inFlag = (rb_red_blk_map_node *)RBExactQuery((rb_red_blk_tree*)(&inFlags), startOwner); if(inFlag){ static Point localPoints[6]; /* We don't recurse, so this is fine */ static Edge flatHere = {localPoints, localPoints + 1}, flatIn = {localPoints + 2, localPoints + 3}, vert = {localPoints + 4, localPoints + 5}; const EdgeListEntry *const edgeInEntry = inFlag->info; Point **const edgeHere = startEdge->edge, **edgeIn = edgeInEntry->edge; const Point *const s = edgeHere[START], *const e = edgeHere[END]; Point here; bool sV, eV, v; float dotH, dotIn; transformEdge(&screenPlane, edgeHere, flatHere); transformEdge(&screenPlane, edgeIn, flatIn); INIT_POINT(here, startX, line, 0); sV = contains(edgeIn, s); eV = contains(edgeIn, e); v = (sV || eV) && contains(flatIn, &here) && contains(flatHere, &here) && (startOwner->arity != 1); vert[START] = &here; INIT_POINT(*(vert[END]), startX, line+1, 0); dotH = v ? dotEdge(vert, flatHere) : 0; dotIn = v ? dotEdge(vert, flatIn) : 0; if(!v || dotH * dotIn > 0){ dPrintf(("\tNot *in* old %s at %f\n", fmtColor(startEdge->owner->color), getSmartXForLine(startEdge, line))); RBSetAdd(&deFlags, startOwner); } else { dPrintf(("\tFound horizontal vertex %s at %f. Don't delete it yet\n",fmtColor(startEdge->owner->color), getSmartXForLine(startEdge, line))); } } else { dPrintf(("\tNow *in* new %s at %f\n",fmtColor(startEdge->owner->color), getSmartXForLine(startEdge, line))); /* This might happen if a polygon is parallel to the x-axis */ RBMapPut(&inFlags, startOwner, startEdge); } if(curPixel < startX){ dPrintf(("\tcurPixel has fallen behind, dragging from %d to %d\n",curPixel, startX)); curPixel = startX; } i = i->tail; if(i){ nextEdge = i->data; nextX = roundOwn(getSmartXForLine(nextEdge, line)); dPrintf(("\tNext edges @ x = %d from %s\n",nextX, fmtColor(nextEdge->owner->color))); } else { dPrintf(("\tNo more edges\n")); nextEdge = NULL; nextX = 0; } nextX = min(nextX, lineWidth); while ((!nextEdge && curPixel < lineWidth) || (curPixel < nextX)) { bool zFight = false, solitary = false; float bestZ = HUGE_VAL; const rb_red_blk_node *node; curDraw = NULL; dPrintf(("\tTesting depth:\n")); for(node = inFlags.tree.first; node != inFlags.tree.sentinel; node = TreeSuccessor((rb_red_blk_tree*)(&inFlags), node)) { const Primitive *prim = node->key; /* We need sub-pixel accuracy */ const float testZ = getZForXY(prim, curPixel, line); if(testZ <= bestZ + PT_EPS){ dPrintf(("\t\tHit: %f <= %f for %s\n",testZ, bestZ, fmtColor(prim->color))); if (CLOSE_ENOUGH(testZ, bestZ)) { if (prim->arity == 1) { zFight = curDraw && curDraw->arity == 1; curDraw = prim; solitary = RBSetContains(&deFlags, prim); } else { zFight = curDraw && curDraw->arity != 1; } } else { zFight = false; bestZ = testZ; curDraw = prim; solitary = RBSetContains(&deFlags, prim); } } else { dPrintf(("\t\tMiss: %f > %f for %s\n",testZ, bestZ, fmtColor(prim->color))); } } if(curDraw){ #ifndef NDEBUG if(nextEdge || solitary){ #endif const int drawWidth = (zFight || solitary) ? 1 : ((nextEdge ? nextX : lineWidth) - curPixel), stopPixel = curPixel + min(lineWidth - curPixel, max(0, drawWidth)); const PaletteRef drawColor = /*(uint16_t)roundOwn(63 * bestZ / 100) << 5;*/decodeColor(curDraw->color); dPrintf(("Drawing %d @ (%d, %d)\n",drawWidth,curPixel,line)); dPrintf(("Drawing %d @ (%d, %d)\n",stopPixel - curPixel,curPixel,line)); while(curPixel < stopPixel){ raster[curPixel++] = drawColor; } #ifndef NDEBUG } else { dPrintf(("Warning: we probably shouldn't have to draw if there are no more edges to turn us off. Look for parity errors\n"); RBTreeClear((rb_red_blk_tree*)&inFlags)); } #endif } else if(!inFlags.tree.size && nextEdge){ /* fast forward, we aren't in any polys */ dPrintf(("Not in any polys at the moment, fast-forwarding(1) to %d\n", nextX)); curPixel = nextX; } else { /* Nothing left */ dPrintf(("Nothing to draw at end of line\n")); curPixel = lineWidth; } for(node = deFlags.first; node != deFlags.sentinel; node = TreeSuccessor(&deFlags, node)){ RBMapRemove(&inFlags, node->key); } RBTreeClear(&deFlags); } if (!inFlags.tree.size && nextEdge) { dPrintf(("Not in any polys at the moment, fast-forwarding(2) to %d\n", nextX)); curPixel = nextX; } } } } #ifndef NDEBUG { dPrintf(("Scanning line: %d\n", line+1)); if(inFlags.tree.size){ rb_red_blk_node *node; dPrintf(("\tGarbage left in inFlags:\n")); for (node = inFlags.tree.first; node != inFlags.tree.sentinel; node = TreeSuccessor((rb_red_blk_tree*)&inFlags, node)) { dPrintf(("\t\t%s\n",fmtColor(((const Primitive*)node->key)->color))); } } } #endif RBTreeClear(&deFlags); RBTreeClear((rb_red_blk_tree*)(&inFlags)); } RBTreeDestroy(&activePrimSet, false); RBTreeDestroy(&deFlags, false); RBTreeDestroy((rb_red_blk_tree*)(&inFlags), false); }