/* ==================== idRenderModelLiquid::GenerateSurface ==================== */ modelSurface_t idRenderModelLiquid::GenerateSurface( float lerp ) { srfTriangles_t *tri; int i, base; idDrawVert *vert; modelSurface_t surf; float inv_lerp; inv_lerp = 1.0f - lerp; vert = verts.Ptr(); for( i = 0; i < verts.Num(); i++, vert++ ) { vert->xyz.z = page1[ i ] * lerp + page2[ i ] * inv_lerp; } tr.pc.c_deformedSurfaces++; tr.pc.c_deformedVerts += deformInfo->numOutputVerts; tr.pc.c_deformedIndexes += deformInfo->numIndexes; tri = R_AllocStaticTriSurf(); // note that some of the data is references, and should not be freed tri->deformedSurface = true; tri->numIndexes = deformInfo->numIndexes; tri->indexes = deformInfo->indexes; tri->silIndexes = deformInfo->silIndexes; tri->numMirroredVerts = deformInfo->numMirroredVerts; tri->mirroredVerts = deformInfo->mirroredVerts; tri->numDupVerts = deformInfo->numDupVerts; tri->dupVerts = deformInfo->dupVerts; tri->numSilEdges = deformInfo->numSilEdges; tri->silEdges = deformInfo->silEdges; tri->dominantTris = deformInfo->dominantTris; tri->numVerts = deformInfo->numOutputVerts; R_AllocStaticTriSurfVerts( tri, tri->numVerts ); SIMDProcessor->Memcpy( tri->verts, verts.Ptr(), deformInfo->numSourceVerts * sizeof(tri->verts[0]) ); // replicate the mirror seam vertexes base = deformInfo->numOutputVerts - deformInfo->numMirroredVerts; for ( i = 0 ; i < deformInfo->numMirroredVerts ; i++ ) { tri->verts[base + i] = tri->verts[deformInfo->mirroredVerts[i]]; } R_BoundTriSurf( tri ); // If a surface is going to be have a lighting interaction generated, it will also have to call // R_DeriveTangents() to get normals, tangents, and face planes. If it only // needs shadows generated, it will only have to generate face planes. If it only // has ambient drawing, or is culled, no additional work will be necessary if ( !r_useDeferredTangents.GetBool() ) { // set face planes, vertex normals, tangents R_DeriveTangents( tri ); } surf.geometry = tri; surf.shader = shader; return surf; }
/* ================== R_CreateAmbientCache Create it if needed ================== */ bool R_CreateAmbientCache( srfTriangles_t *tri, bool needsLighting ) { if( tri->ambientCache ) { return true; } // we are going to use it for drawing, so make sure we have the tangents and normals if( needsLighting && !tri->tangentsCalculated ) { R_DeriveTangents( tri ); } vertexCache.Alloc( tri->verts, tri->numVerts * sizeof( tri->verts[0] ), &tri->ambientCache ); if( !tri->ambientCache ) { return false; } return true; }
/* ==================== idMD5Mesh::UpdateSurface ==================== */ void idMD5Mesh::UpdateSurface( const struct renderEntity_s *ent, const idJointMat *entJoints, modelSurface_t *surf ) { int i, base; srfTriangles_t *tri; tr.pc.c_deformedSurfaces++; tr.pc.c_deformedVerts += deformInfo->numOutputVerts; tr.pc.c_deformedIndexes += deformInfo->numIndexes; surf->shader = shader; if ( surf->geometry ) { // if the number of verts and indexes are the same we can re-use the triangle surface // the number of indexes must be the same to assure the correct amount of memory is allocated for the facePlanes if ( surf->geometry->numVerts == deformInfo->numOutputVerts && surf->geometry->numIndexes == deformInfo->numIndexes ) { R_FreeStaticTriSurfVertexCaches( surf->geometry ); } else { R_FreeStaticTriSurf( surf->geometry ); surf->geometry = R_AllocStaticTriSurf(); } } else { surf->geometry = R_AllocStaticTriSurf(); } tri = surf->geometry; // note that some of the data is references, and should not be freed tri->deformedSurface = true; tri->tangentsCalculated = false; tri->facePlanesCalculated = false; tri->numIndexes = deformInfo->numIndexes; tri->indexes = deformInfo->indexes; tri->silIndexes = deformInfo->silIndexes; tri->numMirroredVerts = deformInfo->numMirroredVerts; tri->mirroredVerts = deformInfo->mirroredVerts; tri->numDupVerts = deformInfo->numDupVerts; tri->dupVerts = deformInfo->dupVerts; tri->numSilEdges = deformInfo->numSilEdges; tri->silEdges = deformInfo->silEdges; tri->dominantTris = deformInfo->dominantTris; tri->numVerts = deformInfo->numOutputVerts; if ( tri->verts == NULL ) { R_AllocStaticTriSurfVerts( tri, tri->numVerts ); for ( i = 0; i < deformInfo->numSourceVerts; i++ ) { tri->verts[i].Clear(); tri->verts[i].st = texCoords[i]; } } if ( ent->shaderParms[ SHADERPARM_MD5_SKINSCALE ] != 0.0f ) { TransformScaledVerts( tri->verts, entJoints, ent->shaderParms[ SHADERPARM_MD5_SKINSCALE ] ); } else { TransformVerts( tri->verts, entJoints ); } // replicate the mirror seam vertexes base = deformInfo->numOutputVerts - deformInfo->numMirroredVerts; for ( i = 0; i < deformInfo->numMirroredVerts; i++ ) { tri->verts[base + i] = tri->verts[deformInfo->mirroredVerts[i]]; } R_BoundTriSurf( tri ); // If a surface is going to be have a lighting interaction generated, it will also have to call // R_DeriveTangents() to get normals, tangents, and face planes. If it only // needs shadows generated, it will only have to generate face planes. If it only // has ambient drawing, or is culled, no additional work will be necessary if ( !r_useDeferredTangents.GetBool() ) { // set face planes, vertex normals, tangents R_DeriveTangents( tri ); } }
/* =================== R_AddSingleModel May be run in parallel. Here is where dynamic models actually get instantiated, and necessary interaction surfaces get created. This is all done on a sort-by-model basis to keep source data in cache (most likely L2) as any interactions and shadows are generated, since dynamic models will typically be lit by two or more lights. =================== */ void R_AddSingleModel( viewEntity_t* vEntity ) { // we will add all interaction surfs here, to be chained to the lights in later serial code vEntity->drawSurfs = NULL; vEntity->staticShadowVolumes = NULL; vEntity->dynamicShadowVolumes = NULL; // globals we really should pass in... const viewDef_t* viewDef = tr.viewDef; idRenderEntityLocal* entityDef = vEntity->entityDef; const renderEntity_t* renderEntity = &entityDef->parms; const idRenderWorldLocal* world = entityDef->world; if( viewDef->isXraySubview && entityDef->parms.xrayIndex == 1 ) { return; } else if( !viewDef->isXraySubview && entityDef->parms.xrayIndex == 2 ) { return; } SCOPED_PROFILE_EVENT( renderEntity->hModel == NULL ? "Unknown Model" : renderEntity->hModel->Name() ); // calculate the znear for testing whether or not the view is inside a shadow projection const float znear = ( viewDef->renderView.cramZNear ) ? ( r_znear.GetFloat() * 0.25f ) : r_znear.GetFloat(); // if the entity wasn't seen through a portal chain, it was added just for light shadows const bool modelIsVisible = !vEntity->scissorRect.IsEmpty(); const bool addInteractions = modelIsVisible && ( !viewDef->isXraySubview || entityDef->parms.xrayIndex == 2 ); const int entityIndex = entityDef->index; //--------------------------- // Find which of the visible lights contact this entity // // If the entity doesn't accept light or cast shadows from any surface, // this can be skipped. // // OPTIMIZE: world areas can assume all referenced lights are used //--------------------------- int numContactedLights = 0; static const int MAX_CONTACTED_LIGHTS = 128; viewLight_t* contactedLights[MAX_CONTACTED_LIGHTS]; idInteraction* staticInteractions[MAX_CONTACTED_LIGHTS]; if( renderEntity->hModel == NULL || renderEntity->hModel->ModelHasInteractingSurfaces() || renderEntity->hModel->ModelHasShadowCastingSurfaces() ) { SCOPED_PROFILE_EVENT( "Find lights" ); for( viewLight_t* vLight = viewDef->viewLights; vLight != NULL; vLight = vLight->next ) { if( vLight->scissorRect.IsEmpty() ) { continue; } if( vLight->entityInteractionState != NULL ) { // new code path, everything was done in AddLight if( vLight->entityInteractionState[entityIndex] == viewLight_t::INTERACTION_YES ) { contactedLights[numContactedLights] = vLight; staticInteractions[numContactedLights] = world->interactionTable[vLight->lightDef->index * world->interactionTableWidth + entityIndex]; if( ++numContactedLights == MAX_CONTACTED_LIGHTS ) { break; } } continue; } const idRenderLightLocal* lightDef = vLight->lightDef; if( !lightDef->globalLightBounds.IntersectsBounds( entityDef->globalReferenceBounds ) ) { continue; } if( R_CullModelBoundsToLight( lightDef, entityDef->localReferenceBounds, entityDef->modelRenderMatrix ) ) { continue; } if( !modelIsVisible ) { // some lights have their center of projection outside the world if( lightDef->areaNum != -1 ) { // if no part of the model is in an area that is connected to // the light center (it is behind a solid, closed door), we can ignore it bool areasConnected = false; for( areaReference_t* ref = entityDef->entityRefs; ref != NULL; ref = ref->ownerNext ) { if( world->AreasAreConnected( lightDef->areaNum, ref->area->areaNum, PS_BLOCK_VIEW ) ) { areasConnected = true; break; } } if( areasConnected == false ) { // can't possibly be seen or shadowed continue; } } // check more precisely for shadow visibility idBounds shadowBounds; R_ShadowBounds( entityDef->globalReferenceBounds, lightDef->globalLightBounds, lightDef->globalLightOrigin, shadowBounds ); // this doesn't say that the shadow can't effect anything, only that it can't // effect anything in the view if( idRenderMatrix::CullBoundsToMVP( viewDef->worldSpace.mvp, shadowBounds ) ) { continue; } } contactedLights[numContactedLights] = vLight; staticInteractions[numContactedLights] = world->interactionTable[vLight->lightDef->index * world->interactionTableWidth + entityIndex]; if( ++numContactedLights == MAX_CONTACTED_LIGHTS ) { break; } } } // if we aren't visible and none of the shadows stretch into the view, // we don't need to do anything else if( !modelIsVisible && numContactedLights == 0 ) { return; } //--------------------------- // create a dynamic model if the geometry isn't static //--------------------------- idRenderModel* model = R_EntityDefDynamicModel( entityDef ); if( model == NULL || model->NumSurfaces() <= 0 ) { return; } // add the lightweight blood decal surfaces if the model is directly visible if( modelIsVisible ) { assert( !vEntity->scissorRect.IsEmpty() ); if( entityDef->decals != NULL && !r_skipDecals.GetBool() ) { entityDef->decals->CreateDeferredDecals( model ); unsigned int numDrawSurfs = entityDef->decals->GetNumDecalDrawSurfs(); for( unsigned int i = 0; i < numDrawSurfs; i++ ) { drawSurf_t* decalDrawSurf = entityDef->decals->CreateDecalDrawSurf( vEntity, i ); if( decalDrawSurf != NULL ) { decalDrawSurf->linkChain = NULL; decalDrawSurf->nextOnLight = vEntity->drawSurfs; vEntity->drawSurfs = decalDrawSurf; } } } if( entityDef->overlays != NULL && !r_skipOverlays.GetBool() ) { entityDef->overlays->CreateDeferredOverlays( model ); unsigned int numDrawSurfs = entityDef->overlays->GetNumOverlayDrawSurfs(); for( unsigned int i = 0; i < numDrawSurfs; i++ ) { drawSurf_t* overlayDrawSurf = entityDef->overlays->CreateOverlayDrawSurf( vEntity, model, i ); if( overlayDrawSurf != NULL ) { overlayDrawSurf->linkChain = NULL; overlayDrawSurf->nextOnLight = vEntity->drawSurfs; vEntity->drawSurfs = overlayDrawSurf; } } } } //--------------------------- // copy matrix related stuff for back-end use // and setup a render matrix for faster culling //--------------------------- vEntity->modelDepthHack = renderEntity->modelDepthHack; vEntity->weaponDepthHack = renderEntity->weaponDepthHack; vEntity->skipMotionBlur = renderEntity->skipMotionBlur; memcpy( vEntity->modelMatrix, entityDef->modelMatrix, sizeof( vEntity->modelMatrix ) ); R_MatrixMultiply( entityDef->modelMatrix, viewDef->worldSpace.modelViewMatrix, vEntity->modelViewMatrix ); idRenderMatrix viewMat; idRenderMatrix::Transpose( *( idRenderMatrix* )vEntity->modelViewMatrix, viewMat ); idRenderMatrix::Multiply( viewDef->projectionRenderMatrix, viewMat, vEntity->mvp ); if( renderEntity->weaponDepthHack ) { idRenderMatrix::ApplyDepthHack( vEntity->mvp ); } if( renderEntity->modelDepthHack != 0.0f ) { idRenderMatrix::ApplyModelDepthHack( vEntity->mvp, renderEntity->modelDepthHack ); } // local light and view origins are used to determine if the view is definitely outside // an extruded shadow volume, which means we can skip drawing the end caps idVec3 localViewOrigin; R_GlobalPointToLocal( vEntity->modelMatrix, viewDef->renderView.vieworg, localViewOrigin ); //--------------------------- // add all the model surfaces //--------------------------- for( int surfaceNum = 0; surfaceNum < model->NumSurfaces(); surfaceNum++ ) { const modelSurface_t* surf = model->Surface( surfaceNum ); // for debugging, only show a single surface at a time if( r_singleSurface.GetInteger() >= 0 && surfaceNum != r_singleSurface.GetInteger() ) { continue; } srfTriangles_t* tri = surf->geometry; if( tri == NULL ) { continue; } if( tri->numIndexes == 0 ) { continue; // happens for particles } const idMaterial* shader = surf->shader; if( shader == NULL ) { continue; } if( !shader->IsDrawn() ) { continue; // collision hulls, etc } // RemapShaderBySkin if( entityDef->parms.customShader != NULL ) { // this is sort of a hack, but causes deformed surfaces to map to empty surfaces, // so the item highlight overlay doesn't highlight the autosprite surface if( shader->Deform() ) { continue; } shader = entityDef->parms.customShader; } else if( entityDef->parms.customSkin ) { shader = entityDef->parms.customSkin->RemapShaderBySkin( shader ); if( shader == NULL ) { continue; } if( !shader->IsDrawn() ) { continue; } } // optionally override with the renderView->globalMaterial if( tr.primaryRenderView.globalMaterial != NULL ) { shader = tr.primaryRenderView.globalMaterial; } SCOPED_PROFILE_EVENT( shader->GetName() ); // debugging tool to make sure we have the correct pre-calculated bounds if( r_checkBounds.GetBool() ) { for( int j = 0; j < tri->numVerts; j++ ) { int k; for( k = 0; k < 3; k++ ) { if( tri->verts[j].xyz[k] > tri->bounds[1][k] + CHECK_BOUNDS_EPSILON || tri->verts[j].xyz[k] < tri->bounds[0][k] - CHECK_BOUNDS_EPSILON ) { common->Printf( "bad tri->bounds on %s:%s\n", entityDef->parms.hModel->Name(), shader->GetName() ); break; } if( tri->verts[j].xyz[k] > entityDef->localReferenceBounds[1][k] + CHECK_BOUNDS_EPSILON || tri->verts[j].xyz[k] < entityDef->localReferenceBounds[0][k] - CHECK_BOUNDS_EPSILON ) { common->Printf( "bad referenceBounds on %s:%s\n", entityDef->parms.hModel->Name(), shader->GetName() ); break; } } if( k != 3 ) { break; } } } // view frustum culling for the precise surface bounds, which is tighter // than the entire entity reference bounds // If the entire model wasn't visible, there is no need to check the // individual surfaces. const bool surfaceDirectlyVisible = modelIsVisible && !idRenderMatrix::CullBoundsToMVP( vEntity->mvp, tri->bounds ); // RB: added check wether GPU skinning is available at all const bool gpuSkinned = ( tri->staticModelWithJoints != NULL && r_useGPUSkinning.GetBool() && glConfig.gpuSkinningAvailable ); // RB end //-------------------------- // base drawing surface //-------------------------- drawSurf_t* baseDrawSurf = NULL; if( surfaceDirectlyVisible ) { // make sure we have an ambient cache and all necessary normals / tangents if( !vertexCache.CacheIsCurrent( tri->indexCache ) ) { tri->indexCache = vertexCache.AllocIndex( tri->indexes, ALIGN( tri->numIndexes * sizeof( triIndex_t ), INDEX_CACHE_ALIGN ) ); } if( !vertexCache.CacheIsCurrent( tri->ambientCache ) ) { // we are going to use it for drawing, so make sure we have the tangents and normals if( shader->ReceivesLighting() && !tri->tangentsCalculated ) { assert( tri->staticModelWithJoints == NULL ); R_DeriveTangents( tri ); // RB: this was hit by parametric particle models .. //assert( false ); // this should no longer be hit // RB end } tri->ambientCache = vertexCache.AllocVertex( tri->verts, ALIGN( tri->numVerts * sizeof( idDrawVert ), VERTEX_CACHE_ALIGN ) ); } // add the surface for drawing // we can re-use some of the values for light interaction surfaces baseDrawSurf = ( drawSurf_t* )R_FrameAlloc( sizeof( *baseDrawSurf ), FRAME_ALLOC_DRAW_SURFACE ); baseDrawSurf->frontEndGeo = tri; baseDrawSurf->space = vEntity; baseDrawSurf->scissorRect = vEntity->scissorRect; baseDrawSurf->extraGLState = 0; baseDrawSurf->renderZFail = 0; R_SetupDrawSurfShader( baseDrawSurf, shader, renderEntity ); // Check for deformations (eyeballs, flares, etc) const deform_t shaderDeform = shader->Deform(); if( shaderDeform != DFRM_NONE ) { drawSurf_t* deformDrawSurf = R_DeformDrawSurf( baseDrawSurf ); if( deformDrawSurf != NULL ) { // any deforms may have created multiple draw surfaces for( drawSurf_t* surf = deformDrawSurf, * next = NULL; surf != NULL; surf = next ) { next = surf->nextOnLight; surf->linkChain = NULL; surf->nextOnLight = vEntity->drawSurfs; vEntity->drawSurfs = surf; } } } // Most deform source surfaces do not need to be rendered. // However, particles are rendered in conjunction with the source surface. if( shaderDeform == DFRM_NONE || shaderDeform == DFRM_PARTICLE || shaderDeform == DFRM_PARTICLE2 ) { // copy verts and indexes to this frame's hardware memory if they aren't already there if( !vertexCache.CacheIsCurrent( tri->ambientCache ) ) { tri->ambientCache = vertexCache.AllocVertex( tri->verts, ALIGN( tri->numVerts * sizeof( tri->verts[0] ), VERTEX_CACHE_ALIGN ) ); } if( !vertexCache.CacheIsCurrent( tri->indexCache ) ) { tri->indexCache = vertexCache.AllocIndex( tri->indexes, ALIGN( tri->numIndexes * sizeof( tri->indexes[0] ), INDEX_CACHE_ALIGN ) ); } R_SetupDrawSurfJoints( baseDrawSurf, tri, shader ); baseDrawSurf->numIndexes = tri->numIndexes; baseDrawSurf->ambientCache = tri->ambientCache; baseDrawSurf->indexCache = tri->indexCache; baseDrawSurf->shadowCache = 0; baseDrawSurf->linkChain = NULL; // link to the view baseDrawSurf->nextOnLight = vEntity->drawSurfs; vEntity->drawSurfs = baseDrawSurf; } } //---------------------------------------- // add all light interactions //---------------------------------------- for( int contactedLight = 0; contactedLight < numContactedLights; contactedLight++ ) { viewLight_t* vLight = contactedLights[contactedLight]; const idRenderLightLocal* lightDef = vLight->lightDef; const idInteraction* interaction = staticInteractions[contactedLight]; // check for a static interaction surfaceInteraction_t* surfInter = NULL; if( interaction > INTERACTION_EMPTY && interaction->staticInteraction ) { // we have a static interaction that was calculated accurately assert( model->NumSurfaces() == interaction->numSurfaces ); surfInter = &interaction->surfaces[surfaceNum]; } else { // try to do a more precise cull of this model surface to the light if( R_CullModelBoundsToLight( lightDef, tri->bounds, entityDef->modelRenderMatrix ) ) { continue; } } // "invisible ink" lights and shaders (imp spawn drawing on walls, etc) if( shader->Spectrum() != lightDef->lightShader->Spectrum() ) { continue; } // Calculate the local light origin to determine if the view is inside the shadow // projection and to calculate the triangle facing for dynamic shadow volumes. idVec3 localLightOrigin; R_GlobalPointToLocal( vEntity->modelMatrix, lightDef->globalLightOrigin, localLightOrigin ); //-------------------------- // surface light interactions //-------------------------- dynamicShadowVolumeParms_t* dynamicShadowParms = NULL; if( addInteractions && surfaceDirectlyVisible && shader->ReceivesLighting() ) { // static interactions can commonly find that no triangles from a surface // contact the light, even when the total model does if( surfInter == NULL || surfInter->lightTrisIndexCache > 0 ) { // create a drawSurf for this interaction drawSurf_t* lightDrawSurf = ( drawSurf_t* )R_FrameAlloc( sizeof( *lightDrawSurf ), FRAME_ALLOC_DRAW_SURFACE ); if( surfInter != NULL ) { // optimized static interaction lightDrawSurf->numIndexes = surfInter->numLightTrisIndexes; lightDrawSurf->indexCache = surfInter->lightTrisIndexCache; } else { // throw the entire source surface at it without any per-triangle culling lightDrawSurf->numIndexes = tri->numIndexes; lightDrawSurf->indexCache = tri->indexCache; // optionally cull the triangles to the light volume if( r_cullDynamicLightTriangles.GetBool() ) { vertCacheHandle_t lightIndexCache = vertexCache.AllocIndex( NULL, ALIGN( lightDrawSurf->numIndexes * sizeof( triIndex_t ), INDEX_CACHE_ALIGN ) ); if( vertexCache.CacheIsCurrent( lightIndexCache ) ) { lightDrawSurf->indexCache = lightIndexCache; dynamicShadowParms = ( dynamicShadowVolumeParms_t* )R_FrameAlloc( sizeof( dynamicShadowParms[0] ), FRAME_ALLOC_SHADOW_VOLUME_PARMS ); dynamicShadowParms->verts = tri->verts; dynamicShadowParms->numVerts = tri->numVerts; dynamicShadowParms->indexes = tri->indexes; dynamicShadowParms->numIndexes = tri->numIndexes; dynamicShadowParms->silEdges = tri->silEdges; dynamicShadowParms->numSilEdges = tri->numSilEdges; dynamicShadowParms->joints = gpuSkinned ? tri->staticModelWithJoints->jointsInverted : NULL; dynamicShadowParms->numJoints = gpuSkinned ? tri->staticModelWithJoints->numInvertedJoints : 0; dynamicShadowParms->triangleBounds = tri->bounds; dynamicShadowParms->triangleMVP = vEntity->mvp; dynamicShadowParms->localLightOrigin = localLightOrigin; dynamicShadowParms->localViewOrigin = localViewOrigin; idRenderMatrix::Multiply( vLight->lightDef->baseLightProject, entityDef->modelRenderMatrix, dynamicShadowParms->localLightProject ); dynamicShadowParms->zNear = znear; dynamicShadowParms->lightZMin = vLight->scissorRect.zmin; dynamicShadowParms->lightZMax = vLight->scissorRect.zmax; dynamicShadowParms->cullShadowTrianglesToLight = false; dynamicShadowParms->forceShadowCaps = false; dynamicShadowParms->useShadowPreciseInsideTest = false; dynamicShadowParms->useShadowDepthBounds = false; dynamicShadowParms->tempFacing = NULL; dynamicShadowParms->tempCulled = NULL; dynamicShadowParms->tempVerts = NULL; dynamicShadowParms->indexBuffer = NULL; dynamicShadowParms->shadowIndices = NULL; dynamicShadowParms->maxShadowIndices = 0; dynamicShadowParms->numShadowIndices = NULL; dynamicShadowParms->lightIndices = ( triIndex_t* )vertexCache.MappedIndexBuffer( lightIndexCache ); dynamicShadowParms->maxLightIndices = lightDrawSurf->numIndexes; dynamicShadowParms->numLightIndices = &lightDrawSurf->numIndexes; dynamicShadowParms->renderZFail = NULL; dynamicShadowParms->shadowZMin = NULL; dynamicShadowParms->shadowZMax = NULL; dynamicShadowParms->shadowVolumeState = & lightDrawSurf->shadowVolumeState; lightDrawSurf->shadowVolumeState = SHADOWVOLUME_UNFINISHED; dynamicShadowParms->next = vEntity->dynamicShadowVolumes; vEntity->dynamicShadowVolumes = dynamicShadowParms; } } } lightDrawSurf->ambientCache = tri->ambientCache; lightDrawSurf->shadowCache = 0; lightDrawSurf->frontEndGeo = tri; lightDrawSurf->space = vEntity; lightDrawSurf->material = shader; lightDrawSurf->extraGLState = 0; lightDrawSurf->scissorRect = vLight->scissorRect; // interactionScissor; lightDrawSurf->sort = 0.0f; lightDrawSurf->renderZFail = 0; lightDrawSurf->shaderRegisters = baseDrawSurf->shaderRegisters; R_SetupDrawSurfJoints( lightDrawSurf, tri, shader ); // Determine which linked list to add the light surface to. // There will only be localSurfaces if the light casts shadows and // there are surfaces with NOSELFSHADOW. if( shader->Coverage() == MC_TRANSLUCENT ) { lightDrawSurf->linkChain = &vLight->translucentInteractions; } else if( !lightDef->parms.noShadows && shader->TestMaterialFlag( MF_NOSELFSHADOW ) ) { lightDrawSurf->linkChain = &vLight->localInteractions; } else { lightDrawSurf->linkChain = &vLight->globalInteractions; } lightDrawSurf->nextOnLight = vEntity->drawSurfs; vEntity->drawSurfs = lightDrawSurf; } } //-------------------------- // surface shadows //-------------------------- if( !shader->SurfaceCastsShadow() ) { continue; } if( !lightDef->LightCastsShadows() ) { continue; } if( tri->silEdges == NULL ) { continue; // can happen for beam models (shouldn't use a shadow casting material, though...) } // if the static shadow does not have any shadows if( surfInter != NULL && surfInter->numShadowIndexes == 0 ) { continue; } // some entities, like view weapons, don't cast any shadows if( entityDef->parms.noShadow ) { continue; } // No shadow if it's suppressed for this light. if( entityDef->parms.suppressShadowInLightID && entityDef->parms.suppressShadowInLightID == lightDef->parms.lightId ) { continue; } if( lightDef->parms.prelightModel && lightDef->lightHasMoved == false && entityDef->parms.hModel->IsStaticWorldModel() && !r_skipPrelightShadows.GetBool() ) { // static light / world model shadow interacitons // are always captured in the prelight shadow volume continue; } // If the shadow is drawn (or translucent), but the model isn't, we must include the shadow caps // because we may be able to see into the shadow volume even though the view is outside it. // This happens for the player world weapon and possibly some animations in multiplayer. const bool forceShadowCaps = !addInteractions || r_forceShadowCaps.GetBool(); drawSurf_t* shadowDrawSurf = ( drawSurf_t* )R_FrameAlloc( sizeof( *shadowDrawSurf ), FRAME_ALLOC_DRAW_SURFACE ); if( surfInter != NULL ) { shadowDrawSurf->numIndexes = 0; shadowDrawSurf->indexCache = surfInter->shadowIndexCache; shadowDrawSurf->shadowCache = tri->shadowCache; shadowDrawSurf->scissorRect = vLight->scissorRect; // default to the light scissor and light depth bounds shadowDrawSurf->shadowVolumeState = SHADOWVOLUME_DONE; // assume the shadow volume is done in case r_skipStaticShadows is set if( !r_skipStaticShadows.GetBool() ) { staticShadowVolumeParms_t* staticShadowParms = ( staticShadowVolumeParms_t* )R_FrameAlloc( sizeof( staticShadowParms[0] ), FRAME_ALLOC_SHADOW_VOLUME_PARMS ); staticShadowParms->verts = tri->staticShadowVertexes; staticShadowParms->numVerts = tri->numVerts * 2; staticShadowParms->indexes = surfInter->shadowIndexes; staticShadowParms->numIndexes = surfInter->numShadowIndexes; staticShadowParms->numShadowIndicesWithCaps = surfInter->numShadowIndexes; staticShadowParms->numShadowIndicesNoCaps = surfInter->numShadowIndexesNoCaps; staticShadowParms->triangleBounds = tri->bounds; staticShadowParms->triangleMVP = vEntity->mvp; staticShadowParms->localLightOrigin = localLightOrigin; staticShadowParms->localViewOrigin = localViewOrigin; staticShadowParms->zNear = znear; staticShadowParms->lightZMin = vLight->scissorRect.zmin; staticShadowParms->lightZMax = vLight->scissorRect.zmax; staticShadowParms->forceShadowCaps = forceShadowCaps; staticShadowParms->useShadowPreciseInsideTest = r_useShadowPreciseInsideTest.GetBool(); staticShadowParms->useShadowDepthBounds = r_useShadowDepthBounds.GetBool(); staticShadowParms->numShadowIndices = & shadowDrawSurf->numIndexes; staticShadowParms->renderZFail = & shadowDrawSurf->renderZFail; staticShadowParms->shadowZMin = & shadowDrawSurf->scissorRect.zmin; staticShadowParms->shadowZMax = & shadowDrawSurf->scissorRect.zmax; staticShadowParms->shadowVolumeState = & shadowDrawSurf->shadowVolumeState; shadowDrawSurf->shadowVolumeState = SHADOWVOLUME_UNFINISHED; staticShadowParms->next = vEntity->staticShadowVolumes; vEntity->staticShadowVolumes = staticShadowParms; } } else { // When CPU skinning the dynamic shadow verts of a dynamic model may not have been copied to buffer memory yet. if( !vertexCache.CacheIsCurrent( tri->shadowCache ) ) { assert( !gpuSkinned ); // the shadow cache should be static when using GPU skinning // Extracts just the xyz values from a set of full size drawverts, and // duplicates them with w set to 0 and 1 for the vertex program to project. // This is constant for any number of lights, the vertex program takes care // of projecting the verts to infinity for a particular light. tri->shadowCache = vertexCache.AllocVertex( NULL, ALIGN( tri->numVerts * 2 * sizeof( idShadowVert ), VERTEX_CACHE_ALIGN ) ); idShadowVert* shadowVerts = ( idShadowVert* )vertexCache.MappedVertexBuffer( tri->shadowCache ); idShadowVert::CreateShadowCache( shadowVerts, tri->verts, tri->numVerts ); } const int maxShadowVolumeIndexes = tri->numSilEdges * 6 + tri->numIndexes * 2; shadowDrawSurf->numIndexes = 0; shadowDrawSurf->indexCache = vertexCache.AllocIndex( NULL, ALIGN( maxShadowVolumeIndexes * sizeof( triIndex_t ), INDEX_CACHE_ALIGN ) ); shadowDrawSurf->shadowCache = tri->shadowCache; shadowDrawSurf->scissorRect = vLight->scissorRect; // default to the light scissor and light depth bounds shadowDrawSurf->shadowVolumeState = SHADOWVOLUME_DONE; // assume the shadow volume is done in case the index cache allocation failed // if the index cache was successfully allocated then setup the parms to create a shadow volume in parallel if( vertexCache.CacheIsCurrent( shadowDrawSurf->indexCache ) && !r_skipDynamicShadows.GetBool() ) { // if the parms were not already allocated for culling interaction triangles to the light frustum if( dynamicShadowParms == NULL ) { dynamicShadowParms = ( dynamicShadowVolumeParms_t* )R_FrameAlloc( sizeof( dynamicShadowParms[0] ), FRAME_ALLOC_SHADOW_VOLUME_PARMS ); } else { // the shadow volume will be rendered first so when the interaction surface is drawn the triangles have been culled for sure *dynamicShadowParms->shadowVolumeState = SHADOWVOLUME_DONE; } dynamicShadowParms->verts = tri->verts; dynamicShadowParms->numVerts = tri->numVerts; dynamicShadowParms->indexes = tri->indexes; dynamicShadowParms->numIndexes = tri->numIndexes; dynamicShadowParms->silEdges = tri->silEdges; dynamicShadowParms->numSilEdges = tri->numSilEdges; dynamicShadowParms->joints = gpuSkinned ? tri->staticModelWithJoints->jointsInverted : NULL; dynamicShadowParms->numJoints = gpuSkinned ? tri->staticModelWithJoints->numInvertedJoints : 0; dynamicShadowParms->triangleBounds = tri->bounds; dynamicShadowParms->triangleMVP = vEntity->mvp; dynamicShadowParms->localLightOrigin = localLightOrigin; dynamicShadowParms->localViewOrigin = localViewOrigin; idRenderMatrix::Multiply( vLight->lightDef->baseLightProject, entityDef->modelRenderMatrix, dynamicShadowParms->localLightProject ); dynamicShadowParms->zNear = znear; dynamicShadowParms->lightZMin = vLight->scissorRect.zmin; dynamicShadowParms->lightZMax = vLight->scissorRect.zmax; dynamicShadowParms->cullShadowTrianglesToLight = r_cullDynamicShadowTriangles.GetBool(); dynamicShadowParms->forceShadowCaps = forceShadowCaps; dynamicShadowParms->useShadowPreciseInsideTest = r_useShadowPreciseInsideTest.GetBool(); dynamicShadowParms->useShadowDepthBounds = r_useShadowDepthBounds.GetBool(); dynamicShadowParms->tempFacing = NULL; dynamicShadowParms->tempCulled = NULL; dynamicShadowParms->tempVerts = NULL; dynamicShadowParms->indexBuffer = NULL; dynamicShadowParms->shadowIndices = ( triIndex_t* )vertexCache.MappedIndexBuffer( shadowDrawSurf->indexCache ); dynamicShadowParms->maxShadowIndices = maxShadowVolumeIndexes; dynamicShadowParms->numShadowIndices = & shadowDrawSurf->numIndexes; // dynamicShadowParms->lightIndices may have already been set for the interaction surface // dynamicShadowParms->maxLightIndices may have already been set for the interaction surface // dynamicShadowParms->numLightIndices may have already been set for the interaction surface dynamicShadowParms->renderZFail = & shadowDrawSurf->renderZFail; dynamicShadowParms->shadowZMin = & shadowDrawSurf->scissorRect.zmin; dynamicShadowParms->shadowZMax = & shadowDrawSurf->scissorRect.zmax; dynamicShadowParms->shadowVolumeState = & shadowDrawSurf->shadowVolumeState; shadowDrawSurf->shadowVolumeState = SHADOWVOLUME_UNFINISHED; // if the parms we not already linked for culling interaction triangles to the light frustum if( dynamicShadowParms->lightIndices == NULL ) { dynamicShadowParms->next = vEntity->dynamicShadowVolumes; vEntity->dynamicShadowVolumes = dynamicShadowParms; } tr.pc.c_createShadowVolumes++; } } assert( vertexCache.CacheIsCurrent( shadowDrawSurf->shadowCache ) ); assert( vertexCache.CacheIsCurrent( shadowDrawSurf->indexCache ) ); shadowDrawSurf->ambientCache = 0; shadowDrawSurf->frontEndGeo = NULL; shadowDrawSurf->space = vEntity; shadowDrawSurf->material = NULL; shadowDrawSurf->extraGLState = 0; shadowDrawSurf->sort = 0.0f; shadowDrawSurf->shaderRegisters = NULL; R_SetupDrawSurfJoints( shadowDrawSurf, tri, NULL ); // determine which linked list to add the shadow surface to shadowDrawSurf->linkChain = shader->TestMaterialFlag( MF_NOSELFSHADOW ) ? &vLight->localShadows : &vLight->globalShadows; shadowDrawSurf->nextOnLight = vEntity->drawSurfs; vEntity->drawSurfs = shadowDrawSurf; } } }